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Abstract
Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors

containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-

covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic cata-

lysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.
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Review
Introduction
Over the past century chemists have gathered great amounts of

information about the factors governing enzymatic reactions.

These studies have helped to realize the importance of non-

covalent interactions within the receptor, and many subsequent

efforts have been focused on adopting the knowledge learned

from nature to the rational design of small molecule-based cata-

lysts mimicking enzymatic function. A significant number of

such efforts has been dedicated to designing new catalysts to

enhance the electrophilicity of organic molecules through non-

covalent interactions, and many important areas of organocatal-

ysis have emerged from these efforts. The use of synthetic

hydrogen bond donors for the activation of neutral or ionic elec-

trophiles has been one of the major focuses of these research

efforts in the past two decades (Figure 1) [1]. Many privileged

hydrogen bond donor scaffolds capable of forming single or

double hydrogen bonds with the substrate have been developed

and explored as catalysts of numerous organic transformations

[2-15]. Such catalysts (i.e., I–IX) [16] may contain one or

several highly polarized A–H···A bonds, where A is oxygen or

nitrogen and are often designed to mimic enzymatic reactions

through the electrostatic substrate activation or stabilization of

charged transition states or reaction intermediates. At the same

time, recent studies highlight the importance of other types of

non-covalent interactions such as the activation through the for-
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Figure 1: Electrophile Activation by Hydrogen Bond Donors [1-16].

Figure 2: Early examples of C–H hydrogen bonds and their recent use in supramolecular chemistry [18,19,32-34].

mation of C–H···A hydrogen bonds or halogen bonding

(C–X···X or C–X···A interactions) in organocatalyst design.

Such non-covalent interactions have been traditionally viewed

as “weak” when compared to classical A–H···A hydrogen

bonds. However, in some cases the term “weak” may be

misleading as an increasing number of examples demonstrate

the effectiveness of such interactions for organocatalyst design.

While C–H···A hydrogen bonds have been invoked in biologi-

cal processes, halogen bonding is not commonly observed in

natural enzyme-catalyzed reactions. Therefore, application of

these new interactions for small molecule activation allows

expanding the repertoire of existing organic catalysts beyond

what is found in biological systems.

This mini review highlights recent progress on organocatalysis

that is based on C–H···A or halogen (C–X···X or C–X···A)

bonds for substrate activation.

C–H hydrogen bonds
It is well established that the C–H moiety can serve as a hydro-

gen bond donor and form hydrogen bonds with oxygen,

nitrogen or halogens of neutral molecules or anions [17]. How-

ever, such interactions have been considered negligible in com-

parison to much stronger A–H···A hydrogen bonds (A = N, O,

F). While Glasstone proposed the formation of a C–H hydro-

gen bond between chloroform and ethereal solvents in 1935

[18], and Lipscomb discovered hydrogen bonding in solid

hydrogen cyanide in 1951 [19], until recently C–H hydrogen

bonds have been mostly observed in the solid state (Figure 2).

Recent studies in supramolecular chemistry have demonstrated

that hydrogen bonds formed by C–H bonds are not necessarily

“weak”, and in certain cases are almost as strong as more tradi-

tional A–H···A bonds [20]. The C–H hydrogen bonding be-

tween the substrate and the catalyst could be of great signifi-

cance for transition state organization and energy, and is often

invoked to rationalize the outcome of various transformations

[21-27]. However, until recently C–H hydrogen bond-based

interactions have not been employed in rational organic cata-

lyst design, and more traditional A–H hydrogen bond donors

such as I–IX (Figure 1) have been utilized to enhance the elec-

trophilicity of organic molecules.

Recent spectroscopic and computational studies provided evi-

dence that arenes might form strong hydrogen bonds between

aryl C–H groups and anions (Cl−, NO3
−, ClO4

−, etc.) in the gas

phase [28]. In addition, the introduction of an electron-with-
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Scheme 1: Design of 1,2,3-triazole-based catalysts for trityl group transfer through chloride anion binding by Mancheno and co-workers [35].

drawing group into the aryl ring (i.e., NO2, CN, CF3, etc.) could

significantly enhance this binding and result in stronger hydro-

gen bonds between the arene and the anion. Thus, the gas-phase

binding energy of the nitrobenzene and chloride anion complex

containing two C–H hydrogen bonds was estimated to be

−16.8 kcal/mol whereas the corresponding binding energy for

the H2O/Cl− complex was determined to be −15.4 kcal/mol.

