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Abstract: Cracking is one of the main problems in concrete structures and is affected by various
parameters. The step-by-step laboratory method, which includes casting specimens, curing for a
certain period, and testing, remains a source of worry in terms of cost and time. Novel machine
learning methods for anticipating the behavior of raw materials on the ultimate output of concrete
are being introduced to address the difficulties outlined above such as the excessive consumption of
time and money. This work estimates the splitting-tensile strength of concrete containing recycled
coarse aggregate (RCA) using artificial intelligence methods considering nine input parameters and
154 mixes. One individual machine learning algorithm (support vector machine) and three ensembled
machine learning algorithms (AdaBoost, Bagging, and random forest) are considered. Additionally, a
post hoc model-agnostic method named SHapley Additive exPlanations (SHAP) was performed to
study the influence of raw ingredients on the splitting-tensile strength. The model’s performance
was assessed using the coefficient of determination (R2), root mean square error (RMSE), and mean
absolute error (MAE). Then, the model’s performance was validated using k-fold cross-validation.
The random forest model, with an R2 of 0.96, outperformed the AdaBoost models. The random
forest models with greater R2 and lower error (RMSE = 0.49) had superior performance. It was
revealed from the SHAP analysis that the cement content had the highest positive influence on the
splitting-tensile strength of the recycled aggregate concrete and the primary contact of cement is
with water. The feature interaction plot shows that high water content has a negative impact on the
recycled aggregate concrete (RAC) splitting-tensile strength, but the increased cement content had a
beneficial effect.

Keywords: concrete; splitting-tensile strength; cracking; building material; construction material

1. Introduction

The splitting-tensile strength is an important mechanical property of concrete that
considerably impacts on the cracking size and extent in concrete structures. As concrete
is weak under tension, a pre-assessment of its splitting-tensile strength is necessary to
conduct [1,2]. As per the theory of brittle fracture, the specimen failure starts from the
largest crack oriented in the direction of the applied load when the tensile stress exceeds the
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tensile strength of concrete. Such cracks would be become a stochastic issue, in which the
specimen shape and size are strength affecting parameters, as it is more probable to have
a higher quantity of critical cracks in the bigger specimen, ultimately initiating specimen
failure [3]. The insufficient energy is released at cracking onset for crack propagation in
more ductile materials, or larger pores may block it, demanding additional energy for its
cracking. A crack in concrete appears when the tensile stress of the concrete exceeds the
tensile strength of concrete. Therefore, the tensile strength of concrete is of great importance,
especially in the case where the main ingredients of concrete are changed. Splitting-tensile
strength is the indirect measure of the tensile strength of concrete and is affected by many
factors. The addition of dispersed short-discrete fibers to concrete increased the crack resis-
tance and improved the mechanical characteristics [4–12]. Steel fibers are also employed
to increase the toughness and post-cracking behavior of the cementitious material [13–16].
The concrete splitting-tensile strength is also affected by the size of the aggregates. The
splitting-tensile strength would be higher in the case of finer aggregates because of their
higher surface area, but with reduced bond stress between the aggregate and cement
paste [17]. Usually, a lesser splitting-tensile strength was observed in the case of recycled
aggregate concrete (RAC) in comparison to that of the respective natural aggregate concrete
(NAC). The difference magnitude was based on multiple parameters relating to the RCA
utilization. The higher replacement ratio of RCA would result in a reduced splitting-tensile
strength, as frequently reported in the literature [18–25]. The behavior of RAC was more or
less the same in terms of the splitting-tensile strength as in the case of compressive strength.

