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Abstract
Aging	clocks	dissociate	biological	from	chronological	age.	The	estimation	of	biologi-
cal	age	 is	 important	 for	 identifying	gerontogenes	and	assessing	environmental,	nu-
tritional,	or	therapeutic	impacts	on	the	aging	process.	Recently,	methylation	markers	
were	shown	to	allow	estimation	of	biological	age	based	on	age-	dependent	somatic	
epigenetic	alterations.	However,	DNA	methylation	is	absent	in	some	species	such	as	
Caenorhabditis elegans and it remains unclear whether and how the epigenetic clocks 
affect	 gene	 expression.	 Aging	 clocks	 based	 on	 transcriptomes	 have	 suffered	 from	
considerable	variation	 in	the	data	and	relatively	 low	accuracy.	Here,	we	devised	an	
approach	that	uses	temporal	scaling	and	binarization	of	C. elegans transcriptomes to 
define a gene set that predicts biological age with an accuracy that is close to the the-
oretical	limit.	Our	model	accurately	predicts	the	longevity	effects	of	diverse	strains,	
treatments,	and	conditions.	The	involved	genes	support	a	role	of	specific	transcription	
factors as well as innate immunity and neuronal signaling in the regulation of the aging 
process.	We	show	that	this	binarized	transcriptomic	aging	(BiT	age)	clock	can	also	be	
applied to human age prediction with high accuracy. The BiT age clock could therefore 
find	wide	application	in	genetic,	nutritional,	environmental,	and	therapeutic	interven-
tions in the aging process.
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1  |  INTRODUC TION

Aging	is	the	driving	factor	for	several	diseases,	the	declining	organ	
function,	and	overall	progressive	loss	of	physiological	integrity.	Aging	
biomarkers that predict the biological age of an organism are import-
ant for identifying genetic and environmental factors that influence 
the aging process and for accelerating studies examining potential 
rejuvenating	treatments.	Diverse	studies	tried	to	identify	biomark-
ers	 and	 predict	 the	 age	 of	 individuals,	 ranging	 from	 proteomics,	

transcriptomics,	the	microbiome,	frailty	 index	assessments	to	neu-
roimaging,	and	DNA	methylation	(Galkin	et	al.,	2020).	Currently,	the	
most	common	predictors	are	based	on	DNA	methylation.	The	DNA	
methylation marks themselves might influence the transcriptional 
response,	but	aging	also	affects	the	transcriptional	network	by	alter-
ing	the	histone	abundance,	histone	modifications,	and	the	3D	orga-
nization	of	chromatin.	The	difference	in	RNA	molecule	abundance,	
thereby,	integrates	a	variety	of	regulation	and	influences	resulting	in	
a notable gene expression change during the lifespan of an organism 
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(Lai	et	al.,	2019).	These	changes	sparked	interest	in	the	identification	
of	 transcriptomic	 aging	 biomarkers,	 an	 RNA	 expression	 signature	
for	age	classification,	and	the	development	of	transcriptomic	aging	
clocks.

Peters et al. extended previous classification approaches to a 
regression,	which	allows	the	computation	of	the	predicted	age	and	
developed	a	 transcriptional	 aging	clock	based	on	whole-	blood	mi-
croarray samples for half of the human genome and reported an r2 
of	up	to	0.6,	an	average	difference	of	7.8	years,	and	an	association	of	
the	predicted	age	to	blood	pressure	as	well	as	smoking	status	(Peters	
et	al.,	2015).	Similarly,	Mamoshina	et	al.	build	a	transcriptomic	aging	
clock	 of	 human	 muscle	 tissue.	 A	 deep	 feature	 selection	 model	
performed best with an r2 of 0.83 and a mean absolute error of 
6.24	years	(Mamoshina	et	al.,	2018).	However,	microarray	data	have	
the	drawbacks	of	a	limited	range	of	detection,	high	background	lev-
els,	and	the	detection	of	just	a	subset	of	the	transcriptome.	Instead,	
by applying an ensemble of linear discriminant analysis classifiers on 
RNA-	seq	data,	a	model	with	an	r2	of	0.81,	a	mean	absolute	error	of	
7.7	years,	and	a	median	absolute	error	of	4.0	years	were	obtained	in	
a	dataset	derived	from	cell	culture	of	healthy	donors	(Fleischer	et	al.,	
2018).	The	same	model	also	predicted	an	accelerated	age	in	10	pa-
tients	with	the	premature	aging	disease	Hutchinson-	Gilford	progeria	
syndrome	(HGPS).

While	a	large	variety	of	data,	techniques,	and	analyses	have	been	
used	to	identify	aging	biomarkers	and	aging	clocks	in	humans,	issues	
remain with regard to pronounced variability and difficulties in repli-
cability.	Indeed,	a	recent	analysis	of	gene	expression,	plasma	protein,	
blood	metabolite,	blood	cytokine,	microbiome,	 and	clinical	marker	
data showed that individual age slopes diverged among the partici-
pants	over	the	longitudinal	measurement	time	and	subsequently	that	
individuals	have	different	molecular	aging	pattern,	called	ageotypes	
(Ahadi	et	al.,	2020).	These	interindividual	differences	show	that	it	is	
still difficult to pinpoint biomarkers for aging in humans.

Model	organisms,	instead,	can	give	a	more	controllable	view	on	
the aging process and biomarker discovery. Caenorhabditis elegans 
has	revolutionized	the	aging	field	and	has	vast	advantages	as	a	model	
organism. Even isogenic nematodes in precisely controlled homoge-
nous	environments	have	surprisingly	diverse	lifespans;	however,	the	
underlying	causes	are	still	incompletely	understood.	Several	predic-
tive biomarkers of C. elegans	aging	have	been	described,	and	a	first	
transcriptomic clock of C. elegans	aging	using	microarray	data	of	104	
single	wild-	type	worms	 predicted	 the	 chronological	 age	with	 71%	
accuracy	(Golden	et	al.,	2008).	When	the	prediction	was	based	on	
modular genetic subnetworks inferred from microarray data with 
support	 vector	 regression,	 the	 age	 of	 sterile	 fer-	15	 mutants	 at	 4	
timepoints was predicted with an r2	of	0.91.	The	same	approach	on	
the	104	individual	N2	wild-	type	worms	yielded	an	r2 of 0.77 indicat-
ing that for microarray data subnetworks of genes result in better 
prediction	compared	with	single	gene	predictors,	 likely	due	 to	 the	
noisiness	of	 the	data	 type	 (Fortney	et	al.,	2010).	Although	 the	ac-
curacy	of	this	model	 is	 reasonable,	 it	 is	 limited	by	the	fact	that	no	
lifespan-	affecting	genotypes	or	treatments	were	tested	and	that	the	
validation	dataset,	although	tested	on	single	worms,	resulted	in	an	

increased	prediction	error.	Recently,	an	initial	age	prediction	based	
on	microarray	data	predicted	60	RNA-	seq	samples	with	a	Pearson	
correlation	 of	 0.54	 and	 was	 improved	 to	 an	 r	 of	 0.86	 when	 the	
chronological age was rescaled by the median lifespan of the corre-
sponding	sample	(Tarkhov	et	al.,	2019).	Even	though	this	model	in-
stead of chronological age predicted the biological age of a variety of 
C. elegans	genotypes,	it	is	limited	by	the	accuracy	of	the	prediction.	
Moreover,	the	biological	age	is	not	reported	in	days,	but	as	a	variable	
with	values	between	0	and	~2.5,	which	makes	it	harder	to	interpret.

To	 date,	 no	 aging	 clock	 for	C. elegans has been built solely on 
RNA-	seq	data	and	been	shown	to	predict	 the	biological	age	of	di-
verse	strains,	treatments,	and	conditions	to	a	high	accuracy.	In	this	
study,	we	build	such	a	transcriptomic	aging	clock	that	predicts	the	bi-
ological age of C. elegans	based	on	high-	throughput	gene	expression	
data	to	an	unprecedented	accuracy.	We	combine	a	temporal	rescal-
ing	approach,	to	make	samples	of	diverse	lifespans	comparable,	with	
a	novel	binarization	approach,	which	overcomes	current	limitations	
in	the	prediction	of	the	biological	age.	Moreover,	we	show	that	the	
model	 accurately	predicts	 the	effects	of	 several	 lifespan-	affecting	
factors	 such	 as	 insulin-	like	 signaling,	 a	 dysregulated	 miRNA	 reg-
ulation,	 the	 effect	 of	 an	 epigenetic	 mark,	 translational	 efficiency,	
dietary	 restriction,	 heat	 stress,	 pathogen	 exposure,	 the	 diet-	,	 and	
dosage-	dependent	 effects	 of	 drugs.	 This	 combination	of	 rescaling	
and	 binarization	 of	 gene	 expression	 data	 therefore	 allows	 for	 the	
first time to build an accurate aging clock that predicts the biolog-
ical	 age	 regardless	of	 the	genotype	or	 treatment.	 Lastly,	we	 show	
how	 our	 binarized	 transcriptomic	 aging	 (BiT	 age)	 clock	model	 has	
the potential to improve the prediction of the transcriptomic age of 
humans and might therefore be universally applicable to assess bi-
ological age.

2  |  RESULTS

2.1  |  Temporal scaling and transcriptome data 
binarization allow precise biological clock predictions

We	 downloaded	 and	 processed	 1,020	 publicly	 available	 RNA-	seq	
samples for adult C. elegans	 out	 of	 which	 for	 972	 samples	 corre-
sponding	lifespan	data	were	available	(Table	S1).	900	samples	were	
used	for	the	training	and	testing	of	the	model,	the	remainder	for	vali-
dation	purposes	(Figure	1).	Out	of	the	900	samples	most	(409)	were	
wild-	type	N2	worm	populations.	A	significant	portion	of	171	sam-
ples	contained	reads	of	temperature-	sensitive	sterile	strains	such	as	
glp-	1 or fem-	1	 or	double	mutants	 thereof.	59	 samples	 contained	a	
mutation	 in	 the	 insulin-	like	growth	 factor	1	 receptor	daf-	2	 and	45	
a	mutation	 in	 the	dietary-	restriction	mimic	 strain	eat-	2 either as a 
single	or	as	a	combination	with	a	different	mutation.	216	samples	
did not cluster in one of the mentioned groups and contain a variety 
of	different	strains.	112	of	the	samples	span	14	different	RNAis	in	51	
samples	and	61	empty	vector	controls.	Slightly	more	than	half	of	the	
samples	(486)	were	sequenced	from	a	population	that	was	undergo-
ing	a	 treatment	 (excluding	RNAi	or	empty	vector)	 that	 is	different	
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from the standard treatment of an Escherichia coli	OP50	diet	at	20°C.	
The	convoluted	circle	plot	on	the	right	side	of	Figure	1	shows	the	
overlap	of	the	different	possible	combinations	of	strains,	RNAi,	and	
treatments in our training samples.