Electron-deficient heterocyclic compounds such as 1,2,3-tri-

azoles may also serve as strong C–H hydrogen bond donors.

Substituted 1,2,3-triazoles possess a substantial dipole moment

(≈4.5 D) almost aligned with the C5–H bond and the relatively

high acidity of this position (pKa(DMSO) = 27–28, for the

1H-tautomer). These heterocycles, which are easily available

from 1,3-cycloaddition of alkynes and azides, can both form

strong C–H bonds with hydrogen bond acceptors and also act as

electron-withdrawing substituents when attached to other aro-

matic rings thus enhancing benzene’s ring C–H hydrogen bond-

ing [29-31]. Recent studies by the Flood group and the Craig

group suggested that receptors containing arylated 1,2,3-tri-

azoles could form stable supramolecular complexes with anions

[32-34]. The stability of such complexes correlated with the

number of C–H bonds that could be formed by the receptor, and

strong binding comparable to the more traditional X–H bond-

ing based hydrogen bond donors was observed for the receptors

forming 5–9 hydrogen bonds with halides (Ka ≈ 103–104 M−1 in

acetone-d6). Not surprisingly, a higher number of hydrogen

bonds with an anion correlated with the higher stability of the

receptor/anion complex.

1,2,3-Triazole-based catalysts for the
dearomatization of N-heteroarenes
The Mancheno group recently explored triazole-based receptor

L1 as the organic catalysts for counterion activation (Scheme 1)

[35]. Receptor L1 capable of forming 5 hydrogen bonds was

found to form a stable supramolecular complex with chloride in

acetone (Ka = 458 M−1 in acetone-d6), and promoted efficient

trityl group transfer from tritylated DMAP chloride to various

primary and secondary amines. The authors propose that L1

binding with chloride results in a more electrophilic tritylated

DMAP cation, and the binding affinity of the catalyst was found

to correlate with the N-alkylation rate.

Following the aforementioned studies, the Mancheno group de-

signed and synthesized various chiral triazole-based complexes

such as L2–L4 (Scheme 2) [36-39]. It was proposed that while

these triazole derivatives are conformationally flexible, upon

their binding to halogen anions these complexes adopt a rein-

forced chiral helical conformation. The resultant close chiral

anion-pair complexes would then undergo a chiral counterion-

controlled asymmetric reaction with a nucleophile. This

proposal was validated experimentally, and a chloride-induced

conformational switch to form a helical backbone was experi-

mentally observed by circular dichroism (CD) during the titra-

tion of L4 with TBAC [37].

Catalysts L3 and L4 were successfully applied to the asym-

metric dearomatization of electron-deficient N-heteroarenes

(Scheme 3). Various nitrogen-containing heterocycles such as

pyridines [36], quinolines [38], isoquinolines [38], etc. were

reacted with TrocCl to form the corresponding salts, and these

generated in situ ion pairs were treated with silyl enol ethers in

the presence of chiral catalysts L2–L4 to form chiral addition

products. High levels of chirality transfer were generally ob-

served for various 6-membered nitrogen-containing hetero-

cyclic substrates, and chiral products were obtained in good

yields and selectivities. Remarkably, the performance of tetra-
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Scheme 2: Examples of chiral triazole-based catalysts for anion activation designed by Mancheno and co-workers [36-39].

Scheme 3: Application of chiral triazole-based catalysts L3 and L4 for counterion activation of pyridinium, quinolinium and isoquinolinium salts by
Mancheno and co-workers [36-39].
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kistriazoles was found to be comparable (or in some cases supe-

rior) to the well-established thiourea- and squaramide-based

catalysts developed for similar transformations.

Quaternary tetraalkylammonium and
alkylpyridinium salts as C–H hydrogen bond
donors
While quaternary ammonium salts have extensively been used

as phase transfer catalysts to activate ionic nucleophiles, recent

studies suggest that these compounds can also serve as effec-

tive hydrogen bond donors. In 1993 Reetz and co-workers pro-

vided crystallographic evidence that the alpha C–H bonds of

tetraalkylammonium salts are highly polarized, and can form

multiple hydrogen bonds with enolates in the solid state

(Scheme 4) [40-45]. The existence of alpha C–H hydrogen

bonds has also been invoked in the computational studies ratio-

nalizing the outcome of various asymmetric phase-transfer reac-

tions [46-49]. However, despite these developments until

recently [50,51] the use of tetraalkylammonium salts as hydro-

gen bond donor catalysts has not been explored.