RCA has comparatively more porosity and water absorption and lower density and
strength than the NCA [26,27]. Accordingly, the RAC has compromised mechanical charac-
teristics and workability compared to that of NAC. Yang, et al. [28] reported a decrement
in the compressive and splitting-tensile strength with an enhancement in the replacement
ratio of the RCA. Hence, consideration should be given to the interrelation between the mix
design and RAC mechanical characteristics prior to the construction. Multiple mathemati-
cal, empirical modeling has been conducted for the mechanical characteristics of RAC [29];
however, the said models were based on only limited input parameters and a small testing
database calibration of models. In the urge to resolve this issue, artificial intelligence (AI)
techniques are increasingly applied to foresee the mechanical characteristics of concrete.
The highly precise modeling among the input and output parameters can be conducted
by using AI techniques [30]. Due to advances in AI, the mechanical characteristics of con-
crete and other structural members may now be predicted using machine learning (ML)
and other methods [31–36]. ML approaches (i.e., classification, regression, and clustering)
are deployed for the statistical process and prediction of compressive strength with high
accuracy in materials science and other fields [37–42]. High calcium fly ash geopolymer
composite (FA-GPC) performance prediction by using ML techniques have previously
been studied. Decision tree (DT), bagging, and adaptive boosting (AdaBoost) approaches
were used to predict the strength of the FA-GPC. The error distribution process, model
validation, regression, sensitivity analysis, and statistical checks were involved as a research
objective to compare and confirm the employed algorithms’ accuracy. The civil engineering
field can profit from the experimental cost savings, effort, and time by predicting the static
properties of concrete with the help of ML approaches. The accuracy of prediction can be
enhanced by integrating standalone models with an ensemble machine learning (EML)
model, as depicted by other fields of study [43]. The employment of ensemble learning
to predict concrete parameters has still only been studied with a limited scope. Random
forest (random Forest) and adaptive boosting (AdaBoost) are the EML techniques that can
enhance the prediction accuracy with the combination of voting and various regression tree
forecasting on the ultimate result [44]. Song, et al. [45] determined the compressive strength
of ceramic waste-modified concrete experimentally and with standalone techniques. The
marginal variation in the experimental results and the prediction model outcomes were
reported. Ahmad, et al. [44] performed EML and standalone techniques to predict the
concrete’s compressive strength and accuracy of the comparison. It has been reported
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that the outcome predicted from the EML techniques had more precision than that by
the standalone technique. However, the range in the standalone technique results was
also acceptable.

The optimization of the RAC mix can be attained with the help of developed AI
models. In various studies, only the data regarding the concrete composite mix propor-
tions are usually accounted for as input variables instead of performing other additional
measurements. However, the knowledge on the effect of various raw materials on the
final strength is still missing, pointing out a research gap. Accordingly, the main aim
of the current study was to explore a reliable but simple method for the prediction and
evaluation of the input parameter’s effect on the output. The recycled aggregate concrete
was explored by applying artificial intelligence, as presented in the current study. This
study is important for understanding the significance of input parameters and their cor-
rectness in the ML algorithm results. Each model’s performance was additionally assessed
using the k-fold cross-validation and statistical tests. Furthermore, to better understand
the impacts/influences and interactions of the considered features, the post hoc model-
agnostic method named as the SHAP analysis was also conducted. In addition, the post
hoc model-agnostic method named as the SHapley Additive exPlanations (SHAP) may also
be applied to have an insight into the ML models. Its performance on the existing artificial
intelligence models is claimed to be the novelty of the current research. This would enhance
the usage potential of the artificial intelligence methods for civil engineers in the construc-
tion industry. However, in terms of cost and time, the step-by-step laboratory process,
which includes casting specimens, curing for a set period, and testing, remains a subject of
concern. To tackle the challenges described above such as the excessive consumption of
time and money, novel machine learning algorithms are being presented to anticipate the
behavior of raw materials on the final output of concrete in terms of the splitting-tensile
strength. This research aims to evaluate the effect of raw ingredients on the splitting-tensile
strength of the RAC and its estimation using an artificial intelligence approach. Therefore,
a precise forecasting model can be beneficial for researchers and engineers to assess the
RAC mechanical characteristics and can conserve the cost and time in lieu of laboratory
experimentations. Overall, we hope that this work will help explain the trends of machine
learning approaches and how they can be used in different real-world domains to predict
the strength properties of the concrete. We also hope that it will serve as a point of reference
for both academics and professionals around the world, especially from a technical point
of view.

