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ABSTRACT

Cleavage and polyadenylation (CPA) sites define eu-
karyotic gene ends. CPA sites are associated with
five key sequence recognition elements: the up-
stream UGUA, the polyadenylation signal (PAS), and
U-rich sequences; the CA/UA dinucleotide where
cleavage occurs; and GU-rich downstream elements
(DSEs). Currently, it is not clear whether these se-
quences are sufficient to delineate CPA sites. Addi-
tionally, numerous other sequences and factors have
been described, often in the context of promoting al-
ternative CPA sites and preventing cryptic CPA site
usage. Here, we dissect the contributions of individ-
ual sequence features to CPA using standard dis-
criminative models. We show that models comprised
only of the five primary CPA sequence features give
highest probability scores to constitutive CPA sites
at the ends of coding genes, relative to the entire
pre-mRNA sequence, for 41% of all human genes.
U1-hybridizing sequences provide a small boost in
performance. The addition of all known RBP RNA
binding motifs to the model, however, increases this
figure to 49%, and suggests an involvement of both
known and suspected CPA regulators as well as po-
tential new factors in delineating constitutive CPA
sites. To our knowledge, this high effectiveness of
established features to predict human gene ends has
not previously been documented.

INTRODUCTION

Cleavage and polyadenylation (CPA) is the process of cleav-
ing precursor mRNA and adding a string of adenine (A) nu-
cleotides to the 3′-end of a primary RNA transcript (1,2). In
human, CPA is mediated by four main protein complexes
(the ‘core’ CPA machinery) that recognize five cis-acting
RNA elements in the pre-mRNA (3) (Figure 1). First, one
or more instances of UGUA are usually found up to 100
nt upstream of the CPA site. The UGUA elements are rec-

ognized by NUDT21/CFIm25, a subunit of Cleavage Fac-
tor Im (CFIm) (2,4,5). Second, the polyadenylation signal
(PAS), typically either AAUAAA or AUUAAA (or ∼11 mi-
nor variants), is found around 30 nt upstream the CPA site
(6,7). The PAS is the best known of the sequence signals, as
it is found in the majority of known human CPA sites (8,9).
It is recognized by the CPSF (Cleavage and Polyadenyla-
tion Specificity Factor) subunit WDR33, likely in conjunc-
tion with CPSF4/CPSF30 and CPSF1/CPSF160 (10,11).
The endonuclease subunit CPSF3/CPSF73 mediates the
cleavage, with the cleavage site usually preceded by a CA
or UA dinucleotide (2). Poly-U sequences, preferred by
CPSF4/CPSF30 (12), are also often found surrounding
the cleavage site (13), and sometimes further upstream
(14). Finally, degenerate U- and GU-rich downstream el-
ements (DSEs) are often found starting ∼20 nucleotides
downstream of CPA sites (15). These elements are recog-
nized by CSTF2/CstF-64, the RRM-containing subunit
of the Cleavage Stimulation Factor complex (16). Consis-
tent with the fundamental importance of CPA, its misreg-
ulation is associated with a wide range of genetic disor-
ders. For example, a mutation within the PAS of FOXP3
(AATAAA to AATGAA) leads to immunodysregulation
polyendocrinopathy (17), while mutation of AATAAA to
AATACA in TP53 increases susceptibility to cancers in-
cluding cutaneous basal cell carcinoma, prostate cancer,
glioma and colorectal adenoma (18). Similarly, misregula-
tion of U-rich upstream elements was associated with con-
ditions affecting inflammatory hypercoagulation and tumor
invasion (19).

Despite this detailed knowledge, the precise RNA se-
quence cues that determine actual CPA sites remain a topic
of active research. Collectively, an exact match to all of the
sequence features above has the potential for relatively high
specificity, such that only one or a few sites would be ex-
pected in random sequence of the average size of a human
pre-mRNA (23 kb) (see Materials and Methods for esti-
mates). In reality, however, CPA sites are heterogeneous,
with each containing a different assembly of sequence fea-
tures; combinations of only a subset of the CPA sequence
elements would occur much more often. Indeed, ‘cryptic’
CPA sites, which would lead to truncated transcripts, ap-
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Figure 1. Schematic of the baseline model pipeline. CPA sites from PolyA DB 3 (37) were processed to identify one constitutive CPA site per gene; 500
nt sequences surrounding these sites are used as the positive dataset. The negative dataset consists of 500 nt portions of genes not overlapping with any
annotated CPA sites. The feature matrix is calculated using PWMs scores or k-mer counts within tiling windows. Red positions within the grid indicate
the expected positions of each corresponding element, as illustrated below the grid. AUROC and AUPRC are used as evaluation metrics.

pear to be widely distributed, and at least one mechanism
is known to suppress usage of these sites (the U1 snRNP)
(20–23).