Scheme 4: Ammonium salt anion binding via C–H hydrogen bonds in
solid state [40-45,50,51].

In 2011 the Park group investigated ammonium salts as cata-

lysts for aza-Diels–Alder reactions of Danishefsky’s diene with

imines (Scheme 5) [52]. A variety of ammonium salts

(L7–L10) including chiral cinchonidine derivatives L7 and

catalyst L10 were found to promote the reaction in low-to-good

yields albeit with no enantioselectivity. Although it is perhaps

one of the first examples of utilizing tetralkylammonium salts

as hydrogen bond donor catalysts, the authors provided no

mechanistic proposal for the catalytic activity of L7–L10, and

the activation of the imine by the formation of a C–H···N hydro-

gen bond was proposed later by Maruoka and Shirakawa

[50,51].

Scheme 5: Early examples of ammonium salts being used for electro-
philic activation of imines in aza-Diels–Alder reactions [52].

In 2013 Bibal and co-workers investigated the use of methyl-

ated amines, pyridines and guanidines (L11) as hydrogen bond-

donor catalysts for the activation of cyclic esters toward ring-

opening polymerization (ROP) [53]. Ionic catalysts L11

(5 mol %) were successfully employed in combination with

DBU and initiator (Ph2CHOH) to accomplish C=O activation

and to promote the polymerization reactions (Scheme 6).

Highly charged tetraalkylbisammonium salts (i.e., DABCO-

Me2·2X) were found to be particularly active catalysts. Based

on computational studies, the authors proposed that substrate

activation is accomplished through a C–H hydrogen bond with

cyclic ester carbonyls. The following study by the Bibal group
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Scheme 7: Tetraalkylammonium catalyst (L6)-catalyzed dearomatization of isoquinolinium salts [50].

described the use of catalysts L11 as hydrogen bond donors for

the activation of epoxides toward ring-opening aminolysis with

amines (Scheme 6) [54]. Significant rate enhancement was ob-

served under mild conditions with L11. The activity of cata-

lysts L11 was found to be comparable to the activity of

common thiourea-based hydrogen bond donors, and double-

charged catalyst DABCO-Me2·2X was found to be one of the

most active catalysts. As before [53], the activity of ammonium

salts L11 was attributed to their ability to form a hydrogen bond

with the oxygen of epoxide.

Scheme 6: Ammonium salts as hydrogen bond-donor catalysts by
Bibal and co-workers [53,54].

In 2015 Shirakawa and Maruoka demonstrated that ammonium

salts L5 and L6 could serve as effective catalysts for isoquino-

linium and pyridinium salt Mannich reactions (Scheme 7) [50].

Catalysts L5 and L6 were selected due to their conformational

rigidity that results in a better alignment of alpha C–H groups,

relatively high polarization of the alpha C–H bonds due to the

presence of electron-withdrawing ester functionalities, and ease

of preparation (1–2 steps from commercially available piperi-

dine). Interestingly, the authors assessed the strength of C–H

hydrogen bonds to the iodide anion in L5 relative to the

N-methylpiperidinium iodide salt by measuring the distances

between the alpha-hydrogen atom and iodide in the solid state.

Thus, the C–H···I hydrogen bonds for L5 were found to be

0.2–0.4 Å shorter than for N-methylpiperidinium iodide.

Both L5 and L6 were found to promote the Mannich reaction

between N-Troc-isoquinolinium chlorides and silyl enol ethers.

Catalyst L6 with non-coordinating BArF− counterion was found

to have a significantly higher activity than L5 with iodide coun-

terion, probably, due to the competitive binding with iodide.

Both L5 and L6 were inhibited by the addition of tetrabutylam-

monium chloride, which reinforces the proposal that these salts

act as HBDs. Interestingly, NMR titration studies revealed that

L6 could form a supramolecular complex not only with a chlo-

ride anion, but also with chlorine atoms covalently bonded to a

benzylic carbon (Scheme 8).