2. Methods
2.1. Data Description

The dataset comprises nine inputs: water, cement, sand, natural coarse aggregate (NCA),
recycled coarse aggregate (RCA), superplasticizer (SP), maximum RCA size (Dmax_RCA), the
density of recycled aggregate (ρRCA), and the water absorption of the recycled aggregate
(WRCA). One output parameter was considered (i.e., the splitting-tensile strength (STS).
A total of 154 mixes were collected for the splitting-tensile strength from 20 published
experimental studies. Table 1 describes the statistical analysis of the input parameters
with the splitting-tensile strength. The findings of the descriptive analysis are dependent
on many input factors. Table 1 provides the lowest and maximum values and ranges for
each variable utilized in the model. Other analytical parameters used to show the relevant
values include the standard deviation, mean, mode, and a total of all data points for each
variable. Figure 1 depicts the distribution of each component used in the mixes. Figure 2
depicts the correlation plot. In this scenario, no multicollinearity issues would be caused
due to microscopic differences. If there is multicollinearity issues, then there is a strong
effect of the input parameter between them, which ultimately affects the output results and
may provide accurate findings.



Materials 2022, 15, 4194 4 of 21

Table 1. The details of the input and output data.

Mean Standard Error Median Mode Standard Deviation Range Minimum Maximum

Water (kg/m3) 180.4 1.5 179.0 179.0 18.9 88.0 137.0 225.0

Cement (kg/m3) 353.7 5.0 372.0 380.0 62.2 442.0 158.0 600.0

Sand (kg/m3) 723.7 15.1 730.0 927.0 186.6 1010.0 0.0 1010.0

NCA (kg/m3) 407.7 31.8 443.7 0.0 393.8 1168.0 0.0 1168.0

RCA (kg/m3) 604.5 26.7 538.0 970.0 330.2 1066.0 57.0 1123.0

SP (kg/m3) 1.2 0.2 0.0 0.0 1.9 7.8 0.0 7.8

Dmax_RCA (mm) 18.5 0.3 20.0 20.0 3.9 15.0 10.0 25.0

ρRCA (kg/m3) 2382.3 12.8 2390.0 2320.0 153.4 651.0 2010.0 2661.0

WRCA (%) 5.5 0.2 5.3 5.3 2.1 9.0 1.9 10.9

STS (MPa) 3.2 0.1 3.1 3.7 1.0 5.1 1.2 6.3

Figure 1. The distribution of the input and output parameters.
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Figure 2. The correlation plot with the splitting-tensile strength.

2.2. Machine Learning Models

Figure 3 shows the entire process of forecasting the AdaBoost algorithm outcome.
The ensemble technique is a concept of ML that is utilized to train various models by
using a learning algorithm of the same kind [46]. Multiple algorithms are collected as
multi-classifiers to make an ensemble. A group comprises of almost a thousand learners
working with the same objective of resolving the issue. Ensemble learning is employed
by an AdaBoost algorithm, which is a supervised ML technique. It can also be referred to
as adaptive boosting, as the weights are re-linked to every instance, with higher weights
linked to wrongly classified instances. Boosting techniques are widely utilized to minimize
variance and bias in supervised ML. Weak learners can be strengthened by using the said
ensemble techniques. An infinite number of DTs was employed for the input data during
the training phase. During the construction of the initial DT, the erroneously categorized
recorded data were given more priority throughout the initial model. The same data records
were used only as the input for the other different models. The above-mentioned technique
would be repeated until the creation of the specified base learners. AdaBoost optimizes the
enhancement of the performance of DTs on binary classification issues. In addition, it is
also used for enhancing the ML algorithm’s performance. It is specifically effective when
it is used with slow learners. These ensemble algorithms are very prevalent in the civil
engineering field, especially in predicting the mechanical properties of concrete.



Materials 2022, 15, 4194 6 of 21

Figure 3. The complete process of prediction via the AdaBoost algorithm [47].

