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Abstract

Background

Chagas disease, caused by the parasite Trypanosoma cruzi, is a neglected tropical disease

that causes severe human health problems. To develop a new chemotherapeutic agent for

the treatment of Chagas disease, we predicted a pharmacophore model for T. cruzi dihy-
droorotate dehydrogenase (TcDHODH) by fragment molecular orbital (FMO) calculation for

orotate, oxonate, and 43 orotate derivatives.

Methodology/Principal Findings

Intermolecular interactions in the complexes of TcDHODH with orotate, oxonate, and 43

orotate derivatives were analyzed by FMO calculation at the MP2/6-31G level. The results

indicated that the orotate moiety, which is the base fragment of these compounds, interacts

with the Lys43, Asn67, and Asn194 residues of TcDHODH and the cofactor flavin mononu-

cleotide (FMN), whereas functional groups introduced at the orotate 5-position strongly in-

teract with the Lys214 residue.

Conclusions/Significance

FMO-based interaction energy analyses revealed a pharmacophore model for TcDHODH

inhibitor. Hydrogen bond acceptor pharmacophores correspond to Lys43 and Lys214, hy-

drogen bond donor and acceptor pharmacophores correspond to Asn67 and Asn194, and
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the aromatic ring pharmacophore corresponds to FMN, which shows important characteris-

tics of compounds that inhibit TcDHODH. In addition, the Lys214 residue is not conserved

between TcDHODH and human DHODH. Our analysis suggests that these orotate deriva-

tives should preferentially bind to TcDHODH, increasing their selectivity. Our results ob-

tained by pharmacophore modeling provides insight into the structural requirements for the

design of TcDHODH inhibitors and their development as new anti-Chagas drugs.

Introduction
Chagas disease is an infectious disease caused by the parasitic protozoan Trypanosoma cruzi
(T. cruzi) and is the third most common parasitic disease in the world [1]. It affects people
from approximately 20 countries, particularly those living in the southern United States and
Latin America [2–4], with 15 million people estimated to be infected [5]. T. cruzi is primarily
transmitted by blood-sucking insects belonging to the subfamily Triatominae (family Reduvii-
dae) or by infected blood transfusion [6]. Once infected, the host may experience influenza-
like symptoms during the acute phase and gastrointestinal and cardiac disorders during the
chronic phase [7–8]. Two drugs, nifurtimox and benznidazole, are currently available for the
treatment of Chagas disease, but there are severe problems associated with their use, including
adverse effects and limited effectiveness during the chronic phase of the disease [9–10]. Thus,
developing new therapeutic agents against T. cruzi infection is desirable [11–12].

To develop a novel anti-Chagas drug, we focused on dihydroorotate dehydrogenase
(DHODH) as the target protein. DHODH is an enzyme that takes part in the fourth step in the
de novo biosynthesis of pyrimidines, which are heterocyclic compounds essential for RNA and
DNA synthesis. This enzyme is an oxidoreductase that catalyzes the oxidation of dihydrooro-
tate to orotate using flavin mononucleotide (FMN) as a cofactor. FMN can take either an oxi-
dized form (FMN) or a reduced form (FMNH2), and the oxidized form serves as the oxidizing
agent during orotate production. FMNH2 is re-oxidized by an electron acceptor that differs ac-
cording to the cellular localization of DHODH [13]. In humans, DHODH is a mitochondrial
inner-membrane protein that uses respiratory ubiquinone as the electron acceptor [14]. In con-
trast, T. cruzi DHODH (TcDHODH), a cytosolic protein, uses fumarate as the electron accep-
tor [15]. A previous study showed that a DHODH-knockout T. cruzi was not viable [16]. The
differences in biochemical properties between human and T. cruzi DHODHs as well as its es-
sentiality for the parasite make TcDHODH a promising target for developing novel therapeutic
agents against Chagas disease.

DHODH is a validated drug target for humans [17–18], as an immunosuppressant and
also against Plasmodium falciparum [17, 19, 20] and Helicobacter pylori [21]. Species-specific
DHODH inhibitors have been developed and shown to be effective in vitro [22] and in vivo
[23]. However, all inhibitors developed to date target the ubiquinone binding site and do not
inhibit the cytosolic DHODHs, for which potent and selective inhibitors have never
been reported.