In 2016 Maruoka and Shirakawa followed up the aforemen-

tioned studies by demonstrating that tetraalkylammonium salts

L5, L6, L11 and L12 as well as TBAI could activate imines

toward aza-Diels–Alder reaction with Danishefsky’s diene

(Scheme 9) [51]. Catalyst L11 was selected as the catalyst of

choice due to its simplicity and activity. Based on the 1H NMR

studies and X-ray crystallographic analysis the authors con-

cluded that tetralkylammonium salts act as hydrogen bond

donors through the formation of a C–H···N hydrogen bond.

In 2014, Berkessel and co-workers reported the use of N-alky-

lated 3,5-di(carbomethoxy)pyridinium ions L13 to catalyze the

reaction between 1-chloroisochroman and silyl ketene acetals
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Scheme 8: Tetraalkylammonium catalyst L6 complexation to halogen-containing substrates [51].

Scheme 9: Tetraalkylammonium-catalyzed aza-Diels–Alder reaction
by Maruoka and co-workers [52].

(Scheme 10A). Catalyst L13 with R3 = C6F5 was found to be

particularly active, and was found to efficiently form the prod-

uct at 2 mol % loading without significant erosion in yield or

reaction time [55]. Interestingly, the ability of catalysts L13 to

catalyze the reaction was attributed to 1-chloroisochroman acti-

vation through Coulombic interactions coupled with anion–π

bonding. Thus, L13 was proposed to promote ionization of

1-chloroisochroman followed by anion exchange. The resultant

oxocarbenium/tetraphenylborate ion pair undergoes a nucleo-

philic attack by silyl ketene acetal, which is followed by scav-

enging the trimethylsilyl cation with a chloride anion to result in

chlorotrimethylsilane and the product. Mechanistic studies were

conducted to establish that L13 forms weak 1:1 complexes with

chloride and bromide anions. Thus, 1H NMR titration studies of

L13 with R2 = C6F5 demonstrated the formation of the corre-

sponding chloride complex with 1:1 stoichiometry and

Ka ≈ 200 M−1.

In light of the recent studies by Shirakawa and Maruoka

[50,51], we propose that catalysts L13 could act not only

through Coulombic interactions, but also as hydrogen bond

donors. While various factors including Coulombic interactions

between the pyridinium (or ammonium) salt and the chloride

undoubtedly play an important role in promoting substrate

ionization and chloride complexation, the provided X-ray data

Scheme 10: (A) Alkylpyridinium catalysts L13-catalyzed reaction of
1-isochroman and silyl ketene acetals by Berkessel and co-workers.
(B) Evidence of L13 C–H···X– hydrogen bonding in solid state [55].

are consistent with L13 acting as hydrogen bond donors

(Scheme 10B). The published X-ray data for the chloride and

bromide salts of L13 with R2 = C6F5 indeed provide evidence

of anion–π bonding with the C6F5 group. In addition, we also

noted that there is evidence for two hydrogen bonds formed be-
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tween the halide or bromide anion and C–H2/C–Hc bonds of

another cation L13.

Mixed N–H/C–H hydrogen bond donors as
organocatalysts
The involvement of the ortho C–H bond in the binding event

with Lewis-basic sites was proposed by Etter in the late 1980s

and later demonstrated by Schreiner in a detailed study of

hydrogen-bonding thiourea organocatalysts containing a

3,5-bis(trifluoromethyl)phenyl group as the privileged motif

[56-58]. A recent example of utilizing such interactions in catal-

ysis was demonstrated by Bibal and co-workers [58]. In this

study, Bibal and co-workers explored the use of α-halogenated

acetanilides L14 and L15 as hydrogen-bonding organocatalysts

that activate the carbonyl functionality of lactide and thus en-

hance their reactivity toward ROP (Scheme 11). In addition to

their ability to form more conventional N–H hydrogen bonds,

L14 and L15 were proposed to form additional C–H hydrogen

bonds between arene or α-halogenated acetyl groups and the

carbonyl of lactide. X-ray crystallographic analysis and molecu-

lar modeling provided the evidence of such interactions in solid

state, and the titration studies established weak binding

(Ka ≈ 1–4 M−1) between L14 or L15 and lactide in solution.