We	only	downloaded	and	processed	data	 for	which	 the	corre-
sponding publication reported a median lifespan. The lifespan data 
are	required	to	make	strains	with	vastly	different	lifespans	compa-
rable.	Without	rescaling,	an	RNA-	seq	sample	of	a	long-	lived	nema-
tode	beyond	the	normal	lifespan	of	a	wild-	type	worm	would	not	be	
comparable	to	a	wild-	type	sample,	since	no	sample	would	be	able	to	
be	generated.	Lifespan-	altering	manipulations,	for	example,	a	tem-
perature	shift,	a	daf-	2	mutation,	or	oxidative	damage,	were	shown	to	
just	shift	the	lifespan	curve	by	stretching	or	shrinking	it	(Stroustrup	
et	al.,	2016).	One	interpretation	would	be	that	all	lifespan-	affecting	
interventions	 converge	 on	 similar	 pathways,	which	 affect	 the	 risk	
of	death	 in	a	similar	pattern,	 just	at	different	velocities.	Moreover,	
there have been descriptions of a transcriptional drift during C. ele-
gans	aging	(Hastings	et	al.,	2019;	Tarkhov	et	al.,	2019),	which	might	
be	 due	 to	 a	 (dys-	)regulation	 of	 single	 transcription	 factors	 (Mann	
et	al.,	2016)	and	the	suppression	of	 this	 transcriptional	drift	might	
slow	down	the	aging	process	(Rangaraju	et	al.,	2015).	Notably,	age	
prediction could be improved by rescaling the chronological age by 
the	median	lifespan	(Tarkhov	et	al.,	2019).

We,	therefore,	employed	a	strategy	similar	to	Tarkhov	et	al.	and	
rescaled the lifespan by the corresponding median lifespan of the 
sample.	We	set	the	median	lifespan	of	a	standard	wild-	type	N2	worm	
to	µ	=	15.5	days	of	adulthood.	Using	this	standard	lifespan,	we	calcu-
lated a correction factor to determine the biological age of a sample. 
For	example,	the	correction	factor	of	a	strain	with	a	measured	me-
dian	lifespan	of	31	days	would	be	µ/31	=	0.5	and	thereby	assuming	

a	uniform	aging	rate	reduction	of	50%.	This	correction	factor	would	
be	applied	to	each	RNA-	seq	sample	of	 the	same	strain	and	exper-
iment.	A	 sample	 sequenced,	 for	 example,	 at	 day	10	of	 adulthood,	
would	be	corrected	to	10*0.5	=	5	days	of	biological	age.	Applying	
the	individual	correction	factors	for	each	RNA-	seq	sample	allows	us	
to	build	a	classifier	of	the	biological,	instead	of	the	chronological	age.	
Importantly,	by	defining	a	standard	lifespan	of	15.5	days	we	are	able	
to predict the biological age in days instead of a variable between 0 
and	2.5	as	reported	by	Tarkhov	et	al.

Owing	to	 the	 fact	 that	 the	public	data	were	generated	 in	mul-
tiple	 laboratories	 with	 different	 protocols	 and	 sequencers	 (see	
Table	 S1	 for	 details),	we	 expected	 noisy	 data	with	 a	 strong	 batch	
effect.	Indeed,	the	results	of	an	elastic	net	regression	(see	Methods	
for	details)	on	the	raw	counts-	per-	million	(CPM)	reads	resulted	in	a	
mediocre model with an r2	 of	 0.78,	 a	 Pearson	 correlation	 of	 0.89	
(p	=	2.82e-	304),	a	Spearman	correlation	of	0.86	 (p	=	9.97e-	258),	a	
mean	absolute	error	(MAE)	of	1.02	days,	a	median	absolute	devia-
tion	 (MAD)	of	0.71	days,	 and	a	 root-	mean-	square-	error	 (RMSE)	of	
1.51	days.	Figure	S1a	shows	the	comparison	of	the	rescaled	biolog-
ical age of the strains on the x-	axis	 and	 the	 age	 predicted	 by	 the	
elastic	net	regression	on	the	y-	axis.	 Interestingly,	the	overall	abso-
lute error and the variance in the absolute error of the prediction 
increase	strongly	after	~5	days	(Figure	S2).

In	 order	 to	mitigate	 this	 increase	 in	 variance,	we	 developed	 a	
novel	approach	and	binarized	the	transcriptome	data	by	setting	the	
value	of	each	gene	to	1,	if	the	CPM	is	bigger	than	the	median	CPM	of	
the	corresponding	sample	and	0	otherwise	(see	Methods	for	details),	
thereby	reducing	the	noise,	but	retaining	the	 information	whether	
a	 gene	 is	 strongly	 transcribed	 or	 not.	 After	 this	 binarization,	 we	
trained	an	elastic	net	regression	model	with	nested	cross-	validation	
to	obtain	the	best	parameter	setting	and	optimal	set	of	genes	(see	
Methods	 for	 details)	 that	 predict	 the	 biological	 age	 remarkably	
well with an r2	 of	 0.96,	 a	 Pearson	 correlation	 of	 0.98	 (p<1e-	304),	
a	Spearman	correlation	of	0.96	 (p<1e-	304),	 a	mean	absolute	error	
of	0.46	days,	a	median	absolute	error	of	0.33	days,	and	a	RMSE	of	
0.66	days	(Figure	S1b).

Interestingly,	especially	the	increased	variance	in	older	samples,	
as	seen	in	our	initial	analysis	in	Figure	S1a,	diminished	and	showed	a	
strong improvement in overall accuracy. Comparison of the absolute 
error	terms	of	the	raw	CPM	and	the	binarized	data	prediction	shows	
that	the	absolute	error	of	the	binarized	prediction	is	lower	than	the	
prediction	based	on	the	raw	CPMs	regardless	of	the	biological	age	of	
the	worms.	Furthermore,	while	the	initial	prediction	on	the	raw	data	
starts	to	get	especially	inaccurate	starting	from	day	5,	the	increase	in	
the	binarized	data	is	far	less	pronounced	(Figure	S2a).	Interestingly,	
also the variance of the absolute error terms stays more stable in the 
binarized	data	than	the	raw	data	and	thereby	demonstrating	a	more	
robust	prediction	 regardless	of	 the	 true	 age	of	 the	worms	 (Figure	
S2b).

These	 results	 show	 that	 the	 binarization	 approach	 strongly	 im-
proves	 the	prediction,	 especially	 in	older	 samples,	which	have	been	
shown	to	contain	a	noisier	transcriptome.	Indeed,	this	age-	dependent	
noisiness so far hindered the identification of proper aging biomarkers. 

F I G U R E  1 Data	overview.	Overview	of	the	processed	published	
data	utilized	in	the	training	of	the	model.	Pie	charts	show	the	
distribution	of	different	genotypes	(blue),	treatments	(brown),	
and	RNAis	(green).	The	convoluted	pie	chart	on	the	right	shows	
the	overlap	of	the	three	classes.	The	partition	“Sterile”	contains	
multiple different genotypes that cannot give rise to progeny and 
daf-	2,	as	well	as	eat-	2,	might	contain	additional	mutations.	For	a	
more	detailed	view,	see	Table	S1

n=900

n=900

n=900

WT(409)

n=900

Untreated(414)

Treated(486)

None(788)

EV(61)
RNAi(51)

eat-2(45)
daf-2(59) Sterile(171)

Other(216)
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The	binarization	therefore	might	facilitate	the	identification	by	reduc-
ing	the	noise,	while	retaining	the	important	information.	To	verify	our	
prediction	further,	eight	independent	datasets,	not	used	in	the	nested	
cross-	validation	for	optimization	of	the	parameter	and	gene	set,	were	
predicted with an r2	of	0.91,	a	Pearson	correlation	of	0.97	(p	=	2.43e-	
58),	a	Spearman	correlation	of	0.91	(p	=	6.58e-	38),	a	mean	error	of	0.92	
d,	a	median	error	of	0.53	d,	and	a	RMSE	of	1.40	d	(Figure	S1c).

The results show that the overall prediction is highly accurate; 
however,	although	lower	than	the	increase	in	deviation	in	the	raw	
data,	the	binarized	data	as	well	show	a	decrease	in	accuracy	in	sam-
ples	with	an	older	biological	age	(see	also	Figure	S2).	This	might	be	
due	 to	 the	 lower	 sample	 size	of	 older	 animals,	 but	might	 also	be	
influenced	by	the	nature	of	bulk	RNA	sequencing	itself.	Figure	S3a	
shows a standard lifespan curve of C. elegans.	Until	~day	8,	100%	of	
non-	censored	worms	are	alive.	Starting	from	day	8,	the	first	worms	
die,	until	the	median	lifespan	is	reached	at	~15.5	days	and	the	max-
imum	at	~24	days.	We	can	assume	that	the	biological	age	of	worms	
at	the	same	chronological	age	follows	a	normal	distribution	(Figure	
S3b).	 In	 other	words,	 in	 a	 plate	 of	 synchronized	worms	 at	 day	 8	
we would expect to see that most worms are also at a biological 
age	of	8	days.	However,	some	worms	will	be	healthier	while	others	
are already close to death and will therefore be the worms that 
start	dying	early.	While	 the	peak	of	 this	bell	 curve	will	 therefore	
be	the	chronological	age	of	the	worm	population,	some	worms	will	
be	biologically	younger	and	some	older	(Figure	S3b).	Starting	from	
the	next	day,	the	first	part	of	the	worm	population	will	die	(Figure	
S3c).	Assuming	the	normal	distribution	of	the	biological	age	of	the	
worms and a hypothetical maximum biological age as shown with 
the	dotted	line	in	Figure	S3d,	we	can	hypothesize	that	the	biolog-
ically older worms will die off first and thereby truncate the bio-
logical	age	distribution	on	the	right	side	of	the	curve	(Figure	S3d).	
This truncation will shift the true median biological age toward the 
left	side,	as	indicated	by	the	green	line.	This	becomes	more	notice-
able	at	the	median	lifespan	of	15.5	days,	where	by	definition	50%	
of	the	population	is	dead	(Figure	S3e).	Following	the	same	reason-
ing	from	above,	we	see	that	the	right	half	of	the	biologically	older	
worms	died,	while	the	younger	half	of	the	population	stayed	alive.	
However,	this	clearly	skews	the	distribution,	since	the	oldest	50%	
of the population is dead and therefore will not contribute to the 
average	biological	age	anymore.	Indeed,	the	median	biological	age	
will	be	the	median	of	 the	remaining,	alive	worms,	 that	 is,	 the	 left	
part	of	the	curve.	This	will	result	in	a	shift	of	biological	age,	espe-
cially	for	chronologically	older	populations	(Figure	S3f).	In	consid-
eration	of	this	biological	age	shift,	an	RNA-	seq	sample	sequenced	
at	15.5	days	will	have	a	younger	true	population-	median	biological	
age,	which	will	introduce	a	bias	into	the	regression	model.	The	bias	
will	be	not	as	pronounced	 in	younger	 samples,	 since	most	of	 the	
population	will	still	be	alive	(Figure	S3b).