The atomic resolution crystal structures of TcDHODH in complexes with its substrates and
products have been determined [15]. Based on analysis of overall structure and the active site
region of the TcDHODH-orotate complex (Fig 1), it is thought that a strong π-π interaction be-
tween orotate and the isoalloxazine ring of FMN occurs.

A pharmacophore is defined as “an ensemble of steric and electronic features that ensures
optimal supramolecular interactions with a specific biological target and the trigger (or
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inhibit) of its biological function” [24]. Based on this definition, we define pharmacophore
modeling as a process for predicting pharmacophores with common or specific
characteristics among compounds. This definition is applied not only to molecular design but
to protein—ligand docking simulation and quantitative structure-activity relationships
(QSAR) as well [25]. However, pharmacophore modeling without ligand structural alignment
information is difficult. Thus, knowledge of protein—ligand structure is useful for predicting
pharmacophores.

The fragment molecular orbital (FMO) method [26] employs ab initio quantum mechani-
cal calculations for large biomolecules such as protein—ligand complexes. Intermolecular in-
teraction energies typically can be determined on the basis of molecular mechanics.
However, this method is not universally applicable to all compounds, because there is a limit
to the determination of molecular potentials based on atom type, especially of quantum
chemical elements such as π electrons. For this reason, in this study, we used the FMO meth-
od to analyze the interaction energies between the target proteins and ligands with the aim of
identifying important amino acid residues for ligand binding. Amino acids and ligands in the
system of interest are divided into fragments, and molecular orbital calculations are per-
formed for individual fragments. Because the effects of interfragment potentials are taken
into account in these molecular orbital calculations, the FMO method can estimate the inter-
action energy between each pair of fragments. The method can clearly describe the detailed
interactions between the ligand and each amino acid residue, and is frequently used in the de-
sign of new drugs [27–34]. Moreover, the method can extract specific interaction from a wide
variety of derivatives. FMO calculation is thus suitable for obtaining pharmacophore models
and is useful for guiding molecular design.

In the present study, we identified pharmacophores using the FMOmethod with the aim of
designing anti-Chagas drugs, via analysis of interaction energy between TcDHODH and oro-
tate, oxonate [35] as a competitive inhibitor of DHODH, and 43 orotate derivatives.

Fig 1. TcDHODH overall structure.Crystal structure of TcDHODH (PDB ID: 2E6A, A-chain).

doi:10.1371/journal.pone.0125829.g001
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Materials and Methods

Co-crystallization of TcDHODH with orotate derivatives
Recombinant TcDHODH expression, purification, and crystallization in complex with 43 oro-
tate derivatives were performed essentially as previously reported [15]. Briefly, TcDHODH was
purified to homogeneity from BL21(DE3)pET3a/TcDHODH using DEAE Sepharose Fast
Flow (GE Healthcare) followed by Phenyl Sepharose H.P. (GE Healthcare) and TSK G3000SW
(Tosoh). By this method, a total of 10–15 mg of TcDHODH with specific activity ranging from
12 to 18 μmol/min/mg could be purified from 10 L of culture. TcDHODH crystals formed in
the presence of oxonate [15] were used to soak overnight into crystallization buffer containing
1 mM of orotate derivatives that are listed in Fig 2. X-ray diffraction data were collected at
SPring-8 (beam lines BL32XU, BL41XU and BL44XU) or Photon Factory (beam lines
AR-NW12A, AR-NE3A, BL-5A and BL-17A). All the data were processed and scaled with
HKL2000 [36]. The co-crystal structures of TcDHODH in complex with orotate derivatives
were initially solved by molecular replacement using coordinates from TcDHODH-oxonate
complexed structure (3W1Q) and later by one of the open form structures (e.g., 3W1R). Manu-
al building and crystallographic refinement were performed with the programs COOT [37]
and REFMAC5 [38], respectively. The PDB IDs, resolution, R-value, R-Free, average of the oc-
cupancy of the ligands and average of the B-factors are listed in Table 1. The detailed synthetic
process of the 43 orotate derivatives and the X-ray analysis performed in this study will be de-
scribed elsewhere (Inaoka et al., manuscript in preparation).

Interaction energy analysis
Interaction energy analysis was performed using the analytical tool Facio [39] based on pair in-
teraction energy decomposition analysis, as proposed by Fedorov et al. [40]. This analysis
using the FMOmethod provides a quantitative evaluation of hydrogen bonding and hydropho-
bic interactions that are important for ligand binding to a protein, as well as π-π, π–cation, and
CH–π interactions, which require quantum chemical calculations [41]. These analyses are
sometimes applied in structure-based drug design [42].