The α-dichloro and α-dibromoacetanilides L14 containing elec-

tron-deficient aromatic groups (i.e., m,m’-NO2 substitution on

phenyl ring) afforded the most active catalysts with the

strongest N–H···O···H–CX2 interactions.

Scheme 11: Mixed N–H/C–H two hydrogen bond donors L14 and L15
as organocatalysts for ROP of lactide by Bibal and co-workers [58].

Halogen bonds as alternatives to hydrogen
bonds
The ability of halogens and halogenated organic compounds to

form stable complexes with nucleophiles has been known for

more than two centuries [59-61]. One of the earliest examples

of such complexes were the adducts formed by the reaction of

iodine and amylose or ammonia described by Colin in 1814

[62]. While the stoichiometry of such complexes was not estab-

lished at the time, Guthrie in 1863 [63] and Norris in 1896 [64]

were able to generate complexes formed between molecular

halogens (I2, Br2, and Cl2) and ammonia or methylamines and

characterized them. Numerous studies attempting to elucidate

the nature of halogen complexes have emerged since then; how-

ever, the structural features of these interactions were unclear

until the work of Mulliken who proposed the formation of

donor–acceptor complexes [65,66] and Odd Hassel who con-

ducted crystallographic studies of bromine complexed with 1,4-

dioxane in 1970 [67]. The evidence of the actual bonding were

found in these complexes as the O−Br distance in the crystal

was about 2.71 Å (Scheme 12), which is 20% smaller than the

sum of the van der Waals radii of oxygen and bromine (3.35 Å)

while the angle between the O−Br and Br−Br bond was found

to be ≈180°.

Scheme 12: Examples of stable complexes based on halogen bond-
ing [68,69].

Since these reports, numerous other examples of halogen bond-

ing have been uncovered, and halogen bonding has become of

great importance to the fields of chemistry and materials

science. Not only halogens, but also neutral halogen-containing

organic molecules were found to form stable adducts with

neutral and charged Lewis bases, and to account for this IUPAC

provided the following recommendation “A halogen bond

occurs when there is evidence of a net attractive interaction be-

tween an electrophilic region associated with a halogen atom in

a molecular entity and a nucleophilic region in another, or the

same, molecular entity” [68]. Such complexes may have
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Scheme 14: Iodine-catalyzed reactions that are computationally proposed to proceed through halogen bond to carbonyl [80].

substantially different properties from the uncomplexed

organohalides, which is well exemplified by the at room tem-

perature liquid complex of gaseous iodotrifluoromethane

(BP = −23 ºC) and tetramethylguanidine containing a halogen

(I···N) bond [70].

When chiral organohalides form halogen bonds with chiral

acceptors, diastereomeric complexes may be formed. Thus, in

1999, Resnati reported the resolution of racemic 1,2-dibromo-

hexafluoropropane through halogen-bonded supramolecular

helices (Scheme 13) [69]. When (−)-sparteine hydrobromide in

chloroform was treated with racemic 1,2-dibromohexafluoro-

propane, a yellow co-crystal was isolated. The structure of the

co-crystal was confirmed by single-crystal X-ray diffraction,

and it showed that the co-crystal was made up from one mole-

cule of (−)-sparteine hydrobromide and one molecule of

(S)-1,2-dibromohexafluoropropane. The Br−···Br distance

(Scheme 13) is about 3.3 Å, which is approximately 20%

shorter than the sum of the van der Waals radii. The angle be-

tween Br−···Br–C is about 175º. The strong Br−···Br–C halogen

bonds are robust enough to drive the self-assembly and are criti-

cal for the resolution. This example clearly demonstrate the

great potential of halogen bonds as tools for asymmetric cataly-

sis.

Scheme 13: Interaction between (−)-sparteine hydrobromide and
(S)-1,2-dibromohexafluoropropane in the cocrystal through halogen
bonds [69].