The random forest model is a regression and classification-based approach that has
been studied by various researchers up to now [48,49]. The splitting-tensile strength of
concrete was predicted using the random forest model, as conducted by Shaqadan [50].
The prime difference between random forest and DT was the number of trees, as shown
in Figure 4. A single tree is developed in DT; however, in random forest, multiple trees
are built that are known as forests. The dissimilar data are selected arbitrarily and accord-
ingly allocated to respective trees. Each tree has data in rows and columns, and different
dimensions of rows and columns are selected. The following steps were carried out for
the growth of each tree; the data frame comprised two thirds of the whole data that were
randomly selected for each tree. This method is known as bagging. Random selection
was made for the prediction variables, and the node splitting was conducted by finely
splitting these variables. For all trees, the remaining data were utilized to estimate the
out-of-bag error. Accordingly, the final out-of-bag error rate was assessed by combining
errors from each tree. Each tree provides regression, and among all of the forest trees, the
forest with greater votes is selected for the model. The value of votes can either be 1s or 0s.
The obtained proportion of 1s specifies the prediction probability. Random forest (random
forest) is the most sophisticated among all of the ensemble algorithms. It includes desirable
features for variable importance measures (VIMs) with robust overfitting resistance and
fewer model parameters. DT is used as a base predictor for random forest. Acceptable
results can be produced by random forest models with default parameter settings [51]. As
allowed by random forest, combinations of parameter settings and base predictors can
be reduced to one. Ensemble machine learning techniques were employed to achieve the
objectives of this study on a conventional workstation by using Python coding via the
software named Anaconda Navigator. The AdaBoost and random forest models were
chosen in the software known as Spyder (Version 4.3.5), USA. Typically, these types of
algorithms are built functions in the software and are employed using Python coding to
forecast the needed results depending on the input parameters.
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Figure 4. The random forest schematic diagram [48].

3. Results and Discussion
3.1. AdaBoost

A comparison of the projected and actual outputs of the AdaBoost model considering
the experimental and predicted results is shown in Figure 5. The R2 value was 0.95, which
showed better outcomes and could be used for the prediction of the splitting-tensile
strength. The dispersion of the actual and predicted values and errors for the AdaBoost
model is illustrated in Figure 6. However, 61% of the error values were below 0.5 MPa,
24% ranged from 0.5 to 1 MPa, and only 15% were higher than 1 MPa. Lower error values
also represented the higher accuracy of the AdaBoost model as the maximum number
of values presented the lower error rate between the experimental and predicted values.
This ultimately shows the good predictive behavior of the AdaBoost model in terms of the
splitting-tensile strength compared to the experimental data.
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Figure 5. The AdaBoost model’s experimental and predicted results of the splitting-tensile strength.

Figure 6. The AdaBoost model’s experimental and predicted values of the splitting-tensile strength
with the errors.

3.2. Random Forest Results

The correlation between the projected and actual results of the random forest model is
shown in Figure 7. The R2 value for the random forest model was 0.96, which represents
the highly precise and more accurate random forest with respect to the AdaBoost models.
Furthermore, the dispersion of projected values, actual targeted values, and errors for the
random forest model is shown in Figure 8. It was noted that 61% of the error data was below
0.5 MPa, 30% was from 0.5 to 1 MPa, and only 8% was higher than 1 MPa. Previous studies
also reported the better performance of the random forest model in forecasting the various
properties of different materials in terms of superior R2 and lower error values [47,52,53].
This analysis revealed a higher accuracy of the random forest model with respect to the
AdaBoost models. It can also be depicted from the lower error and greater R2 values. In
addition, twenty sub-models were employed by the AdaBoost and random forest to obtain
the optimized value that produces a firm output.
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Figure 7. The random forest model’s experimental and the predicted splitting-tensile strength results.

Figure 8. The random forest model’s experimental and predicted values of the splitting-tensile
strength with the errors.