To	 alleviate	 this	 bias,	 we	 calculated	 a	 second	 correction	 term	
that takes into consideration the hypothetical biological age distri-
bution	of	the	sequenced	population	(methods	for	details).	Applying	
this	 correction	 before	 the	 optimization	 of	 the	 regression	 resulted	
in	 an	 improved	 prediction	 model,	 especially	 for	 the	 independent	

dataset.	The	new	model	utilizes	576	genes	 (Table	S2)	and	predicts	
the	full	dataset	slightly	better,	with	an	r2	of	0.96,	a	Pearson	correla-
tion	of	0.98	(p<1e-	304),	a	Spearman	correlation	of	0.96	(p<1e-	304),	a	
mean	error	of	0.45	d	(−1.63%	compared	with	pre-	correction	model),	
a	median	error	of	0.32	d	 (−2.15%),	and	a	RMSE	of	0.64	d	 (−3.47%)	
(Figure	2a).	The	independent	dataset	is	now	predicted	with	an	r2 of 
0.94,	a	Pearson	correlation	of	0.98	(p	=	1.13e-	62),	a	Spearman	cor-
relation	of	0.92	(p	=	6.24e-	38),	a	mean	error	of	0.76	d	(−17.45%),	a	
median	error	of	0.53	d,	and	a	RMSE	of	1.01	(−28.28%)	(Figure	2b).	
These data indicate that it might be worthwhile including a correc-
tion for the survival bias of worms in older populations. The com-
parison	 to	 the	 prediction	 on	 the	 unbinarized	 validation	 data	 after	
applying the second correction term showed a strong improvement 
in	accuracy	upon	binarization	with	a	48.27%	reduction	in	the	mean	
error	(Figure	S4a,	Table	S3).

To	confirm	that	not	every	gene	set	of	576	genes	results	in	a	simi-
lar	prediction,	we	randomly	sampled	576	genes	and	recorded	the	re-
sulting absolute errors and r2	values.	The	boxplot	in	Figure	2c	shows	
the distribution of r2	values	centering	around	the	mean	of	0.488	with	
a standard deviation of 0.117. The blue dot shows the result of our 
predicted	gene	set	as	a	clear	outlier	at	0.96.	The	MAE	and	MAD	are	
centered	 around	1.27	d	 and	0.911	d	with	 a	 standard	 deviation	 of	
0.066	and	0.063,	respectively	(Figure	S4b).

To	 assess	 the	precision	of	 the	 age	prediction,	we	next	probed	
how close this model approaches the theoretical limit of a biological 
clock. The datasets are annotated in whole days alive from adult-
hood and thereby including a variance of ±12 h to the actual chrono-
logical age. Random sampling of this error alone gives a mean error 
of	0.236	(±0.006)	d,	a	median	error	of	0.187	(±0.006)	d,	and	a	r2 of 
0.986	(±0.002).	However,	since	lifespan	assays,	even	done	under	the	
same	 conditions	 in	 the	 same	 laboratory,	will	 vary,	we	 can	 assume	
that	the	reported	median	lifespan,	used	for	the	temporal	rescaling,	
will	also	be	including	an	inherent	experimental	error.	Indeed,	it	has	
been shown that lifespan assays are heavily affected by the num-
ber	of	animals	and	less,	but	substantially,	by	the	scoring	frequency,	
thereby indicating that many lifespan studies are underpowered and 
often	 driven	 by	 stochastic	 variation	 (Petrascheck	 &	Miller,	 2017).	
Computing	 the	mean	 and	SD	of	 lifespan	 assays	 for	 one	 genotype	
with the same treatment for several publications shows that the 
variation	is	indeed	on	average	~7%	for	one	standard	deviation	from	
the	mean	with	a	range	between	5.44%	and	8.83%	(Table	S3).	An	as-
sumption	of	a	moderate	5%	deviation	between	assays	increases	the	
mean	error	to	0.302	(±0.007)	d,	the	median	error	to	0.244	(±0.008)	
d,	 and	 reduces	 the	 r2	 to	 0.98	 (±0.002).	 These	 theoretical	 optima,	
shown	as	dotted	lines	in	the	boxplots	in	Figure	2c	and	Figure	S4b,	
clearly	display	the	quality	of	our	prediction.	We	conclude	that	the	
prediction	based	on	the	set	of	576	genes	is	close	to	the	theoretical	
optimum.

Next,	we	 compared	our	model	 to	 a	previous	model	 (Tarkhov	
et	al.,	2019)	that	described	three	sets	of	aging-	associated	genes.	
The	first	set,	consisting	of	327	genes,	was	generated	by	a	meta-	
analysis	 of	 publicly	 available	 microarray	 data,	 the	 second	 con-
sists	of	902	age-	associated	genes	generated	by	the	analysis	of	60	
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RNA-	seq	samples,	and	finally,	a	sparse	subset	with	only	71	genes	
that Tarkhov et al. used for their biological age prediction. The 
gene set derived from microarray data performed worst on the 

prediction	of	the	900	RNA-	seq	samples	with	an	r2	of	0.52	and	a	
mean	error	of	1.33	d	 (195.18%	 increase	compared	with	our	 final	
model).	 The	 gene	 set	 of	 902	 genes	 performed	 similarly,	with	 an	
r2	of	0.57	and	a	mean	error	of	1.40	d	(210.37%	increase).	Finally,	
the sparse predictor provided an r2	of	0.57	and	a	mean	error	of	
1.36	d	(202.07%	increase)	(Figure	S5a–	c;	for	further	quality	mea-
surements,	 see	Table	S3).	Remarkably,	binarization	 improves	 the	
prediction of these three gene sets as well to an r2	of	0.74,	0.78,	
and	 0.62,	 respectively	 (Figure	 S5d,e,	 Table	 S3).	 Although	 the	 r2 
of	the	sparse	predictor	increased	to	0.62,	the	MAE	and	MAD	in-
creased	and	thereby	also	show	that	a	single	quality	assessment	is	
not	enough	to	give	a	good	evaluation	(Figure	S5f).

Next,	we	also	evaluated	the	prediction	of	the	independent	data-
sets	from	Figure	2b	with	the	three	previously	published	gene	sets.	
The gene set of 71 genes performed worst with an r2	of	0.35	and	a	
MAE	of	1.95	d	(+156.07%	compared	with	our	final	model).	The	gene	
set	derived	from	microarray	data	and	the	gene	set	with	902	genes	
performed better with an r2	of	0.44	and	a	MAE	of	2.20	d	(+188.11%),	
respectively,	an	r2	of	0.43	and	a	MAE	of	2.31	d	(+203.24%)	(Figure	
S6a–	c;	for	further	quality	measurements,	see	Table	S3).	Remarkably,	
the	binarization	could	also	improve	the	prediction	in	this	case	to	an	
r2	of	0.87	 for	 the	gene	set	derived	 from	microarray	data,	0.85	 for	
the	gene	set	of	902	genes,	and	0.72	for	the	sparse	predictor	(Figure	
S6d–	f;	for	further	quality	measurements,	see	Table	S3).

These	 comparisons	 indicate	 that	 binarization	 is	 improving	
the	quality	of	regression	models	overall	and	that	our	new	model	
consisting	of	576	binarized	genes	predicts	the	biological	age	of	
C. elegans to a high accuracy and superior to previously existing 
models.

F I G U R E  2 Biological	age	prediction.	(a)	Results	of	the	biological	
age	prediction	computed	by	cross-	validation.	The	x-	axis	shows	the	
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-	axis	shows	the	
predicted age computed by the elastic net regression after the 
second	rescaling	approach	on	binarized	gene	expression	data.	Every	
blue	dot	displays	one	RNA-	seq	sample.	The	regression	line	with	
the	95%	confidence	interval	is	shown	in	blue,	and	the	dotted	line	
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2	=	coefficient	of	determination,	
Pearson	=	Pearson	correlation,	Spearman	=	Spearman	correlation,	
MAE	=	mean	absolute	error	in	days,	MAD	=	median	absolute	
deviation	in	days,	RMSE	=	root-	mean-	square-	error	in	days.	(b)	
Prediction of the model on eight independent datasets consisting 
of	94	samples	at	different	time	points.	The	x-	axis	shows	the	
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-	axis	shows	the	
predicted age computed by the elastic net regression after the 
second	rescaling	approach	on	binarized	gene	expression	data.	For	
more	details	on	the	data,	see	Table	S1.	(c)	The	y-	axis	shows	the	r2 
of	a	given	prediction.	The	box	plot	displays	1,000	random	models	
with	576	genes.	The	prediction	by	our	final	model	with	an	r2 of 
0.96	is	shown	as	a	blue	dot	and	indicated	by	the	arrow.	The	dotted	
line shows the theoretical limit of prediction given by the limit of 
accuracy in the chronological age annotation as well as variance in 
the lifespan data used for rescaling
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2.2  |  Transcriptomic clock correctly predicts 
multiple lifespan- affecting factors

Since	our	model	 is	 able	 to	predict	 the	biological	 age	 to	 a	high	ac-
curacy,	we	 next	 tested	 the	 capability	 of	 the	model	 to	 predict	 the	
effect	of	multiple	lifespan-	affecting	factors.	We	used	the	previously	
determined	576	predictor	genes	and	trained	an	elastic	net	 regres-
sion	on	the	900	RNA-	seq	samples,	excluding	the	data	for	the	respec-
tive	publication.	This	is	thereby	a	different	cross-	validation	approach	
where we excluded a whole experimental dataset at a time.

First,	we	 tested	 the	well-	known	 effect	 of	 insulin-	like	 signaling	
on the biological age and saw that a daf- 2 mutation reduces the 
predicted	biological	age	compared	with	the	WT	strain	of	the	same	
experiment	by	41.3%	in	4-	day	adult	C. elegans	(Figure	3a).	The	even	
longer-	lived	 daf- 2; rsks- 1 double mutant is accordingly predicted 

to	be	even	younger	with	a	significant	reduction	of	56.8%	in	4-	day	
adults	(Figure	3b).

To	determine	whether	short-	lived	mutants	can	also	be	predicted	
correctly,	we	next	tested	mir- 71,	which	has	been	shown	to	regulate	
the	global	miRNA	abundance	during	aging	and	to	directly	influence	
lifespan	 (Inukai	et	al.,	2018).	Compared	to	WT,	mir- 71 mutants are 
predicted	 to	be	56%	older	 in	5-	day	adults	 (Figure	3c).	 In	addition,	
samples	of	a	gain-	of-	function	skn- 1	mutation,	that	is,	detrimental	for	
lifespan,	are	predicted	to	be	77.2%	older	than	wild-	type	worms	at	
day	2	(Figure	3d).	 Interestingly,	this	adverse	effect	can	be	rescued	
by	a	loss-	of-	function	mutation	in	wdr- 5	and	the	subsequent	abolish-
ment	of	 the	 epigenetic	mark	H3K4me3	 (Nhan	et	 al.,	 2019),	which	
is	 remarkably	 also	 reflected	 in	 our	 prediction.	 Loss	 of	 protein	 ho-
meostasis	decreases	overall	fitness	and	is	a	hallmark	of	aging.	In	C. 
elegans,	 the	 loss	of	uridine	U34	2-	thiolation	 in	 tut- 1; elpc- 1 double 