Early uses of halogen bond donors in cataly-
sis and organocatalysis
Like hydrogen bonds, halogen bonds possess important fea-

tures such as strength and directionality that might make these

interactions of a great value to the field of organocatalysis [71-

73]. Molecular iodine has been used for many decades as a mild

catalyst or promoter of various organic transformations such as

conjugate addition, imine formation or aldolate dehydration

reactions [74-79]. Interestingly, such reaction mechanisms are

not well understood, and the formation of trace quantities of

hydroiodic acid rather than the direct substrate activation by

molecular iodine has been frequently invoked to rationalize the

outcome of these studies. Recently, Breugst and co-workers

have re-evaluated the molecular iodine-catalyzed conjugate

addition to α,β-unsaturated carbonyls or nitrostyrenes

(Scheme 14) [80]. Based on their computational studies, they

proposed that iodine activates the enone moiety by forming a

halogen bond with the carbonyl and thus forming a more reac-

tive complex with the LUMO. These results are further backed

up by control experiments demonstrating that catalytic quanti-

ties of hydroiodic acid were less effective in promoting this

reaction than molecular iodine, and hidden Brønsted acid

catalysis is unlikely to be operational in these studies.

In 2008 the Bolm group explored the use of halogen bond

donors in organocatalysis. They discovered that perfluorinated

alkyl halides could activate 2-substituted quinolines toward

reduction by Hantzsch ester (Scheme 15) [81]. These studies

explored various C6 to C10 perfluorinated bromides and iodides.

It was discovered that organic iodides were more reactive than

the corresponding bromides and that the product yield in-

creased with increasing lengths of the perfluorinated carbon

chain. Thus, CF3(CF2)9I was found to be the most effective at

10 mol % loading and the product could be isolated in

98% yield after 24 h. Remarkably, when the catalyst loading

was reduced to 1 mol %, the product could still be obtained in

69% yield after 96 h. Although the hidden acid catalysis due to

the trace amounts of HI was not ruled out, the proposed

N-halogen bond formation between quinolone and perfluo-
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roiododecane during the catalytic process was supported by
13C and 19F NMR studies.

Scheme 15: Transfer hydrogenation of phenylquinolines catalyzed by
haloperfluoroalkanes by Bolm and co-workers [81].

Halogen bond donor organocatalysis based
on aryl halides
The pioneering study of Bolm has attracted significant atten-

tion and a number of important studies have emerged since

then. In particular, the Huber group has contributed to the de-

velopment of a new design of organocatalysts based on aryl

iodides as halogen bond donors [73,82-88]. These catalysts

were found to act as organic Ag+ surrogates and activate an

ionizable substrate by halide anion scavenging. Thus, in 2011,

Stefan M. Huber and his colleagues investigated the activation

of a C–Br bond by novel halogen-bond donors L16 and L17

[82]. The authors synthesized compounds L16 and L17 as well

as some other halogen bond donors and tested their ability to

promote the Ritter reaction of (bromomethylene)dibenzene

(Scheme 16). The stoichiometric amounts of L16 and L17 were

found to promote the formation of a benzhydryl acetamide

product in good-to-excellent yields. The control experiments

with deiodinated L16 and L17 confirmed the importance of

halogen bonding for this transformation. A strong counterion

effect was observed in these studies, and the BF4
− salt of L16

were found to be significantly more reactive than the corre-

sponding TfO− salts. Interestingly, L16 that can potentially

form two halogen bonds with the same bromine atom were

found to be marginally less active promoters in comparison to

compounds L17. Finally, the control experiments ruled out

hidden acid catalysis due to the formation of trace quantities of

HBr through hydrolysis of the substrate.

To further enhance the reactivity of the halogen bond donors,

Huber and colleagues later designed 5-iodo-1,2,3-triazolium-

based multidentate salts L18 [83,84]. Triazolium salts L18 were

Scheme 16: Halogen bond activation of benzhydryl bromides by
Huber and co-workers [82].

found to be particularly good in promoting the formation of

benzhydryl acetamide (95% after 96 h). Due to the formation of

the strong inhibitor, hydrobromic acid that acts as the source of

bromide anion as the reaction progresses, the aforementioned

studies required a stoichiometric amount of halogen bond

donors. However, catalytic halogen scavenging with halogen

bond donors is also possible if the products are not inhibiting

the catalyst. One of such transformations explored by the

Huber group is the addition of ketene silyl acetals to

1-chloroisochroman (Scheme 17) [85,87]. The chloride anion

produced in this reaction will eventually form chlorotrialkylsi-

lane, which does not inhibit the catalyst. As a result, catalytic

amounts of neutral HBDs L19–L21 were found to promote this

transformation at 10–20 mol % catalyst loading. Unlike the

Ritter reaction study summarized in Scheme 16, the activity of

the catalyst was found to directly correlate with the stability of

supramolecular complex, and L21 capable of forming multiple

halogen bonds at the same time was found to be the most active
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Scheme 17: Halogen bond-donor-catalyzed addition to oxocarbenium ions by Huber and co-workers [89].

catalyst. The binding properties of L19–L21 toward halides in

the solid state, in solution, and in the (calculated) gas phase

were further investigated by Huber [89].