3.3. Support Vector Machine (SVM) Results

A comparison of the projected and actual outputs of the SVM model considering
the experimental and predicted results is shown in Figure 9. The R2 value was 0.78,
which showed better outcomes and could be used for the prediction of the splitting-
tensile strength. The dispersion of the actual and predicted values along with errors for
the SVM model, is illustrated in Figure 10. However, 52% of error values were below
0.5 MPa, 13% ranged from 0.5 to 1 MPa, and only 9% were higher than 1 MPa. The lower
accuracy of the SVM model was also depicted by higher error values as the maximum
number of values presented the higher error rate between the experimental and predicted
values. This ultimately shows the poor predictive behavior of the SVM model in terms of
the splitting-tensile strength compared to the results of the experimental data and other
ensemble models.
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Figure 9. The SVM model’s experimental and predicted results of the splitting-tensile strength.

Figure 10. The SVM model’s experimental and predicted values of the splitting-tensile strength with
the errors.

3.4. Bagging Results

The correlation between the projected and actual results of the bagging model is shown
in Figure 11. The R2 value for the bagging model was 0.95, which represents a highly precise
and more accurate bagging with respect to the SVM models. Furthermore, the dispersion of
the projected values, actual targeted values, and errors for the bagging model is shown in
Figure 12. It was noted that 60% of the error data was below 0.5 MPa, 27% ranged from 0.5
to 1 MPa, and only 13% was higher than 1 MPa. Wang, et al. [47] reported that the AdaBoost
machine learning approaches predicted the better compressive strength of geopolymer
composites. Zhu, et al. [54] used the machine learning to forecast the splitting-tensile
strength (STS) of the concrete containing recycled aggregate (RA) and revealed that the
precision level of the bagging model was better. Ahmad, et al. [55] studied the boosting
and AdaBoost ML approaches to predict the compressive strength of the high calcium
fly-ash-based geopolymer. The bagging indicates better results. Previous studies have
also reported the better performance of the random forest model in forecasting the various
properties of different materials in terms of superior R2 and lower error values [47,52,53].
A higher accuracy of the random forest model with respect to the bagging models was
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revealed from this analysis. This was also depicted in the lower error and greater R2 values.
In addition, twenty sub-models were employed by AdaBoost, random forest, and bagging
to obtain the optimized value that produces a firm output.

Figure 11. The bagging model’s experimental and predicted splitting-tensile strength results.

Figure 12. The bagging model’s experimental and predicted values of splitting tensile strength with
the errors.

3.5. K-Fold Cross-Validation Checks

Statistical analysis with Equations (1) and (2) was utilized to predict the model’s re-
sponse. Statistical checks were used to evaluate the performance of the models [44,52,56,57].
The model’s legitimacy was evaluated by utilizing the k-fold cross-validation approach
during execution. Usually, the model’s validity is conducted with a k-fold cross-validation
process [58], in which random dispersion is carried out by splitting it into ten groups. A to-
tal of 70% of data was used as the training data and 30% was used for testing. The R2 for all
training datasets was greater than 0.85. The greater the R2 value and lower the errors (RMSE
and MAE), the more accurate the model is. Furthermore, this process should be repeated
multiple (i.e., 10) times for a satisfactory result. The exceptional precision of the model
can be achieved by using this comprehensive approach. In addition, statistical analysis
(i.e., RMSE and MSE) was also performed for all of the models (Table 2). The random forest
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model’s accuracy (inversely related to error values) compared to the AdaBoost models was
also supported by these checks. Statistical analysis, as reported in the literature [37,59], has
been used to assess the model’s response to prediction. The k-fold cross-validation was
evaluated by utilizing R2, RMSE, and MAE. Respective dispersions for the random forest
and AdaBoost models are presented in Figure 13. The average and maximum values of
R2 for AdaBoost were 0.72 and 0.95, respectively (Figure 13a). The maximum and average
values of R2 for the random forest model were 0.96 and 0.77, respectively, are shown in
Figure 13b. Upon comparing the error values (RMSE and MAE), the RMSE and MAE
values for all models are shown in Table 2. The random forest model with the lowest error
and higher R2 value performed best for the results prediction.