Calculation procedure
All structures of the TcDHODH—compound complexes were visualized and computations
were performed with hydrogenation. Optimization of the structures was performed only for
the added hydrogen atoms, with all heavy atoms fixed at the positions given in the PDB using
the CHARMM force field [43] by Discovery Studio (Accelrys, San Diego, CA). FMO calcula-
tion job files were generated using FMOutil version 2.1, and calculations were performed for
each A-chain monomer using GAMESS [44] at the MP2/6-31G level. Alternate positions at ex-
cept active site adopted a type-A conformation. Alternate positions in the active site adopted
both. All calculations were performed with the TSUBAME2.5 supercomputer at Tokyo Tech (a
HP Proliant SL390s G7 server with an Intel Xeon X5670 2.93-GHz processor). The approxi-
mate calculation time of each structure was 3 h at the MP2/6-31G level.

Definition of pharmacophore
In this paper, we define a common pharmacophore as that having characteristics common to
more than 80% conserved interactions between TcDHODH and compounds, and a particular
pharmacophore as that having characteristics that have interactions stronger than −10 kcal
mol-1 between TcDHODH and compounds.
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Fig 2. Structures of orotate and R groups of synthesized derivatives. Functional groups were introduced at the pyrimidine 5-position through an
ethylene or butylene linker.

doi:10.1371/journal.pone.0125829.g002
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Table 1. Summary of co-crystal structures (UniProtKB: Q4D3W2).

PDB ID Derivative Resolution(Å) R-value R-Free Ligand Occupancy B-factor (ligand) B-factor (All)