Following the aforementioned studies, the Huber group has de-

signed structurally rigid electron-deficient cationic catalysts

L22 based on the bis(halobenzimidazolium) scaffold [87].

These catalysts were found to be particularly active, and the

catalyst with X = I, and R = Oct promoted the reaction between

1-chloroisochroman and silyl enol ether at 0.5 mol % catalyst

loadings (70% yield, 6 h). A good correlation was observed be-

tween the catalytic activity and halogen affinity, and the Ka of

L22 with X = I, R = Oct with bromide anion was determined to

be 3.5 × 106 M−1 (CH3CN). In addition to the aforementioned

studies, recent results by Huber and Codée indicate that not

only 1-chloroisochroman, but also more complex substrates

such as 2,3,4,6-tetra-O-benzylglucosyl chloride could undergo

halogen bond-donor-catalyzed solvolysis [86].

Further studies by the Huber group and others suggest that

halogen bond donors based on the bis(halobenzimidazolium)

scaffold could promote other types of reactions that are typical-

ly observed with hydrogen bond donors such as thioureas [88].

Thus catalyst L23 was found to catalyze the reaction of methyl

vinyl ketone (MVK) and 1,3-cyclopentadiene (Scheme 18).

Catalyst L23 was proposed to form two halogen bonds with the

carbonyl group of MVK and thus activate it by lowering the

Scheme 18: Halogen bond-donor activation of α,β-unsaturated car-
bonyl compounds in the [2 + 4] cycloaddition reaction of MVK and
cyclopentadiene [88].

energy of its LUMO. Remarkably, the non-coordinating coun-

terion BArF4
− was required for L23 to act as the catalyst with

the less coordinating TfO− anion did not accelerate the cycload-

dition.

In 2015, Takeda, Minakata and co-workers demonstrated that

2-iodoimidazolium salt L24 could serve as an efficient catalyst

of the aza-Diels−Alder reaction of aldimines and Danishefsky

diene (Scheme 19) [90].

Other organohalides such as perfluoroiodooctaine or perfluo-

roiodobenzene were initially explored as the catalysts; however,
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Scheme 19: Halogen bond donor activation of imines in the [2 + 4]
cycloaddition reaction of imine and Danishefsky’s diene [90].

no product formation was observed. The following evaluation

of iodoimidazoles and iodoiimidazolium salts helped identi-

fying L24 as the catalyst of choice (yield 85%). When L24

lacking the iodide activating site was used, no product was

formed. The halogen bond nature of the reaction was further

confirmed by adding an acid scavanger (K2CO3) that does not

inhibit the reaction and by including n-Bu4NCl, which inhibit-

ed the reaction. The authors also did titration experiments and
1H NMR studies. These results strongly supported that halogen

bonding was the key interaction for catalyst action.

In 2014, the Tan group revisited the original study by Bolm and

co-workers and re-investigated halogen bond induced hydrogen

transfer to C=N bonds (Scheme 20) [91]. Various charged and

uncharged electron-deficient iodoarenes were tested as poten-

tial catalysts, and chiral catalyst L25 was identified as the cata-

lyst of choice. Although no chirality transfer was observed

during the reduction of 2-phenylquinoline, L25 was found to be

a very active catalyst promoting transfer hydrogenation of a

C=N group containing heterocycles and imines with significant-

ly greater reaction times than CF3(CF2)9I originally published

by the Bolm group. As before, 1H NMR studies and calori-

metric titration were used to validate the proposed halogen

bond-based activation of substrates.

Halogen bond-donor catalysis can be relevant to the processes

in which a halogen-containing acceptor is formed in transient

quantities. Thus, in 2015, Takemoto and co-workers described a

halogen bond donor-catalyzed dehydroxylative coupling reac-

tion of benzyl alcohols and allyltrimethylsilane (Scheme 21)

[92].