F I G U R E  3 Biological	age	prediction	of	short-		and	long-	lived	mutants.	The	box	plots	show	the	predicted	biological	age	in	days	on	the	
y-	axis.	Assuming	the	properties	of	a	uniform	temporal	rescaling,	a	lower	predicted	age	will	equal	a	longer	lifespan.	The	corresponding	
whole	dataset	was	set	aside	for	the	training	of	the	final	model	for	the	corresponding	plot.	Blue	dots	display	single	RNA-	seq	samples.	(a)	The	
lifespan-	extending	daf- 2(e1370)	strain	is	predicted	to	be	biologically	younger	than	WT	samples	of	the	same	chronological	age	(4.5	days).	
Note	that	the	WT	strain	in	this	publication	had	a	longer	lifespan	(19.4	days)	than	the	standard	15.5	days	and	is	thereby	also	predicted	to	be	
biologically	younger	than	its	chronological	age.	Data	from	GSE36041.	(b)	Dietary	restriction	(DR)	and	the	long-	lived	double	mutant	daf- 
2(e1370); rsks- 1(ok1255)	are	predicted	to	be	significantly	younger	than	WT	samples	of	the	same	chronological	age	(4	days).	Data	from	GSE11	
9485.	(c)	The	lifespan-	shortening	mir- 71(n4115) mutation significantly increased the predicted biological age compared to samples of the 
same	chronological	age	(5	days).	Data	from	GSE72232.	(d)	The	gain-	of-	function	mutant	skn- 1(lax188) significantly increased the biological 
age,	while	an	additional	mutation	in	the	epigenetic	regulator	wdr- 5	rescues	the	biological	age	back	to	WT	levels	(2	days).	Data	from	GSE12	
3531.	(e)	The	double	mutant	tut- 1(tm1297); elpc- 1(tm2149)	significantly	increases	the	biological	age	(chronological	age	of	1	day).	Data	from	
GSE67387.	*p	<	0.05,	**p	≤	0.01,	***p	≤	0.001,	independent	two-	sided	t	tests	were	used	for	comparisons	in	(a),	(c),	and	(e).	One-	way	ANOVA	
with	a	post	hoc	Tukey	test	was	used	in	(b)	and	(d).	Table	S3	contains	more	detailed	statistics
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F I G U R E  4 Biological	age	prediction	of	a	variety	of	treatments	and	stressors.	The	box	plots	show	the	predicted	biological	age	in	days	on	
the	y-	axis.	Assuming	the	properties	of	a	uniform	temporal	rescaling,	a	lower	predicted	age	will	equal	a	longer	lifespan.	The	corresponding	
whole	dataset	was	set	aside	for	the	training	of	the	final	model	for	the	corresponding	plot.	Blue	dots	display	single	RNA-	seq	samples.	(a)	
Heat	shock	induces	a	strong	increase	in	the	predicted	biological	age	at	a	chronological	age	of	3	days	in	WT.	Data	from	PRJNA523315.	(b)	
Pathogen infection by Pseudomonas aeruginosa	at	25°C	at	a	chronological	age	of	day	1	increases	significantly	the	predicted	age.	Data	from	
GSE12	2544.	(c)	Pathogen	infection	by	S. aureus	at	25°C	at	a	chronological	age	of	day	1	increases	significantly	the	predicted	age.	Data	from	
GSE57739.	(d)	The	bacterial	strain-	dependent	effect	of	metformin	is	resembled	in	the	prediction.	The	box	plots	show	wild-	type	worm	
populations	at	a	chronological	age	of	day	2	with	either	a	standard	OP50	E. coli	diet	or	a	Metformin-	resistant	OP50	(OP50-	MR)	strain	with	
or	without	50	mM	Metformin.	A	two-	way	ANOVA	showed	a	significant	treatment	effect	(p	=	0.004).	Data	from	E-	MTAB-	7272.	(e)	The	
dosage-	dependent	effect	of	Mianserin	is	resembled	in	the	prediction.	The	box	plots	show	wild-	type	worm	populations	at	a	chronological	age	
of	day	10	either	treated	with	water	or	50	µM	Mianserin	on	day	3	or	day	1.	A	one-	way	ANOVA	showed	significance	(p	=	0.0008).	Data	from	
GSE63528.	(f)	The	effect	of	drug	combinations	at	the	chronological	age	of	6	days	is	resembled	in	the	prediction.	A	one-	way	ANOVA	showed	
significance	(p	=	0.02).	Data	from	GSE10	8263.	(g)	An	independent	dataset	without	a	reported	lifespan	sequenced	at	the	chronological	age	
of	day	1.	Wild-	type	worms	were	treated	with	either	10	µM	or	20	µM	of	the	proteasome	inhibitor	Bortezomib	(BTZ),	or	RNAi	against	the	
proteasomal subunit rpn-	6.	Data	from	GSE12	4178.	(h)	An	independent	dataset	without	a	reported	lifespan	sequenced	at	the	chronological	
age	of	day	3.	Data	from	GSE12	1920.	The	predicted	median	lifespan	reduction	of	35.7%	is	similar	to	the	reported	lifespan	reduction	of	
33.5%	(Pang	&	Curran,	2014).	(i)	An	independent	dataset	without	a	reported	lifespan	sequenced	at	the	chronological	age	of	day	2.	Data	from	
GSE15	8729.	The	predicted	median	lifespan	reduction	of	63.96%	is	similar	to	the	reported	lifespan	reduction	of	50%–	60.69%	(Ratnappan	
et	al.,	2014).	*p	<	0.05,	**p	≤	0.01,	***p	≤	0.001,	independent	two-	sided	t	tests	were	used	for	comparisons	in	(a),	(b),	(c),	(h),	and	(i).	One-	way	
ANOVA	with	a	post	hoc	Tukey	test	was	used	in	(e),	(f),	and	(g).	Two-	way	ANOVA	with	a	post	hoc	Tukey	test	was	used	in	(d).	Table	S3	contains	
more detailed statistics
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mutants has been shown to have a negative impact on the efficiency 
of	 translation	 and	 to	 promote	 protein	 aggregation	 (Nedialkova	 &	
Leidel,	2015).	Strikingly,	this	effect	on	translational	efficiency	is	also	
reflected	 in	 the	 transcriptomic	aging	clock	 for	day	1	adults,	which	
are	 predicted	 to	 be	 196%	 older	 than	 their	 wild-	type	 counterpart	
(Figure	3e).

These data show that the BiT age clock can effectively predict 
the	biological	age	of	a	variety	of	mutants	and	pathways,	ranging	from	
the	insulin	pathway,	miRNAs,	and	the	epigenetic	mark	H3K4me3	to	
translational efficiency.

Since	both,	long-	lived	and	short-	lived	strains,	are	predicted	with	
the	 correct	 pattern,	we	next	 asked	whether	we	 could	 predict	 the	
effect	of	dietary	restriction	(DR)	on	the	biological	age.	Although	the	
effect	was	slight,	the	dietary-	restricted	worms	are	predicted	to	be	
12.9%	younger	than	their	normal-	fed	counterpart	at	day	4	of	adult-
hood	 (Figure	 3b).	DR-	induced	 longevity	was	 shown	 to	 depend	 on	
the	PMK-	1/p38	signaling-	regulated	 innate	 immune	 response.	 In	C. 
elegans,	 sek- 1	 is	 part	 of	 the	 PMK-	1/p38	 signaling	 cascade	 and	 re-
quired	 for	 longevity	 in	dietary-	restricted	worms	 (Wu	et	al.,	2019).	
Noticeably,	 the	 same	 trend	 can	be	observed	 in	 our	 prediction	 for	
day	6	adults	(Figure	S7a).	A	two-	way	ANOVA	showed	a	significant	
interaction between the effects of the strain and dietary restriction 
(p	=	0.004),	which	indicates	that	the	effect	of	DR	is	dependent	on	
sek- 1	 activation.	 Although	 in	 this	 dataset,	 the	 adjusted	 p-	value	 of	
the	 effect	 of	DR	 in	WT	worms	 is	 not	 significant	 (p	 =	 0.057),	 it	 is	
interesting	 to	note	 that	 the	dietary-	restricted	worms	 are	on	 aver-
age	32%	younger	than	the	ad libitum	fed	WT	worms.	This	biological	
age	reduction	is	thereby	showing	a	stronger	effect	than	the	12.9%	
reduction	in	Figure	3b.	This	could	be	due	to	strain	differences	in	the	
different	laboratories	or	suggest	that	positive	effects	of	DR	add	up	
over time.

Next,	we	decided	to	test	whether	different	lifespan-	shortening	
stressors	can	be	predicted	correctly.	Both	heat	stress	(Figure	4a)	and	
pathogen exposure to either P. aeruginosa or S. aureus	(Figure	4b,c)	
showed	a	strong	increase	in	the	predicted	biological	age.	Heat	stress	
increased	 the	 prediction	 by	 169.3%	 in	 day	 3	 adults.	Pseudomonas 
aeruginosa	increased	the	predicted	age	by	421.4%.	And	S. aureus in-
creased	the	biological	age	prediction	by	101%,	in	day	1	adults.

While	heat	or	pathogen	exposure	can	lead	to	a	quick	demise	of	
the	animals,	we	wondered	whether	more	subtle	changes	in	lifespan	
by	 different	 diets	 and	 subsequent	 nutrient	metabolism	 could	 also	
be	 detected.	 It	was	 shown	 that	 an	E. coli	 K12	 variant's	 indole	 se-
cretion extends fecundity and overall healthspan and lifespan in C. 
elegans,	while	an	isogenic	E. coli	strain	(K12tnaA)	with	a	deletion	in	
the	indole-	converting	gene	does	not	have	these	benefits.	This	effect	
on	healthspan	was	reported	to	be	not	yet	visible	in	worms	on	day	8,	
but showed a significant difference only at the next tested timepoint 
on	day	15	(Sonowal	et	al.,	2017).	Intriguingly,	the	same	pattern	can	
be	observed	in	RNA-	seq	samples	of	day	3	and	day	12	(Figure	S7b).	A	
two-	way	ANOVA	showed	a	significant	treatment	effect	(p	=	0.034)	
indicating	the	sensitivity	of	the	approach.	Moreover,	in	accordance	
with	the	published	results,	a	subsequent	post	hoc	Tukey	test	showed	
no	difference	between	the	diets	on	day	3	(adjusted	p	=	0.9),	while	day	

12	showed	a	15.3%	increased	biological	age	in	the	K12tnaA	diet	(ad-
justed p	=	0.0506).	Consistent	with	the	link	between	diet-	dependent	
changes	in	nutrient	metabolism	and	lifespan,	it	has	been	shown	that	
the	lifespan-	extending	effect	of	Metformin	is,	at	least	partially,	reg-
ulated	by	a	bacterial	nutrient	pathway	 (Pryor	et	al.,	2019).	A	 two-	
way	ANOVA	of	the	predicted	biological	age	of	day-	2	adults,	grown	
on either E. coli	OP50	or	 a	Metformin-	resistant	OP50	strain,	with	
or	without	Metformin	showed	as	well	a	 significant	bacteria	effect	
(p	=	0.045)	as	a	significant	drug	effect	(p	=	0.004).	A	subsequent	post	
hoc Tukey test showed a significant reduction in the biological age of 
Metformin-	treated	wild-	type	worms	grown	on	OP50	(−34.5%),	but	
no	significant	effect	in	worms	grown	on	Metformin-	resistant	OP50	
(Figure	4d).

Next,	we	asked	whether	the	effect	of	the	duration	time	of	a	drug	
might be reflected on the transcriptomic age. The antidepressant 
Mianserin	has	been	shown	 to	extend	 the	 lifespan	of	C. elegans by 
inhibiting	serotonergic	signals,	which	is	lessening	the	age-	dependent	
transcriptional drift. This effect is more pronounced in animals that 
were	 treated	 starting	 from	day	1,	 compared	 to	 starting	 the	 treat-
ment	from	day	3	(Rangaraju	et	al.,	2015).	Our	prediction	of	day	10	
adults	resembles	this	conclusion;	a	one-	way	ANOVA	showed	a	sig-
nificant	difference	(p	=	0.0008)	and	an	ensuing	post	hoc	Tukey	test	
revealed	 statistical	 significance	 between	 all	 three	 cases,	 with	 the	
biggest	effect	in	worms	treated	from	day	1	(Figure	4e).