MAE =
1
n ∑n

i=1|xi − x| (1)

RMSE =

√√√√
∑

(
ypred − yre f

)2

N
(2)

where:
n = Total data samples,
x, yre f = Data sample reference values,
xi, ypred = Model prediction values.

Table 2. The statistical description of all models.

Models MAE (MPa) RMSE (MPa) R2

AdaBoost 0.53 0.60 0.95

Random Forest 0.48 0.49 0.96

SVM 0.85 0.95 0.78

Bagging 0.51 0.64 0.95

Figure 13. Cont.
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Figure 13. The k-fold cross-validation: (a) AdaBoost model; (b) random forest model; (c) SVM model;
(d) B = bagging model.

3.6. Parameter Tuning for Ensemble Learner

The learning rates and other features that specifically effect ensemble approaches can be
used as tuning parameters for the models used in ensemble techniques. Boosting ensemble
models (20 each) with 10, 20, 30, . . . , 200 component sub-models were developed for base
learners in this work, and the correlation with high coefficient values was utilized to identify
the best model. The ensemble model accuracy and the number of component sub-models
is shown in Figure 14. The ensemble AdaBoost, random forest, and bagging models with
12, 20, and 2 or more sub-models demonstrated a significant result with a better R2 value.
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Initially, the analysis revealed that utilizing ensemble modeling enhanced the accuracy of
both models. However, for the random forest ML approach, using 200 component sub-
models while 12 or more for the AdaBoost algorithms and two or more sub-models for
bagging, provided more accurate results. The architectures employed in the ensemble
models are described in Table 3. It is worth mentioning that the learning rate was 0.95, 0.95
and 0.96 when AdaBoost, bagging, and random forest algorithms were applied. However,
the SVM, being an individual algorithm, presented unacceptable results.

Figure 14. The R2 values of the sub-models.

Table 3. The detailed information of the sub-models of the ensemble approaches.

Approach Used Ensemble Techniques Ensemble Techniques Individual Techniques Ensemble Techniques

Machine learning
methods AdaBoost Random forest Support vector

machine (SVM) Bagging

Ensembled models (10, 20, 30, . . . , 200) (10, 20, 30, . . . , 200) - (10, 20, 30, . . . , 200)

Optimum Estimator 12 20 - 02

R2 Value 0.95 0.96 0.78 0.95

The ensembled ML and individual approaches were explored in this study to estimate
the RAC. Random forest and AdaBoost machine learning techniques were used in this study
to predict the splitting-tensile strength of the RAC. To establish the algorithm’s prediction
superiority, the employed algorithms were compared for the targeted performance. The
output of the random forest model was more accurate, having a 0.96 R2 value compared
to AdaBoost with 0.95 R2 and bagging with 0.95. Furthermore, the performance of the
AdaBoost and random forest models was also evaluated by utilizing the k-fold cross-
validation technique and statistical analysis. The performance of the model was higher
with low error levels. However, it is tough to assess the optimized machine learning
regressors to forecast results from a wide range of topics because the model’s performance
is very much dependent on the data points and the model’s input parameters. On the other
hand, in ensemble ML techniques, sub-models are generated to leverage the weak learner
that can be optimized and trained on data to achieve a higher value of R2. The dispersion
of values for the determinant coefficient of the bagging, AdaBoost, and random forest
sub-models is shown in Figure 11. The values of R2 for all sub-models of random forest
were greater than 0.85, while most values of R2 in the case of sub-models for AdaBoost
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were less than 0.84, respectively. It depicts a higher accuracy of the random forest technique
for the results prediction, having a maximum value of R2 (i.e., 0.96). Therefore, the random
forest model is suggested to predict the splitting-tensile strength of RAC.