This transformation requires catalytic quantities of the halo-

genating agent (I2 or TMSI, 15 mol %). These additives may

undergo activation by L26 to result in more Lewis acidic

species that ionize benzylic alcohols. Alternatively, addition of

I2 or TMSI may accomplish in situ transformation of benzylic

Scheme 20: Transfer hydrogenation catalyzed by a chiral halogen
bond donor by Tan and co-workers [91].

Scheme 21: Allylation of benzylic alcohols by Takemoto and
co-workers [92].

alcohols to benzyl iodides. These intermediates underwent coor-

dination to halogen bond donor catalyst L26 to provide an elec-

trophilic complex equivalent to a benzyl cation. This substrate

was trapped with allyltrimethylsilane to provide the correspond-

ing product. It was found that catalyst L26 required a hexa-

fluoroantimonate (SbF6
−) counterion and polar MeNO2

as the solvent of choice. Other nucleophiles such as
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trimethyl(phenylethynyl)silane, trimethylsilanecarbonitrile and

(cyclohex-1-en-1-yloxy)trimethylsilane could be used as sub-

strates albeit with somewhat lower yield. Importantly, catalyst

L26 was found not to bind iodotrimethylsilane, which is the

condition essential for achieving turnover in this reaction.

Organocatalysis based on halogen bond
donors with N-halogenated moiety
A variety of N-halogenated organic molecules has been de-

veloped and utilized for halo-functionalization of olefins.

Considering the electrophilic nature of a halogen in such mole-

cules, these compounds could serve as effective halogen bond

donors. In 2014, Takemoto and co-workers reported that elec-

trophilic N-iodinated compounds could induce a semipinacol re-

arrangement (Scheme 22) [93]. Thus, the benzyl bromide

moiety of substrates was activated upon treatment with

N-iodosuccinimide (NIS) in nitromethane. The resultant carbo-

cation-like species presumably underwent a 1,2-alkyl shift to

provide a silylated oxocarbenium ion. The following silyl cation

trapping with a bromide anion resulted in 2-phenylcyclohep-

tanone. When a chiral substrate (59% ee) was treated with NIS,

a product with significantly lower ee (11%) was observed.

These results suggest that the reaction might proceed mainly in

a stepwise SN1-like manner, via a benzylic carbocation interme-

diate.

Scheme 22: NIS induced semipinacol rearrangement via C–X bond
cleavage [93].

Despite the fact that several variants of chiral halogen bond-

donor catalysts have been synthesized, to the best of our know-

ledge no successful asymmetric catalytic transformation based

on the direct substrate activation with a chiral halogen bond

donor has been reported. Therefore, this represents a fruitful

area for further developments.

Conclusion
While the N–H or O–H-based hydrogen bond donors have

traditionally dominated the field of organocatalysis, numerous

recent examples highlight the importance of other types of non-

covalent interactions for electrophilic substrate activation. The

use of C–H and C–X bonds with halogens or electron-rich

heteroatoms has been particularly useful in new organocatalyst

design. These interactions (and C–H hydrogen bonds in particu-

lar) have been traditionally ascribed as “weak”; however, this

term could be rather misleading as both C–H hydrogen bonds as

well as halogen bonds could be similar in strength to hydrogen

bonds. Not surprisingly, some of the examples highlighted in

this review demonstrate that the catalysts based on such interac-

tions could match or even outperform the existing O–H/N–H

hydrogen bond donors such as thioureas. Several different vari-

ants of C–H hydrogen bond donors have been developed; how-

ever, the most successful designs have involved the use of

1,2,3-triazole, ammonium and pyridinium based catalysts.

While the asymmetric transformations catalyzed by chiral 1,2,3-

triazoles are now well precedented, the feasibility of asym-

metric transformations promoted by other types of chiral C–H

hydrogen bond donors is yet to be demonstrated. Similarly,

compared with the N–H and O–H hydrogen bond catalysis,

asymmetric halogen bond-donor catalysis is still underdevel-

oped and the possibility of utilizing chiral halogen bond donors

for the asymmetric transformations is yet to be demonstrated.

This is somewhat surprising, given the fact that a number of dif-

ferent scaffolds for halogen bond donors containing C–X bonds

(including the chiral variants) have been developed. Consid-

ering that the use of organic halogen bond donors could offer

some significant advantages, it is reasonable to anticipate the

emergence of asymmetric halogen bond-donor catalysis in the

near future.
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