An	 interesting	and	challenging	question	 is	whether	 the	combi-
nation	of	different	lifespan-	extending	drugs	might	have	a	synergis-
tic	effect.	Admasu	et	al.	reported	that	not	all	combinations	of	drugs	
have	an	additive	effect.	While	the	combination	of	Rapamycin	with	
Allantoin	 had	 no	 effect	 on	 the	 lifespan	 of	 wild-	type	 worms,	 the	
triple combination with Rifampicin surprisingly had the biggest ef-
fect	 (Admasu	 et	 al.,	 2018).	 Interestingly,	 while	 the	 administration	
of	 rifampicin,	 rapamycin,	 and	 allantoin	 significantly	 reduced	 the	
predicted	age	by	17.7%	(Figure	4f),	the	double	combination	of	rapa-
mycin	and	allantoin	did	not	change	the	predicted	lifespan,	which	is	in	
accordance with the published lifespan results.

Lastly,	we	decided	to	check	the	biological	age	prediction	of	inde-
pendent validation data and downloaded three datasets for which 
no	direct	lifespan	data	(i.e.,	in	the	same	publication)	were	published	
and which contained treatments and strains that were not included 
in	any	of	the	analyses	and	nested	cross-	validations	above.	We	first	
tested the effect of proteotoxic stress on the transcriptional age 
with samples of two different dosages of the proteasome inhibitor 
bortezomib	(BTZ)	and	the	knockdown	by	RNAi	of	the	proteasomal	
subunit	RPN-	6.1	and	saw	a	significant	increase	in	the	biological	age	
of	all	three	samples	(Figure	4g).	Notably,	the	effect	of	BTZ	shows	a	
dose dependency. rpn- 6.1	RNAi	has	been	shown	to	strongly	reduce	
the	 lifespan	of	WT	worms	 (Vilchez	et	al.,	2012),	 and	BTZ	suppos-
edly mimics the effects by directly blocking the proteasome and has 
been shown to dramatically reduce the lifespan of starved worms 
(Webster	et	al.,	2017).	Moreover,	 although	no	direct	 lifespan	data	
are	 available	 for	 normal-	fed	worms,	 10	µM	BTZ	 leads	 to	 an	 early	
death	starting	from	day	3	(Finger	et	al.,	2019),	while	25	µM	even	in-
creased	mortality	(Fabian	Finger,	personal	communication).	Next,	we	
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tested samples with a mutation in alh- 6	(Yen	et	al.,	2020),	which	re-
sulted	in	a	35.7%	reduction	in	the	predicted	lifespan	(Figure	4h).	This	
is	remarkably	close	to	the	previously	reported	33.5%	lifespan	reduc-
tion in alh- 6(lax105)	 (Pang	&	Curran,	2014).	Lastly,	we	tested	glp- 1 
and nhr- 49; glp- 1 samples for which no direct lifespan measurement 
was	available.	A	mutation	in	nhr- 49 was previously reported to de-
crease the lifespan in a glp- 1	background	by	50–	60.69%	(Ratnappan	
et	 al.,	 2014),	which	 is	 in	 line	with	 the	predicted	mean	63.96%	de-
crease	(Figure	4i).

These	results	demonstrate	that	the	nested	cross-	validation	was	
sufficient	to	prevent	overfitting,	that	our	model	extends	beyond	the	
data	described	here	and	that	even	 lifespan-	affecting	stressors	un-
known	to	the	model,	for	example,	proteasomal	stress,	are	correctly	
predicted.

We	next	wondered	how	well	the	aging	clock	that	is	measured	at	
one specific timepoint could predict the median lifespan. The predic-
tion of the median lifespan from the biological age assumes a uniform 
lifespan	shift.	In	other	words,	if	the	biological	age	ratio	of	two	strains	
or	treatments	stays	constant,	we	are	able	to	compute	the	predicted	
median	lifespan.	For	example,	if	a	sample	is	twice	as	long	lived	as	its	
control,	we	assume	a	uniform	50%	reduction	 in	 the	biological	age	
compared	with	the	control,	regardless	of	the	timepoint	of	sequenc-
ing;	that	is,	the	biological	age	will	be	half	regardless	of	the	chrono-
logical age. The aforementioned intrinsic biases in the chronological 
age	and	lifespan	assays,	however,	limit	the	precision	of	the	predicted	
median	 lifespan,	 especially	 in	 chronologically	 younger	 samples	 as	
here the intrinsic experimental error of ±12 h has a greater influence 
(Figure	S8).	Nonetheless,	the	predicted	median	lifespan	is	within	the	
theoretical	error	bounds	 in	most	of	 the	 tested	samples,	 indicating	
that not only biological age but also median lifespan could be pre-
dicted	by	the	transcriptomic	clock	(Table	S4).

Nonetheless,	 the	 aforementioned	 41.3%	 biological	 age	 reduc-
tion in daf- 2	in	4-	day	adults	corresponds	to	a	1.71-	fold	lifespan	ex-
tension. This daf- 2	strain	is	reported	to	be	2.6-	fold	longer-	lived	than	
its	control;	however,	even	with	the	theoretically	optimal	prediction,	
the predicted lifespan effect will vary due to the aforementioned 
intrinsic	biases	to	around	2.6	±0.5-	fold.	Since	the	WT	sample	of	this	
dataset	(Zarse	et	al.,	2012)	was	already	longer	lived	than	our	stan-
dard	15.5	days,	we	also	computed	the	comparison	against	15.5	days	
which	resulted	in	a	2.31-	fold	increase	in	lifespan	for	daf- 2.

In	addition,	it	cannot	be	excluded	per se that some mutations or 
treatments	might	affect	the	lifespan	non-	uniformly	over	time,	which	
would	result	in	an	additional	bias	in	the	model	(Table	S4).	Indeed,	our	
analysis	of	the	2	DR	datasets	(Figure	3b	and	Figure	S7a)	might	indi-
cate	such	a	bias	(even	though	all	values	are	within	the	lifespan	error	
bounds).	The	12.9%	reduction	in	biological	age	at	day	4	(Figure	3b)	
corresponds	 to	 a	1.15-	fold	 lifespan	extension	 (in	 comparison	with	
the	theoretical	1.36	±	0.26-	fold	extension).	The	samples	on	two	ad-
ditional	days	of	DR	(Figure	S7a),	however,	are	predicted	to	be	1.47	
times	longer	lived	(theoretical	1.61	±	0.22-	fold	extension).

In	conclusion,	we	demonstrated	that	 the	BiT	age	clock	of	C. ele-
gans	 is	highly	 accurate	and	versatile	usable.	We	showed	 that	 it	 cor-
rectly	predicts	the	effects	of	insulin-	like	signaling,	a	modified	miRNA	

regulation,	the	effect	of	an	aberrant	active	transcription	factor,	and	the	
reversal	of	this	effect	by	an	epigenetic	mark,	translational	efficiency,	
dietary	restriction,	and	the	requirement	of	the	intact	innate	immune	
system	on	its	lifespan-	extending	effect,	heat	stress	as	well	as	pathogen	
exposure,	 and	 the	 effects	 of	 diet-	depending	metabolites.	 Lastly,	we	
also showed that the predictor is able to correctly identify the effect 
of	Metformin	 through	 the	host's	microbiota,	 the	dosage-	dependent	
effect	 of	 drugs,	 and	 the	 counterintuitive	 fact	 that	 the	 combination	
of	 lifespan-	extending	 drugs	 might	 not	 be	 necessarily	 synergistic.	
Strikingly,	 our	model	 extends	 beyond	 the	 data	 used	 for	 the	 nested	
cross-	validation	and	 is	able	to	correctly	predict	 the	biological	age	of	
worms,	for	which	no	direct	lifespan	data	were	available.	The	BiT	age	
clock	could	thus	facilitate	the	assessment	of	pro-		and	anti-	aging	effects	
of	genetic,	metabolic,	environmental,	or	pharmacological	interventions	
as it determines the biological age and predicts median lifespan.

2.3  |  The predictor genes are enriched in age- 
related processes, the innate immune response, and 
neuronal signaling

For	the	final	model,	we	calculated	the	regression	coefficients	of	the	
576	genes	based	on	all	the	900	training	samples	for	which	lifespan	
data	were	available	(Figure	1,	Table	S1).	The	final	regression	model	
utilizes	576	genes,	out	of	which	294	have	a	negative	coefficient	and	
thereby	are	mostly	expressed	in	young	worms,	while	282	genes	have	
a positive coefficient and thereby increase the predicted age if ac-
tive	 (the	genes	with	the	corresponding	regression	coefficients	can	
be	found	in	Table	S2).	Intriguingly,	the	protein-	coding	genes	with	a	
negative	coefficient	were	enriched	on	 the	X-	chromosome	and	are	
significantly	less	expressed	from	chromosomes	I	and	II	(Figure	S9a).	
Protein-	coding	 genes	 with	 a	 positive	 coefficient	 show	 a	 opposite	
trend	and	are	significantly	enriched	on	chromosomes	I	and	II,	while	
depleted	from	chromosome	 IV	 (Figure	S9b,c).	 Interestingly,	a	gene	
set	enrichment	analysis	of	the	genes	with	a	negative	coefficient,	so	
those	that	are	associated	with	younger	samples,	is	enriched	in	age-	
related	 categories	 that	 are	 downregulated	 with	 aging	 (Figure	 5a).	
Moreover,	 the	 294	 genes	 are	 enriched	 in	 the	 pmk-	1,	 elt-	2,	 pqm-	1,	
and daf-	16	transcription	factor	target	category	(Figure	5b).	A	motif	
search at the promoter regions of the genes with a negative coef-
ficient corroborates this finding and shows a significant enrichment 
in	 the	GATA	transcription	 factors	PQM-	1	and	ELT-	3	 (Figure	S10a).	
Although	the	gene	set	enrichment	analysis	with	WormExp	did	not	
show a significant enrichment of transcription factors in the gene set 
with	a	positive	coefficient,	the	motif	search	also	identified	the	GATA	
motif	enriched	at	the	promoter	regions	(Figure	S10b).	Notably,	the	
GATA	transcription	factor	elt-	6	is	within	the	top	30%	of	genes	with	
a positive coefficient in our gene set and thereby correlated with 
older worms and has been shown to increase during normal aging 
and	to	increase	the	lifespan	upon	knock	down	by	RNAi	(Budovskaya	
et	 al.,	 2008).	 Interestingly,	 genes	 associated	 with	 younger	 worms	
are	also	enriched	in	genes	that	are	upregulated	in	germline-	ablated	
animals	 (Figure	5c),	which	 in	general	exhibit	an	 increased	 lifespan.	
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Genes	with	a	positive	coefficient	on	the	other	hand	are	enriched	in	
categories	that	show	an	increase	with	age	(Figure	5d).