The randomization technique further revealed the statistical importance. The test
was carried out by (1) permuting the dataset’s activity values repeatedly, (2) generating
RF models from the permuted values, and (3) comparing the resulting scores to the score
of the original RF model derived from non-randomized activity values. If the original
RF model is statistically significant, the score from permuted data should be significantly
higher. Figure S1 shows the R2 values for 30 trials based on the permuted data. The original
model’s R2 value was substantially greater than any of the permuted data trials. As a result,
the RF model was statistically significant and reliable.

3.7. Enhanced Explainability of the ML Models

This study provides a detailed explanation of the machine learning model. Further-
more, the dependencies of the corresponding features were also explored. The SHAP
tree explainer was initially implemented over the whole database to provide an enhanced
description of the global feature influences by merging the local SHAP explanations. The
employment of a tree-like SHAP approximation method named as “TreeExplainer” was
conducted [60]. In this method, the evaluation of the internal structure of the tree-based
models (i.e., summation for a set of calculations linked with the tree model leaf node), which
led to the complexity of low-order, was conducted [60]. It was observed that the random
forest model had a highly precise prediction performance for the splitting-tensile strength
of the RAC. Therefore, in this section, the interpretation of the model was conducted for
the splitting-tensile strength of the RAC by applying SHAP. The SHAP value correlation of
the different considered features for the splitting-tensile strength of the RAC (as attained
from the ensembled random forest modeling) is shown in Figure 15.

Figure 15. The feature importance of the input parameters.

This assessment was based on a database implied in the current research, and the
outcomes with a higher precision may also be obtained in the case of more data points.
It may be noted here that the cement content had the highest feature value of 0.29 in the
case of the STS prediction for the RAC, as cement is a key feature of strength development.
The water content feature value was 0.26 (i.e., a key parameter in the case of RAC due to a
greater water absorption capability of the recycled aggregates), depicting the second highest
SHAP value. Subsequently, the content of RCA was the third most influencing factor with
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a feature value of 0.11, as shown in Figure 12. The RCA content directly influences the
strength of the RAC and the available water–cement ratio. Similarly, it had more or less
the same influence as for the RCA maximum size as the aggregate size has a significant
role in the strength development of concrete. Natural coarse aggregate (NCA) content was
ranked fourth for having a higher SHAP value. As in the case of the RAC, the RCAs were
used to replace the NCAs; therefore, the NCA content feature has considerable influence
in terms of the RAC strength development. Similarly, the influence of RCA density was
next in terms of the SHAP value, followed by the water absorption of RCA and content of
the superplasticizer features. All of these features have their unique roles in the splitting
tensile strength of RAC.

Figure 16 shows the values on the violin SHAP plot for all of the corresponding
features that are taken to forecast the splitting-tensile strength of the RAC. Each feature
value is represented by a unique color in this plot, and the respective SHAP value at the
x-axis shows the contribution output. As an illustration, the water content is an input
feature with a higher influence (Figure 16) but has a negative influence in depicting the
inverse relationship for this feature with the splitting-tensile strength of the RAC. It means
that increasing the water content would decrease the strength and vice versa. A SHAP
value of almost 1 in the form of blue points (low-value color) at the rightmost showed that
the higher water content decreased the RAC splitting-tensile strength. However, in the case
of the cement feature, a positive influence was seen. The RCA particle size also influences
the RAC STS both positively and negatively. A very much larger particle size would
also affect the RAC strength. In the same manner, the RCA influences both negatively
and positively. The RCA content up to the optimum content was a positive influence,
while a negative influence was observed beyond this content. Afterward, the RCA water
absorption was negatively influenced as this water absorption ability would absorb more
water, leaving a compromised w/c ratio for the hydration process, ultimately affecting the
concrete strength development process. Likewise, the RCA density and superplasticizer
were also on the borderline and both had positive and negative influences depending on
the optimum content.

Figure 16. The SHAP plot of the input parameters.