Metazoans appear to have taken advantage of this flex-
ibility in CPA, with most genes containing multiple CPA
sites that produce functional transcript isoforms differing
in their terminal exons or 3′ UTR length (3,24,25), thus im-
pacting the protein sequence and/or regulation of the tran-

script. Alternative CPA sites are often tissue-specific (24,26–
28) and presumably there are specific mechanisms that dic-
tate their usage. Indeed, there are several examples where
corresponding regulators have been identified. For example,
the neuronal RBP Nova acts as an inhibitor when binding
close to CPA sites, and as an enhancer when binding distant
from CPA (29), while neural Hu proteins inhibit CPA sites
with U-rich elements (30).
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A series of previous computational analyses have sought
to predict CPA sites from RNA sequence. CPA is a tractable
computational problem in which the goal is to find pat-
terns of sequence features that discriminate actual CPA sites
from the remainder of the gene. Sequence elements and
their positions can be described as a vector that is com-
patible with probabilistic inference methods. Early efforts
to computationally predict human CPA (31,32) used motif
thresholding and quadratic discriminant analysis, respec-
tively, to show that the sequence determinants known at
the time (PAS and DSE) have significant classification abil-
ity (e.g. 79% accuracy (32)). More recently, CPA site pre-
diction has increasingly used machine learning with larger
feature sets encompassing both k-mers and known RNA
binding motifs for proteins. Better overall statistical perfor-
mance has been reported, but the data sets and evaluation
criteria employed varied dramatically, complicating direct
comparisons among studies. Xie et al. (33) used 3-mers de-
rived from top variants of the PAS as input into an HMM-
SVM, and reported accuracy of 85%. Hafez et al. (34) used
an SVM trained on ±100 nt around CPA sites to obtain an
area under the receiver operating curve (AUROC) of 0.996,
but employed only the terminal exon sequences as negatives.
Leung et al. (35) used both ‘hand-crafted’ feature vectors
(composed of RBP RNA binding motifs and k-mers) and
k-mer sets learned directly from the sequence, employing
Convolutional Neural Networks to directly learn alterna-
tive polyadenylation patterns, and reported AUROC of 0.97
(hand-crafted) and 0.98 (k-mers learned directly) at the task
of discriminating CPA sites from neighbouring genomic se-
quence. None of these papers explicitly report CPA site pre-
dictions genome-wide, and do not address why CPA does
not occur elsewhere in the primary transcript, which is typi-
cally many times longer than the terminal exon. AUROCs in
this range would be expected to predict many CPA sites per
human gene, on average (AUROC of 0.99 would be roughly
equivalent to 1 out of 50 randomly selected sequences scor-
ing as a false positive).

Overall, several critical issues remain unresolved. First,
none of the previous studies addressed whether the five well-
established sequence features can indeed specify known
constitutive CPA sites relative to all non-CPA sequence
within primary transcripts. Second, it is difficult to compare
the results of previous analyses because different sets of se-
quences and evaluation metrics were used. Third, linking
k-mers to biological mechanisms can be challenging. For
example, Hafez et al. (34), which used k-mers as features
to generate a model with good predictive ability, provided
very limited mechanistic explanation (primarily a sequence
logo reflecting the general pattern of the most informative
sequences relative to CPA, which resemble known regula-
tory elements). Fourth, until the recent availability of large
3′-end seq datasets, many studies used reference databases
that filter out potential CPA sites lacking the established
PAS sequence, thus introducing circularity.