3W1R 1 1.58 0.157 0.181 1.00 12.92 11.45

3W1T 2 1.68 0.144 0.179 1.00 15.02 12.69

3W1U 3 1.85 0.153 0.185 1.00 18.78 15.90

3W1X 4 1.45 0.140 0.161 1.00 8.31 11.01

3W2J 5 1.42 0.144 0.168 1.00 13.82 11.56

3W2K 6 1.54 0.138 0.169 1.00 19.46 13.26

3W2L 7 1.64 0.136 0.170 1.00 16.30 13.27

3W2M 8 1.58 0.139 0.169 1.00 15.00 12.37

3W2N 9 1.96 0.149 0.194 1.00 10.98 14.11

3W2U 10 2.25 0.208 0.270 1.00 23.15 22.87

3W3O 11 1.96 0.151 0.192 1.00 19.84 20.06

3W22 12 1.98 0.166 0.211 1.00 26.97 23.73

3W23 13 1.48 0.146 0.177 1.00 16.13 13.79

3W6Y 14 2.68 0.199 0.282 1.00 40.63 23.14

3W7C 15 1.75 0.144 0.195 1.00 14.68 13.99

3W7D 16 1.52 0.146 0.174 1.00 14.87 13.93

3W7E 17 1.56 0.143 0.173 1.00 13.05 12.60

3W7G 18 1.55 0.138 0.165 0.67 11.01 12.85

3W7H 19 1.67 0.145 0.176 0.67 18.94 15.19

3W7I 20 1.69 0.145 0.179 1.00 19.22 13.84

3W7J 21 1.58 0.149 0.182 0.67 10.33 10.79

3W7K 22 1.61 0.150 0.180 1.00 15.93 15.69

3W7L 23 1.88 0.145 0.189 1.00 14.73 14.66

3W7M 24 2.40 0.175 0.246 1.00 33.44 29.54

3W7N 25 2.39 0.188 0.255 1.00 53.08 37.34

3W7O 26 1.68 0.142 0.178 1.00 14.63 13.76

3W7P 27 1.70 0.142 0.175 1.00 18.19 13.29

3W7Q 28 1.83 0.144 0.179 1.00 19.10 18.48

3W70 29 2.60 0.202 0.275 1.00 42.47 25.34

3W71 30 1.68 0.146 0.175 1.00 21.25 15.98

3W72 31 1.55 0.142 0.172 0.67 11.48 14.44

3W73 32 1.78 0.146 0.181 1.00 19.84 14.40

3W74 33 1.90 0.175 0.228 1.00 29.90 22.87

3W75 34 1.47 0.139 0.166 0.67 12.02 12.50

3W76 35 1.58 0.140 0.170 1.00 16.11 14.47

3W83 36 2.80 0.199 0.297 1.00 40.63 23.70

3W84 37 1.93 0.202 0.254 1.00 22.26 16.84

3W85 38 2.00 0.157 0.202 1.00 24.14 19.12

3W86 39 1.50 0.145 0.184 1.00 19.13 15.13

3W87 40 1.43 0.155 0.187 0.67 15.53 10.62

3W88 41 1.40 0.140 0.166 0.67 21.44 11.03

4JD4 42 1.51 0.138 0.162 1.00 15.53 14.13

4JDB 43 1.82 0.169 0.211 1.00 26.24 20.87

B-factor: The average of B-factors.

doi:10.1371/journal.pone.0125829.t001
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Results

Analysis of interaction energies between TcDHODH and orotate and
oxonate
Orotate binds to the active center of TcDHODH, which is positioned parallel to an aromatic
ring of FMN. Certain amino acid residues such as Lys43, Asn67, and Asn194 form hydrogen
bonds with orotate and are important for substrate binding (Fig 3).

The side chain of Asn67 interacts with the 1-position hydrogen atom and 2-position car-
bonyl group of orotate, while the side chain of Asn194 side chain interacts with orotate’s 3-po-
sition hydrogen atom and 4-position carbonyl group through two hydrogen bonds. Moreover,
the Lys43 side chain amide interacts with orotate’s 6-position carboxylate group.

The FMO-based interaction energy analysis indicates that the hydrogen bonds with Lys43,
Asn67 and Asn194 residues are important in this interaction (-13.02, -33.71, and -24.79 kcal
mol-1, respectively), with interactions with Asn67 being strongest (Fig 4).

These findings indicate that Asn67 and Asn194 contribute to the specificity of orotate’s py-
rimidine ring, and Lys43 contributes to the hydrogen bonding of orotate at the carboxylate
moiety at the pyrimidine 6-position. The π-π interaction energy between orotate and FMN was
−6.29 kcal mol-1 and contributed significantly to ligand binding (Fig 4). Given that Asn67 and
Asn194 residues form two hydrogen bonds with orotate, large interaction energies would be
predicted from this binding mode.

Oxonate, a well-known inhibitor of TcDHODH [15], also binds to the active center of
TcDHODH, similarly to orotate. The FMO-based interaction energy analysis confirms the in-
teraction with Lys43, Asn67, Asn194 and FMN as well as that of orotate (Fig 5: -7.41, -43.73,
-16.21, and -7.26 kcal mol-1, respectively).

These results suggest that inhibitors targeting the active site of TcDHODH should preferen-
tially have an aromatic moiety containing hydrogen bond donors and acceptors.

Analysis of interaction energies between TcDHODH and orotate
derivatives
Next, 43 orotate derivatives (Fig 2) predicted to form additional hydrogen bond and hydropho-
bic interactions were synthesized and their co-crystal structures were determined. These

Fig 3. Orotate binding mode.Crystal structure of the TcDHODH—orotate complex active site. Hydrogen
bond distance with the Lys43 amine group: 2.93 Å, with the Asn67 amine group: 3.05 Å, with the Asn67
carbonyl group: 2.82, with the Asn194 amine group: 3.32 and with the Asn194 carbonyl group: 2.92.

doi:10.1371/journal.pone.0125829.g003
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derivatives contain a functional group substituted at the pyrimidine 5-position through an eth-
ylene or butylene linker. The binding mode between the active site of TcDHODH and deriva-
tive 27 is shown in Fig 6 as an example. Similarly to orotate, derivative 27 and other derivatives
interact with Lys43, Asn67, Asn194 and FMN.

Furthermore, new interactions were predicted from the crystal structure, such as Lys214 by
the introduction of a functional group at the pyrimidine 5-position.

These orotate derivatives were used to analyze the interaction energy by the FMOmethod.
Table 2 shows the results of the interaction energy analyses for some amino acid residues and
FMN. Lys43, Asn67, Asn194, and FMN showed strong interactions with the orotate moiety.