A	 subsequent	 functional	 enrichment	 analysis	 (s.	 methods)	 re-
vealed	 a	 strong	 enrichment	 of	 signal	 peptides	 (i.e.	 proteins	 that	
are	 targeted	 to	 the	 secretory	 pathway	 by	 their	 signal	 sequence),	
transporter	 activity,	 and	 neuropeptides,	 which	 suggest	 that	 espe-
cially	 systemic	 responses	 influence	 the	 aging	 process	 (Figure	 5e).	
Neurotransmitters,	 although	 not	 directly	 enriched	 in	 the	 GO-	term	
analysis,	might	as	well	play	an	important	role:	hic-	1 is one of the genes 
with	the	strongest	 increase	 in	predicted	age	of	our	gene	set.	 It	has	
been previously shown to be present at the presynaptic terminal of 
cholinergic neurons and to regulate the normal secretion of acetyl-
choline	neurotransmitter	and	Wnt	vesicles	(Tikiyani	et	al.,	2018).	 In	
the	same	manner,	the	dopamine	receptor	dop-	4	is	in	the	top	25%	of	
genes with a negative coefficient and has been shown to promote 
healthy proteostasis and the innate immunity as well as detoxification 
genes	(Joshi	et	al.,	2016).	Interestingly,	the	innate	immune	response	
and	cytochrome	P450	enrichment	 in	our	gene	set	might	 indicate	a	
role	of	a	general	stress	response,	detoxification,	and	drug	metabolism	
during	the	aging	process.	Consistent	with	a	general	stress	response,	
we also find csa-	1	in	the	list	of	genes	with	a	positive	coefficient,	which	
might	indicate	an	increased	DNA	damage	load	in	older	worms.

To	conclude,	these	results	further	validate	the	genes	used	for	the	
age prediction and indicate that the aging process might be driven 

by	the	dysregulation	of	single	transcription	factors	(Figure	5b)	and	a	
systemic	signal	transmitted	by	secreted	peptides	(Figure	5e).

2.4  |  Improved Human age prediction by the BiT 
age clock

To demonstrate that our novel approach is also usable for other or-
ganisms,	we	employed	a	 recent	human	dermal	 fibroblast	RNA-	seq	
dataset generated from cell culture of 133 healthy individuals with 
ages	 between	 1	 and	 94,	 and	 10	 patients	with	Hutchinson-	Gilford	
progeria	 syndrome	 (HGPS)	 with	 ages	 between	 2	 and	 9	 (Fleischer	
et	al.,	2018).	Fleischer	et	al.	showed	that	an	LDA	ensemble	approach	
can predict the age of the 133 healthy patients with a r2	of	0.81,	a	
mean	error	of	7.7	years,	and	a	median	error	of	4.0	years.	Moreover,	
they find a statistical increase in the predicted biological age of 
HGPS	patients,	as	would	be	expected	from	a	premature	aging	dis-
ease.	However,	 as	 they	mention,	 the	 ensemble	method	 has	 some	
limitations,	that	is,	the	discretization	of	age,	the	computational	cost,	
and the difficult interpretation of the influence of gene expression 
changes on the predicted age.

Our	regression-	based	method	is	fast	to	compute,	does	not	re-
quire	 the	discretization	of	age,	and	directly	allows	 the	effect	 in-
terpretation of the activity of single genes on the predicted age. 

F I G U R E  5 Functional	analysis	of	the	
predictor	genes.	(a–	d)	WormExp	gene	set	
enrichment	analysis	for	the	576	predictor	
genes. The x-	axis	displays	the	−log10	of	
the adjusted p-	value.	Only	statistically	
significant	(adjusted	p	<	0.05)	enrichments	
are	shown.	(a–	c)	Gene	set	enrichment	
analyses for the genes with a coefficient 
≤0	for	the	Development/Dauer/Aging	
category	(a),	the	TF	Targets	category	(b),	
and	the	Tissue	category	(c).	(d)	Gene	set	
enrichment analyses for the genes with 
a	coefficient	>0	for	the	Development/
Dauer/Aging	category.	(e)	Functional	
enrichment	analysis	for	the	576	predictor	
genes	by	String	and	geneSCF.	The	x-	axis	
displays	the	−log10	of	the	FDR.	The	red	
line	displays	an	FDR	of	0.05.	Different	
enrichment	categories	are	color-	coded
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Using	the	elastic	net	regression	on	the	unbinarized	data	resulted	in	
a	model	of	132	predictor	genes	and	in	a	similar	prediction	quality	
as	the	elastic	net	regression	by	Fleischer	et	al.	 (Figure	S11a),	and	

similarly,	 the	HGPS	 samples	 are	 not	 predicted	 to	 be	 biologically	
older	(Figure	S11b).	However,	binarization	of	the	data	before	cal-
culating the elastic net regression improved the results dramati-
cally to an r2	of	0.92,	a	Pearson	correlation	of	0.96	(p	=	7.87e-	73),	a	
Spearman	correlation	of	0.96	(p	=	9.31e-	73),	a	MAE	of	6.63	years,	
a	 MAD	 of	 5.24	 years,	 and	 a	 RMSE	 of	 8.41	 years	 (Figure	 6a).	
Moreover,	 our	 model	 predicts	 the	 HGPS	 patients	 to	 be	 signifi-
cantly	 older	 (Figure	 6b).	 This	 new	model	 contains	 141	 predictor	
genes	(Table	S5),	out	of	which	25	are	significantly	enriched	in	the	
biological	 process	 regulation	 of	 cell	 death.	 Interestingly,	 among	
the	predictor	 genes	 the	 forkhead	 transcription	 factor	FOXO1—	a	
regulator of the aging process in C. elegans	and	mammals—	is	posi-
tively correlated with age thus further supporting the evolutionary 
conservation of transcriptionally regulated longevity mechanisms 
(Martins	et	al.,	2016).

To	summarize,	these	data	indicate	that	elastic	net	regression	on	
binarized	gene	expression	data	is	not	only	usable	in	the	nematode	C. 
elegans,	but	also	in	more	complex	organisms	like	humans.

3  |  DISCUSSION

The	 molecular	 understanding	 of	 aging	 on	 the	 genetic,	 epige-
netic,	transcriptomic,	proteomic,	and	metabolomic	level	has	made	
steady	progress	over	the	recent	years.	Since	the	initial	discovery	
of	 genetic	 mechanisms	 that	 determine	 longevity,	 C. elegans has 
remained an important model system not only for the genetics 
of aging but also for devising molecular intervention strategies. 
However,	up	to	date	no	single	model	could	predict	the	biological	
age	of	 any	organism	 to	 a	high	 accuracy	 in	diverse	 strains,	 treat-
ments,	and	conditions.	In	our	study,	we	show	that	the	binarization	
of gene expression data allows a biological age prediction of C. 
elegans to an unprecedented accuracy and for the first time the 
prediction	of	a	variety	of	 lifespan-	affecting	factors.	Additionally,	
we	show	that	the	binarization	approach,	even	without	the	biologi-
cal	rescaling,	might	be	applicable	to	and	improving	the	predictions	
in other organisms. This is in contrast to the currently most widely 
used	epigenetic	clocks,	which	are	limited	to	organisms	with	DNA	
methylation	marks.	Moreover,	our	results	suggest	that	especially	
the innate immune system and neuronal signaling are important 
for an accurate prediction and therefore also might play an essen-
tial role in the aging process.

Binarization	of	the	gene	expression	data	hugely	improved	the	
predictability	of	 the	biological	age.	 Interestingly,	 the	biggest	de-
viation from the true biological age is in the samples treated with 
heat shock or in mir-	71,	eat-	2,	and	skn-	1 (gof)	mutants.	Heat-	shock	
treatment and an eat-	2 mutation have been shown to exhibit a dif-
ferent aging trajectory and to diverge from the temporal scaling ap-
proach	proposed	by	Stroustrup	(Stroustrup	et	al.,	2016).	Similarly,	
skn-	1 (gof) and mir-	71	 display	 a	 sharp	 drop	 in	 lifespan	 (Inukai	
et	 al.,	 2018;	Nhan	et	 al.,	 2019)	 that	 cannot	 totally	be	accounted	
for	 with	 our	 median	 lifespan-	rescaling	 approach.	 Incorporating	
the whole lifespan curve could therefore improve the prediction 

F I G U R E  6 Transcriptomic	human	aging	clock.	(a)	Results	of	the	
age	prediction	computed	by	cross-	validation	on	human	fibroblast	
gene expression data. The x-	axis	shows	the	chronological	age	
in years. The y-	axis	shows	the	predicted	age	computed	by	an	
elastic	net	regression	on	binarized	gene	expression	data.	Every	
blue	dot	displays	one	RNA-	seq	sample.	The	regression	line	with	
the	95%	confidence	interval	is	shown	in	blue,	and	the	dotted	line	
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2	=	coefficient	of	determination,	
Pearson	=	Pearson	correlation,	Spearman	=	Spearman	correlation,	
MAE	=	mean	absolute	error	in	years,	MAD	=	median	absolute	
deviation	in	years,	RMSE	=	root-	mean-	square-	error	in	years.	Data	
from	GSE11	3957.	(b)	Box	plots	of	age	predictions	of	samples	from	
Hutchinson-	Gilford	progeria	syndrome	patients	(red)	and	predictions	
of	age-	matched	healthy	controls	(blue)	by	the	elastic	net	regression	
of	binarized	gene	expression	data.	Progeria	samples	are	predicted	to	
be	significantly	older	than	age-	matched	healthy	controls.	Data	from	
GSE11	3957.	**p	≤	0.01,	calculated	by	an	independent	two-	sided	t 
test.	Table	S3	contains	more	detailed	statistics
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even	further.	In	this	regard,	it	is	also	noteworthy	that	the	utilized	
bulk-	sequencing	data	 introduce	 several	biases	 that	might	not	be	
reflected	 in	 a	 simple	 rescaling	 approach.	 We	 tried	 to	 alleviate	
some	of	the	potential	biases	with	our	second	rescaling	approach,	
which should reduce the error that is introduced by the fact that 
especially the biologically older part of a population dies off first. 
However,	it	has	been	published	that	C. elegans dies of at least two 
different	types	of	death	(Zhao	et	al.,	2017):	either	an	early	death	
with	a	swollen	pharynx,	induced	by	an	increased	bacterial	content,	
or a later death with an atrophied pharynx. This might introduce a 
different	bias,	since	the	initial	transcriptional	response	close	to	an	
early death might be different from the response to a later death. 
Nevertheless,	even	with	these	limitations	our	model	predicts	the	
biological age of worms remarkably well.

The increasing error and increase in variance of the age predic-
tor	in	older	worms	is	especially	visible	in	the	unbinarized	model.	This	
might	be	due	to	the	known	age-	dependent	increase	in	transcriptional	
variety that limits the ability of the regression model to pick an ac-
curate	 subset	 of	 genes.	 Different	 hypotheses	 have	 been	 proposed	
that	try	to	explain	this	transcriptional	noise.	In	C. elegans,	it	might	be	
partially	 regulated	by	a	microRNA	feedback	 loop	 that	 is	dependent	
on mir-	71	 (Inukai	et	al.,	2018),	serotonergic	signals	 (Rangaraju	et	al.,	
2015),	and	the	decline	of	the	GATA	transcription	factor	ELT-	2	during	
aging	(Mann	et	al.,	2016).	One	interesting	possibility	is	the	idea	that	
the increasing noise is driven by accumulating somatic mutations over 
the	course	of	aging.	Indeed,	Enge	et	al.	demonstrated	an	increase	in	
the	transcriptional	noise	as	well	as	an	age-	dependent	accumulation	of	
somatic	mutations	in	single	human	pancreatic	cells;	however,	they	did	
not find any support for a causal relationship between exonic muta-
tions	and	transcriptional	dysregulation	(Enge	et	al.,	2017).