The interaction of the features with the RAC splitting-tensile strength is provided
in Figure 17. The water feature interaction is shown in Figure 17a. It can be observed
from the plot that the water mainly interacted with the RCA and had a negative/inverse
relationship out of the many factors. As in this scenario, the RCAs’ higher water absorption
ability leaves a compromised water content for the hydration process, hence impacting
the strength development process of concrete. In Figure 17b, the positive influence of
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cement on the splitting-tensile strength of RAC is observed. More interaction of cement
occurs with the RCA content and is directly related. The RCA water absorption feature
interaction is plotted in Figure 17c. The WRCA indicates the negative impact due to its
effect on the w/c ratio required for the hydration process to develop concrete strength.
Therefore, the said effect would result in a decreased splitting-tensile strength. Then, the
RCA particle size showed both positive and negative impacts, and had more interaction
with the superplasticizer (Figure 17d). This might be due to the effect of the surface-area
requirements on the w/c ratio. The interaction of NCA is shown in Figure 17e, depicting
both positive and negative impacts depending upon the optimum content. Up to the
optimum content, the lesser content would end up with a positive interaction and vice
versa. Similarly, RCA was first positively and then negatively interacting based on the
optimum content (Figure 17f).

Figure 17. The interaction plot of various parameters: (a) Water; (b) Cement; (c) WRCA; (d) Dmax_RCA;
(e) NCA; (f) RCA.
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4. Conclusions

This paper estimated the splitting-tensile strength of recycled coarse aggregate (RAC)
using artificial intelligence algorithms. Additionally, the effect of raw materials on the
splitting-tensile strength was studied, and their interactions discussed. Based on the
conducted research, the following conclusions were drawn:

1. The AdaBoost, bagging, and random forest models had R2 values of 0.95, 0.95, and
0.96, respectively. However, the ensemble model results for random forest, followed
by AdaBoost and bagging were acceptable. On the other hand, the SVM model
with an R2 of 0.78 presented unacceptable results. Due to its greater R2 and lower
error levels, the random forest model outperformed AdaBoost, bagging, and SVM
techniques in terms of prediction.

2. The k-fold cross-validation technique and statistical analysis revealed satisfactory
random forest, bagging, and AdaBoost outcomes. The random forest model’s lower
MAE value of 0.48 MPa also showed that it outperformed the AdaBoost models with
a MAE of 0.53 MPa.

3. The lower RMSE error of 0.49 MPa for the random forest model in this study validates
the application of machine learning to forecast the splitting-tensile strength of the
RAC and their raw material effect. However, the RMSE error of the AdaBoost and
bagging was 0.60 and 0.64, respectively. On the other hand, the RSME error of the
SVM was 0.95 with unsatisfactory results.

4. The presented techniques using artificial intelligence seem reliable for predicting
the interaction of raw ingredients on the splitting-tensile strength of the recycled
aggregate concrete.

5. The cement content had the highest impact on the RAC splitting-tensile strength pre-
diction, followed by the water content, as depicted from the SHAP analysis. However,
the superplasticizer content feature was the least influencing on the splitting-tensile
strength of the RAC.

6. The feature interaction plot showed that the water content had a negative correlation,
whereas the cement content positively influenced the RAC splitting-tensile strength.
Furthermore, the main interaction of cement is with water. A higher SHAP plot value
in the form of blue points (lower value color) depicts the inverse relation of water
content with the RAC splitting-tensile strength.

It is recommended that more thorough research on recycled aggregate concrete should
carried out by considering more input and output parameters. Increasing the number of
input variables and expanding the database can result in more reliable results and a more
comprehensive interpretation. The compressive strength, temperature effect, acid attack
resistance, chloride resistance, sulfate resistance, and corrosion should all be included in
the future. To produce more accurate predictions, advanced technologies such as particle
swarm optimization (PSO) and M5P tree can be applied. Machine learning approaches can
be used with heuristic methods such as the whale optimization algorithm and ant colony
optimization for effective outcomes, which can then be compared to the current study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15124194/s1, Table S1: Database for recycled aggregate concrete;
Figure S1: RF randomization test [61–78].
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