The interaction energies between three amino acid residues and all orotate derivatives were
strongly similar to those of orotate. Our analyses indicated that interactions between the oro-
tate moiety and these three amino acid residues as well as FMN were strongly conserved for all
of the derivatives. In contrast, some derivatives such as the alternative conformer B of 21

Fig 4. Interaction energy analysis of TcDHODH—orotate. The vertical axis shows the interaction energy between the ligand and each fragment, and the
horizontal axis shows the fragment numbers. Fragments are numbered in order from N to C termini, followed by ligands, such as substrate and cofactor, to
preserve the order described in the PDB file.

doi:10.1371/journal.pone.0125829.g004
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showed the strongest interaction with Lys214, followed by 27, 5, 10, and 8 with interaction en-
ergies of -16.50, -13.55, -11.89, -7.48, and -7.13 kcal mol-1, respectively. The carboxylate group
introduced in the phenyl moiety of 27 formed a hydrogen bond with the Lys214 residue (Fig
6). Derivatives 40 and 41 interacted with Lys214 with low energy despite the introduction of a
carboxylate group on the aromatic ring moiety. Derivatives 40 and 41 were linked to a func-
tional group at the pyrimidine 5-position through a butylene linker. In contrast, derivatives 21
and 27 interacted strongly (>10 kcal mol-1) when coupled with functional groups through an
ethylene linker. These results suggest that the ethylene linker is appropriate for mediating in-
teractions with Lys214.

Pharmacophore obtained from calculation
From these results, intermolecular interactions with the Lys43, Asn67 and Asn194 by hydrogen
bond and FMN through π-π interaction were obtained as a common pharmacophore in the
orotate moiety and intermolecular interactions with the Lys214 by hydrogen bond obtained as
particular pharmacophore at derivatives 5, 21 and 27.

Fig 5. Interaction energy analysis of TcDHODH—oxonate. The vertical axis and horizontal axis are same as the Fig 4. (PDB ID: 2E6F, A-chain).

doi:10.1371/journal.pone.0125829.g005
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Discussion
This study provides a comprehensive FMO-based interaction analysis between TcDHODH
residues and 43 orotate derivative inhibitors. Our analysis indicated that the orotate moiety
formed hydrogen bonds with the Lys43, Asn67, and Asn194 residues of TcDHODH and a π-π
interaction with FMN. These interactions were conserved in oxonate and orotate derivatives,
and are also consistent with the magnitude of the interaction energy. From these results, the
orotate moiety of orotate derivatives maintained these interactions whether or not functional
groups were introduced at the pyrimidine ring 5-position. We accordingly expected a pharma-
cophore model containing molecules with hydrogen-bond donor/acceptor groups correspond-
ing to Lys43, Asn67, and Asn194, such as amine, carbonyl, and carboxylate groups with an
aromatic ring close to FMN.

In contrast, some derivatives containing an acceptor at a functional group form a hydrogen
bond with the Lys214 residue. In particular, the energies of interaction between Lys214 and de-
rivatives 5, 21, 27 were predicted to be stronger than -10 kcal mol-1. Furthermore, alignment
analysis has shown that the TcDHODH Lys214 residue is replaced by Arg298 in human
DHODH [15]. In their crystal structures, TcDHODH Lys214 and human DHODH Arg298 are
each located in the loop connecting βF–βG and β6–βE [14–15]. These loop regions are poorly
conserved within the family of DHODHs, an observation consistent with the difference in the
loop structures (Fig 7); whereas, the amino group of TcDHODH Lys214 points towards the ac-
tive site, the guanidium group of human DHODH Arg298 points to the opposite side, with a
distance of 20 Å between the two.

Thus, even if TcDHODH Lys214 and human DHODH Arg298 are apparently conserved by
alignment analysis, they are structurally not conserved. Consequently, orotate derivatives such
as derivatives 5, 21, and 27may specifically inhibit TcDHODH by interacting with the Lys214
residue. Thus, a hydrogen bond acceptor as a particular pharmacophore corresponding to
Lys214 is necessary to inhibit TcDHODH selectively.

In conclusion, we propose a pharmacophore model inferred from FMO-based interaction
analysis. Hydrogen bond acceptor pharmacophores correspond to Lys43 and Lys214, hydrogen
bond donor and acceptor pharmacophores correspond to Asn67 and Asn197, and an aromatic

Fig 6. Bindingmode of derivative 27.Crystal structures of the TcDHODH—derivative 27 complex active
site. Hydrogen bond distance with the Lys43 amine group: 2.73 Å, with the Asn67 amine group: 2.89 Å, with
the Asn67 carbonyl group: 2.96, with the Asn194 amine group: 2.86, with the Asn194 carbonyl group: 2.80,
with the Lys214 residue: 2.91 Å.

doi:10.1371/journal.pone.0125829.g006
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Table 2. Interaction energies between TcDHODH and orotate derivatives (kcal mol-1).