3.1  |  Transcription factors

Similar	to	Tarkhov	et	al.,	we	find	an	enrichment	in	targets	of	DAF-	
16,	the	GATA	transcription	factors	PQM-	1	and	ELT-	2,	and	PMK-	1	
in	our	predictor	gene	set.	DAF-	16	is	known	to	be	involved	in	a	va-
riety	of	stress	responses	and	longevity	pathways	(Sun	et	al.,	2017).	
GATA	transcription	factors	have	been	found	to	be	relevant	for	a	
variety	of	tissue-	specific	stress	responses	and	to	have	a	functional	
role	in	the	aging	process	(Budovskaya	et	al.,	2008).	Moreover,	de-
activation of elt-	2 has been described as a major driver of normal 
C. elegans	aging	(Mann	et	al.,	2016)	and	pqm-	1 has been shown to 
decline with age and to be involved in daf-	2-	mediated	 longevity	
(Tepper	et	al.,	2013).	The	p38	MAPK	family	member	pmk-	1 is an 
important	gene	 in	the	nematode's	pathogen	defense	system	and	
innate immunity.

3.2  |  Innate immune response

The innate immune system of C. elegans has been linked to sev-
eral	 lifespan-	affecting	 pathways	 (Ermolaeva	 &	 Schumacher,	 2014).	

Schmeisser	et	al.	(2013),	for	example,	showed	that	dietary	restriction	
(DR)-	dependent	 lifespan	extension	 requires	a	 limited	neuronal	ROS	
signaling via a reduced mitochondrial complex 1 activity that activates 
PMK-	1/p38.	Furthermore,	it	has	been	shown	that	the	intestinally	pro-
duced	and	secreted	 innate	 immunity-	related	protein	 IRG-	7	can	 lead	
to	 the	activation	of	 the	p38-	ATF-	7	pathway	and	 is	 required	 for	 the	
longevity	in	germlineless	nematodes	(Yunger	et	al.,	2017).	Apart	from	
long-	lived	mutants,	PMK-	1	expression	was	also	observed	to	decline	
with	normal	age,	leading	to	an	innate	immunosenescence	in	C. elegans 
that has been proposed to be a driving factor of the aging process 
(Youngman	et	al.,	2011).	This	immunosenescence	and	the	overall	in-
volvement of the innate immune system in aging has also been shown 
in other model organisms and might demonstrate an evolutionary 
conservation.	Our	work	falls	in	line	with	these	reports	and	supports	
an important role of the innate immune response in C. elegans aging.

3.3  |  Neuronal signaling

Our	 model	 also	 shows	 an	 enrichment	 in	 neuropeptide	 signaling.	
Neuronal	 communication	 is	 important	 for	 the	 organism's	 homeo-
stasis when responding to different stressors and a changing envi-
ronment	and	has	been	 implicated	 in	 the	aging	process.	 It	has	also	
recently been shown that the suppression of excitatory neurotrans-
mitter	and	neuropeptide	signaling	 is	partially	 required	 for	 the	 lon-
gevity of daf-	2	mutants	(Zullo	et	al.,	2019)	and	similarly	a	glia-	derived	
neuropeptide signaling pathway that affects the aging rate and 
healthspan of worms has been described and shows the potential 
for	neuropeptide	involvement	in	the	aging	process	(Yin	et	al.,	2017).	
In	line	with	this,	we	find	hic-	1 and dop-	4 in our predictor gene set. 
hic-	1 is important for the regulation of acetylcholine neurotransmit-
ter	(Tikiyani	et	al.,	2018)	and	might	therefore	indicate	a	role	of	hic-	1 
in	the	locomotion	defect	that	occurs	with	aging	(Glenn	et	al.,	2004).	
Besides the role of dop-	4	in	the	innate	immune	response	(Joshi	et	al.,	
2016),	 it	has	also	been	 implicated	 in	the	slowing	down	of	habitua-
tion	(Ardiel	et	al.,	2016).	Older	worms	have	been	shown	to	exhibit	
a	greater	habituation	and	a	slower	recovery	from	it	(Beck	&	Rankin,	
1993).	The	fact	that	dop-	4 has a negative coefficient in our age pre-
diction	suggests	that	it	is	less	transcribed	in	older	worm	populations,	
thereby making it an interesting target for the cause of increasing 
habituation with age.

3.4  |  Human data

Lastly,	we	demonstrated	that	binarized	gene	expression	data	also	allow	
building	 an	accurate	human	age	prediction.	Currently,	 the	 analysis	 is	
limited by the data amount and future studies should include more 
high-	quality	data	from	different	cohorts	with	different	environments	
and	populations.	Optimally,	the	data	would	be	generated	with	biopsies	
from different tissues of living donors without the need of cell culture. 
Nevertheless,	 we	 demonstrated	 that	 binarization	 improves	 the	 level	
of prediction beyond the current standard and that it also allows for a 
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prediction	by	an	elastic	net	regression,	which	results	in	an	easy	inter-
pretable	gene	set.	 Interestingly,	we	found	a	significant	enrichment	 in	
the	biological	process	regulation	of	cell	death,	including	FOXO1,	which	
indicates	 that	certain	age-	related	pathways,	 such	as	 insulin	 signaling,	
are indeed relevant for multiple species and evolutionarily conserved.

4  |  CONCLUSIONS

The	binarized	expression	of	our	576	genes	is	sufficient	to	predict	the	
biological age of C. elegans independent of the underlying genetics or 
environment	with	an	accuracy	near	the	theoretical	limit.	Our	analysis	
suggests	that	the	innate	immune	response,	neuronal	signaling,	and	sin-
gle transcription factors are major regulators of the aging process inde-
pendent	of	the	strain	and	treatment.	Although	the	temporal	rescaling	
approaches	will	not	be	applicable	in	humans,	we	have	also	shown	how	
the	binarization	approach	improves	the	chronological	age	prediction	of	
a	recent	human	dataset.	Our	work	establishes	that	an	accurate	aging	
predictor	can	be	built	on	binarized	transcriptomic	data	that	extends	
beyond	the	training	data,	predicts	lifespan	effects	across	diverse	ge-
netic,	 environmental,	 or	 therapeutic	 interventions,	 is	 employable	 in	
distinct	species,	and	might	thus	serve	as	a	universally	applicable	aging	
clock.

5  |  MATERIAL S AND METHODS

5.1  |  Data processing

The	quality	of	the	data	was	checked	with	FastQC,	and	the	data	were	
preprocessed	with	Fastp	with	the	following	parameters:	 -	g	to	trim	
polyG	read	tails	caused	by	sequencing	artifacts,	-	x	to	trim	polyX,	-	q	
30	for	base	quality	filtering,	and	-	e	30	to	filter	for	an	average	quality	
score.	Paired-	end	samples	were	processed	together.	After	preproc-
essing,	the	samples	were	mapped	with	STAR-	2.7.1a	with	the	follow-
ing	 parameters:	 -	-	outFilterType	BySJout	 -	-	outFilterMultimapNmax	
20	 -	-	alignSJoverhangMin	 8	 -	-	alignSJDBoverhangMin	 1	 -	-	outFilter	
MismatchNmax	 999	 -	-	outFilterMismatchNoverReadLmax	 0.04	
-	-	alignIntronMin	20	-	-	alignIntronMax	1000000	-	-	alignMatesGapMax	
1000000	-	-	quantMode	GeneCounts.

The genome directories were generated with the ce11 
genome,	 WBcel235.96	 without	 rRNA	 and	 the	 parame-
ter	 –	genomeSAindexNbases	 12	 for	 C. elegans and the hg38 
genome,	 GRCh38.97	 without	 rRNA,	 and	 the	 parameter	
–	genomeSAindexNbases	 14	 for	 human	 data.	 The	 parameter	
–	sjdbOverhang	was	set	to	the	read	length	of	the	sample	−1.

The	 validation	 samples	 with	 the	 IDs	 GSE10	6079,	 GSE12	
7917,	GSE13	8129,	 and	GSE14	1041	were	mapped	with	Salmon-	1.1	
with	 a	 k-	mer	 length	 of	 31	 and	 the	 following	 parameters:	 -	l	 A	
–	validateMappings	–	gcBias	–	seqBias.

The	raw	counts	for	the	validation	samples	with	the	IDs	GSE93826	
and	GSE13	8035	were	directly	downloaded	 from	the	gene	expres-
sion omnibus.

The	counts	for	unstranded	RNA-	seq	were	merged	into	one	csv	
file,	and	edgeR	was	used	to	generate	count	per	millions	(CPM).

Functional	 enrichment	 analysis	was	 done	with	 String	 v.11	 and	
geneSCF,	and	the	gene	set	enrichment	analysis	with	WormExp.

5.2  |  Binarization

To	binarize	the	data	first	zero	CPMs	were	masked	by	NaN.	For	the	
remaining	 data,	 the	 median	 for	 each	 sample	 was	 calculated	 and	
genes	bigger	the	median	were	set	to	1,	while	genes	smaller	or	equal	
to	the	median	were	set	to	0,	finally	genes	masked	by	NaN	were	set	
to 0 as well.

5.3  |  Temporal rescaling

For	the	temporal	rescaling,	we	set	the	median	lifespan	of	a	standard	
worm	to	15.5	days	of	adulthood.	We	calculated	a	correction	factor	
for every sample by dividing this standard lifespan by the median 
lifespan reported by the publication of the corresponding sample. 
We	restricted	the	training	data	to	this	subset	of	samples	for	which	
a	lifespan	was	reported	in	the	associated	publication,	because	even	
a	wild-	type	worm	under	standard	conditions	can	show	dramatically	
different	 median	 lifespans	 in	 between	 different	 laboratories.	 For	
example,	 the	median	 lifespan	of	N2	wild-	type	worms	at	 the	 same	
standard	conditions	in	the	datasets	we	used	ranges	from	15	days	in	
GSE11	2753	to	24	days	in	PRJNA508378,	which	increases	to	a	range	
from	14	days	(GSE65765)	to	30.55	days	(GSE92902)	just	by	includ-
ing	FUDR-	treated	worms.	Without	requiring	the	lifespan	data	from	
the same publication and just setting the lifespan to the standard 
15.5	days,	we	would	introduce	a	twofold	bias	in	the	rescaled	biologi-
cal	age,	which	would	reduce	the	prediction	of	the	model	accordingly.	
The chronological age of each sample is multiplied with this correc-
tion factor to result in the approximated biological age of the sample. 
The	chronological	age,	correction	factor,	and	biological	age	for	every	
sample	can	be	seen	in	Table	S1.

The	 datasets	 GSE10	6079	 and	GSE93826	were	 not	 associated	
with any publication and thereby no lifespan data were available. 
However,	both	datasets	consist	of	a	time	course	of	C. elegans aging 
and	would	 therefore	be	valuable	validation	data.	Since	 the	 strains	
used in both datasets should not show strong deviations in the me-
dian	 lifespan	from	wild-	type	worms,	we	assumed	that	 the	 lifespan	
is	15.5	days	 in	both	cases.	Since	this	 lifespan	 is	approximated	and	
should	 therefore	 include	a	bias	as	shown	above,	we	would	expect	
the prediction error to be higher than usual.

5.4  |  2nd rescaling approach

For	the	2nd	rescaling	of	the	biological	age,	we	set	the	maximum	bio-
logical	age	of	the	worm	to	15.5	days.	Assuming	a	normal	distribution	
of biological age around the chronological age of a worm population 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127917
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127917
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138129
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141041
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93826
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138035
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112753
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65765
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92902
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93826
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and	further	assuming	that,	on	average,	worms	will	die	according	to	
their	biological	age,	we	can	assume	that	the	maximum	biological	age	
of	a	worm	is	the	median	lifespan	of	15.5	days.	Worms	living	longer	
than the median lifespan were biologically younger and therefore did 
not	cross	the	 line	of	15.5	days	 (see	Figure	S3).	Since	the	first	wild-	
type	worms	under	standard	conditions	start	dying	at	around	9	days	
of	adulthood,	the	oldest	worms	at	day	8	should	be	biologically	around	
15.5	days	old.	Therefore,	we	approximated	the	standard	deviation	to	
be	8/3.	Centering	a	normal	distribution	at	8	days	with	a	SD	of	8/3	will	
contain	99.73%	of	the	area	under	the	curve	within	day	0	to	day	16.

Next,	we	approximated	that	the	biological	age	distribution	is	not	
changing	over	 time	and	 that	 the	SD	over	8/3	stays	 stable.	To	cal-
culate the median of the data after trimming the data at the maxi-
mum	age	of	15.5	days,	we	first	need	to	calculate	how	much	data	are	
trimmed.	We	approximate	this	by	utilizing	the	error	function:

implemented	in	the	SciPy	library.
The approximation of the percentage p of data that is remaining 

on	the	left	side	from	the	maximum	lifespan	of	15.5	days	on	the	bio-
logical age x is as follows:

Here,	15.5− x

8∕3
	calculates	how	many	SDs	the	biological	age	is	apart	from	

the	maximum	age	of	15.5	days.	And	erf
�

15.5 − x

8∕3√
2

�
 calculates the per-

centage of the area under the bell curve for the calculated number of 
SDs.	If	the	biological	age	would	be	one	SD	away	from	the	maximum	
age	of	15.5	days,	that	is,	8/3	days,	the	area	under	the	curve	would	be	
~68.2%.	However,	this	value	corresponds	to	the	area	on	the	left	and	
the	right	of	the	median.	Since	we	are	only	interested	in	one	side,	we	
have	to	divide	the	area	by	2	and	add	50%,	that	is,	0.5,	for	the	oppo-
site	side.	With	this,	p will approximate the area under the curve that 
is remaining after trimming the right side from the maximum lifespan 
of	15.5	days.

To get the approximation of the new median percentage for the 
trimmed	bell	curve,	we	can	divide	p by 2. This new median percentage 
can be used to calculate the median in days by reverting the calcula-
tion.	First,	we	subtract	the	new	median	percentage	from	0.5	to	get	the	
deviation	 from	 the	original	median	percentage,	 that	 is,	0.5,	 and	use	
the inverse error function to approximate s,	the	number	of	standard	
deviations that the new median is shifted to the left of the old median:

The new median m,	 in	other	words	the	new	rescaled	biological	
age,	can	then	be	calculated	by	the	following:

where 8/3 is the standard deviation that we set in the beginning and x 
the	biological	age,	that	is,	the	original	median.

5.5  |  Model fitting— Parameter search

The age prediction models use an elastic net regression as imple-
mented	by	Pythons’	sklearn.	The	random_state	was	set	to	0,	the	max_
iter	 to	 1,000,	 and	 positive=False.	 The	 best	 parameter	 settings	 for	
alpha	and	the	L1/L2	ratio	were	selected	using	a	parameter	grid	search	
with	a	nested	cross-	validation	approach.	To	avoid	overfitting	during	
the	training,	we	split	the	data	into	multiple	partitions.	Every	sample	
of	the	same	genetic	background,	with	the	same	treatment,	and	RNA	
interference of the same rounded biological age to days was consid-
ered to be one partition. This makes sure that samples with a similar 
transcriptome are taken out together during the process. The elastic 
net	regression	is	trained	on	the	remaining	data,	and	the	partition	that	
got taken out will be predicted. To get an overview of the accuracy of 
the	model,	this	process	is	repeated	for	the	partitions	in	the	dataset.	In	
the	end,	every	sample	will	be	predicted	exactly	once,	which	allows	the	
comparison of the predicted with the true biological age.

A	simple	cross-	validation	 like	 this	gives	an	overview	of	 the	ac-
curacy	of	the	model;	however,	to	select	the	best	parameter	setting,	
a	 nested	 cross-	validation	 is	 required,	 since	 otherwise	 information	
may leak into the model and introduce another type of overfitting. 
Therefore,	after	splitting	the	data	into	the	test	and	the	train	parti-
tions	(the	outer	loop),	the	latter	will	be	split	again	into	an	inner	test	
and	train	partition	(the	inner	loop).	This	inner	cross-	validation	will	be	
computed for every parameter set to compute the average of the 
absolute error for each parameter setting.

This will be done for every partitioning in the outer loop to 
select the most stable parameter set. The parameters selected 
by	 this	 approach	 for	 the	 binarized	 data	 are	 alpha	 =	 0.075	 and	
l1_ratio = 0.3.

5.6  |  Model fitting— Optimal gene set

To	obtain	 the	optimal	 gene	 set	without	overfitting,	 a	 similar	 ap-
proach	was	taken.	Instead	of	looping	over	different	parameter	set-
tings,	the	cross-	validation	for	the	gene	set	loops	over	a	list	of	the	
genes	with	the	highest	absolute	coefficients.	First,	for	every	train-
ing	partition	 in	 the	outer	 loop	 the	 full	model	with	alpha	=	0.075	
and	l1_ratio	=	0.3	is	computed.	This	will	result	in	a	model,	where	
every	gene	is	annotated	with	a	coefficient.	In	the	binarized	model,	
the sum of the coefficients for all genes that are 1 in the sam-
ple	added	to	the	intercept	equals	the	predicted	age.	Therefore,	a	
negative	coefficient	will	result	in	a	younger	predicted	age,	while	a	
positive	coefficient	will	increase	the	predicted	age.	Next,	we	loop	
over different subsets of the top genes to identify the approxi-
mately	optimal	and	smallest	gene	set	for	the	given	partition.	For	
every	 gene	 set,	 the	 inner	 cross-	validation	 loop	 is	 computed	 and	
the gene set with the smallest average absolute error is saved. This 
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will be done again for every partition in the outer loop to gain mul-
tiple	gene	sets.	Similar	 to	 the	parameter	search,	 the	most	stable	
gene set is taken by retaining only those genes that were used by 
every partition. This stable gene set selected by this approach for 
the	 binarized	 data	 after	 the	 second	 rescaling	 are	 the	 576	 genes	
described	 in	 Table	 S2.	 This	 final	model	 starts	 at	 an	 intercept	 of	
103.55	hrs	(4.31	days).

5.7  |  Using the clock

To	predict	the	biological	age	of	new	data,	one	has	to	start	with	binariz-
ing the transcriptome as described above. The elastic net coefficients 
(column	2	 in	Table	S2)	are	added	up	 for	all	of	 the	576	genes	with	a	
value	of	1	after	binarization.	Finally,	the	intercept	of	103.55	hr	has	to	
be added to get the final prediction of the biological age in hours. The 
code	is	included	in	https://github.com/Meyer	-	DH/Aging	Clock/

5.8  |  Motif search

The	set	of	genes	with	a	coefficient	>0,	respective	≤0,	was	used	as	
input	 for	 the	 findMotifs	 function	 of	 Homer-	4.9.1–	6	 with	 the	 pa-
rameters	 -	len	 8,10	 -	start	 −300	 -	end	 100.	 To	 make	 sure	 that	 the	
maximum	number	of	genes	got	recognized	by	Homer,	we	first	con-
verted	the	Wormbase	IDs	to	the	sequence	name	with	WormBase's	
SimpleMine	and	added	“CELE_”	in	front	of	it.	These	identifiers	were	
then	searched	 in	 the	“worm.description”	 file	of	Homer	to	gain	 the	
corresponding	RefSeq	IDs	that	are	recognized	by	the	program.	The	
p-	values	were	calculated	with	a	hypergeometric	test.

5.9  |  Median lifespan fold change prediction

The median lifespan fold change can be predicted by the biologi-
cal	age	of	the	strain	of	interest	and	its	control,	assuming	a	uniform	
age effect. The median lifespan of each strain can be computed by 
dividing the chronological age by the biological age and multiplying 
it	by	15.5	days.	To	compute	the	fold	change,	the	median	lifespan	of	
interest	is	divided	by	the	control	lifespan,	or	easier,	the	biological	age	
of the strain of interest can be divided by the biological age of the 
control,	if	the	chronological	age	is	the	same.

The	theoretical	range	of	lifespan	fold	change	predictions	in	Figure	
S8	was	calculated	with	the	Python	package	Uncertainties.	The	chrono-
logical	age	bias	was	set	to	0.5	days	and	the	lifespan	assay	bias	to	5%.	
The	code	is	included	in	https://github.com/Meyer	-	DH/Aging	Clock/

5.10  |  Figure details

All	 plots	were	done	with	Seaborn-	0.9.0.	Boxplots:	 The	 center	 line	
represents	the	median;	the	box	limits	the	bottom,	and	top	quartiles	
of	the	data	and	the	whiskers	show	the	1.5x	interquartile	range.

5.11  |  Statistics

ANOVA	 and	 t	 tests	 were	 computed	 with	 Python's	 pingouin	 li-
brary	 v.0.3.3.	 post	 hoc	 Tukey	 test	 were	 computed	 with	 Python's	
Statsmodels	library	v.0.10.1.

5.12  |  Citations of the age predictors 
from the literature

Because	currently	no	general	consensus	of	quality	assessment	exists	
and	different	measurements	are	being	reported,	we	state	the	meas-
urements	as	reported	in	the	cited	paper	in	the	introduction.	Some	of	
the most common used assessments are as follows:

1.	 Mean	 absolute	 error	 (MAE):	 the	 mean	 of	 the	 absolute	 differ-
ence in predicted and true age.

2.	 Root-	mean-	square-	error	(RMSE):	the	square	root	of	the	average	
squared	 differences.	 Larger	 errors	 have	 a	 larger	 effect	 on	 the	
RMSE	than	on	MAE.

3.	 Median	 absolute	 deviation	 (MAD):	 the	 median	 absolute	 differ-
ence in predicted and true age.

4.	 Pearson	correlation	 (r):	measurement	of	how	 the	predicted	and	
true age changes together. Evaluates linear relationships.

5.	 Spearman	correlation	(r):	similar	to	Pearson	correlation,	but	evalu-
ates	the	monotonic	relationship.	Other	than	Pearson	correlation,	
the variables do not need to change at a linear rate.

6.	 Coefficient	of	determination	(r2):	the	fraction	of	the	variance	that	
is	predictable	with	the	model.	Often	the	 r2	 is	 the	square	of	 the	
correlation	 coefficient;	 however,	 this	 is	 not	 true	 in	 the	 general	
case. The value can get negative if the model fits worse than a 
horizontal	line.
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