PDB ID Derivative Lys43 Asn67 Asn194 FMN Lys214

3W1R 1 -11.40 -36.98 -25.47 -9.64 1.72

3W1T 2 -10.26 -35.07 -23.67 -8.39 3.17

3W1U 3 -11.01 -36.88 -30.16 -8.92 0.17

3W1X 4 -12.89 -38.06 -24.23 -9.78 2.66

3W2J 5 -7.78 -40.08 -25.61 -10.69 -11.89

3W2K 6 -9.97 -39.10 -26.14 -9.37 0.26

3W2L 7 -13.14 -35.55 -24.46 -8.65 4.41

3W2M 8 -8.87 -39.46 -26.45 -10.48 -7.13

3W2N 9 -13.00 -39.49 -27.22 -8.41 -2.00

3W2U 10 -5.28 -37.27 -24.90 -9.33 -7.48

3W3O 11 -14.69 -36.40 -28.38 -7.77 2.84

3W22 12 -12.59 -37.19 -27.77 -8.49 0.46

3W23 13 -8.46 -37.26 -24.82 -9.77 2.78

3W6Y 14 -14.43 -34.32 -25.60 -8.09 5.73

3W7C 15 -14.39 -36.21 -25.72 -8.73 3.13

3W7D 16 -15.93 -38.93 -28.17 -7.48 0.58

3W7E 17 -12.63 -39.04 -27.31 -8.50 1.59

3W7G 18 -2.77 -39.69 -23.95 -10.71 0.69

3W7H 19 -12.81 -38.30 -24.42 -8.36 1.51

3W7I 20 -16.99 -34.75 -23.45 -8.51 2.58

3W7J * 21* -10.24 -39.80 -27.15 -9.62 1.88

3W7J ** 21** -9.52 -35.73 -26.05 -12.73 -16.50

3W7K 22 -17.90 -34.85 -29.04 -7.66 -3.67

3W7L 23 -5.54 -39.55 -24.21 -9.74 1.06

3W7M 24 -11.72 -39.73 -26.86 -7.00 4.99

3W7N 25 -13.58 -40.59 -26.87 -7.37 1.93

3W7O 26 -11.13 -37.11 -25.37 -9.26 2.05

3W7P 27 -8.50 -37.28 -25.71 -9.76 -13.55

3W7Q 28 -13.21 -32.89 -26.72 -7.85 -1.95

3W70 29 -17.93 -31.13 -27.90 -4.56 -0.07

3W71 30 -14.88 -37.71 -25.69 -8.27 5.48

3W72 31 -15.76 -38.29 -30.00 -8.21 0.78

3W73 32 -12.73 -39.97 -29.00 -8.74 -1.02

3W74 33 -10.35 -33.38 -27.55 -10.09 -3.62

3W75 34 -17.08 -40.20 -29.55 -8.96 3.53

3W76 35 -15.64 -39.26 -28.43 -9.97 4.56

3W83 36 -16.05 -25.20 -25.57 -6.43 0.84

3W84 37 -10.78 -34.59 -24.88 -7.99 4.40

3W85 38 -13.72 -34.61 -29.44 -8.75 -0.12

3W86 39 -11.87 -42.10 -29.49 -8.79 6.61

3W87 40 -15.37 -39.60 -27.92 -8.41 -3.40

3W88 41 -13.33 -39.38 -29.22 -9.34 -4.98

4JD4 42 -16.41 -38.66 -29.45 -8.39 -1.31

4JDB 43 -14.67 -36.77 -26.81 -8.33 1.24

* Lys214 alternative conformer A

** Lys214 alternative conformer B

doi:10.1371/journal.pone.0125829.t002
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ring pharmacophore corresponds to FMN, indicating important characteristics of compounds
expected to inhibit Trypanosoma cruzi DHODH (Fig 8).

These characteristics inferred from single-point FMO calculations for a large number of
structures provide insights into the ligand—amino acid residue interactions important for
pharmacophore modeling and may facilitate the development of TcDHODH—targeted anti-
Chagas drugs.
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