Here, we dissect the contributions of diverse RNA se-
quence features to CPA site discrimination, with the goals
of simultaneously increasing performance in a realistic test
framework (i.e. with a large excess of negatives derived from
real genic sequences), and deriving a set of minimal fea-
tures that are sufficient to obtain high performance. We

find that standard supervised learning approaches (Ran-
dom Forests and Logistic Regression), employing a small
number of established features represented as either classi-
cal position weight matrix (PWM) motifs or a handful of
short k-mers, are surprisingly effective at identifying con-
stitutive CPA sites at the ends of human genes. Addition
of hundreds of diverse sequence features to the model (U1
binding sites, and all known RBP RNA binding motifs) im-
proves the model by ∼20%, such that the constitutive CPA
site is the highest scoring sequence window in half of all hu-
man genes. Thus, while CPA is potentially controlled by a
large number of protein factors, the core CPA machinery
alone plays a major role in defining human gene structures.

MATERIALS AND METHODS

Initial calculation of specificity of known CPA sequence fea-
tures in random sequence

The probability of observing UGUA within a 100 base win-
dow is 0.39 (100/44). The probability of observing any of
the 13 variants of the PAS in a 20 base window is 0.063
(13*20/46), if they are weighted equally, or 0.022, if they
are weighted by their probability at CPA sites (as a proxy
for activity). The probability of observing UUUU in a 30
base window is 0.11 (30/44). The probability of observing a
CA or UA dinucleotide is 0.13. The probability of observ-
ing G or U for eight consecutive bases (taken as a strong
DSE (36) within a 40 base window is roughly estimated as
0.156 (40/28). The expected frequency of all five features
occurring surrounding any base is 0.39 × 0.063 × 0.11 ×
0.13 × 0.156 = 0.000055, or one every 18 kb if the 13 PAS
variants are weighted equally (every 52 kb with the PAS sites
weighted). We note that the low G/C content of the human
genome would make these A/U-rich sequences more likely.

Data sources

Human CPA site annotations were obtained from
PolyA DB 3 (37). To select constitutive CPA sites, we
developed a significance metric by multiplying percentage
of samples expressed (PSE) and mean reads per million
(RPM) scores provided by PolyA DB 3. Sites that were
selected for positive training dataset are those that have
highest PSExRPM score, and located in (or at the end of)
the 3′UTR of the longest isoform of the corresponding
UCSC gene on the table browser. We retrieved ±250 nt of
sequence around each constitutive CPA site from UCSC
(hg19).

To create a negative dataset for training the classifiers, we
tiled the same longest UCSC isoforms genes into 500 nt win-
dows with 100 nt steps, and removed those that overlap any
CPA sites in PolyA DB 3. For training, we then randomly
subset negative sequences to obtain a 30:1 ratio of negative
to positive data.

PWMs used for this study were taken from CISBP-RNA
database (38) and ENCORE (39). We derived the ‘Hex-
amer’ PAS PWM by weighting each hexamer in (8) accord-
ing to its counts in the constitutive CPA sites described
above. DSE PWMs were obtained from (13). To score U1
sites we used the 5′SS MaxEntScan score (40) and RNAhy-
brid (41). The ‘Siepel PAS’ site is from (42). The ‘DSE k-



4 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

mers‘ feature is calculated as the count of all instances of
‘G’, ‘U’, ‘GG’, ‘GU’, ‘UG’ and ‘UU’. The ‘UGUA’ feature
is a PWM representing this single sequence.

Feature matrices

To calculate feature matrices, we break each individual 500
nt sequence from positive and negative data into bins of size
30 nt with a 10 nt step. Next, for each of the PWMs in each
30 nt bin, we calculate the maximum log(odds) score in each
of those bins, and convert these predicted energy scores to
predicted affinity. For MaxEntScore and RNAhybrid, we
also select the maximum score per each bin (leaving Max-
EntScore in log domain).

Machine learning

Random Forest and Logistic Regression classifiers were
trained in Python (v3.5.1) using scikit-learn library version
0.22.2. Random Forest training used RandomForestClas-
sifier with 30 000 trees, a minimum sample split of 5, class
weight ‘balanced’. For the baseline Logistic Regression, we
selected ‘l1’ penalty, regularisation strength of 0.1, tolerance
of 0.01, ‘saga’ solver, and ‘balanced’ class weight. For the
constitutive vs cryptic Logistic Regression model, use same
parameters, except regularisation strength of 0.0018 (we ex-
amined a series of regularization parameters (lambda val-
ues) and identified a value after which there was a rapid de-
cline in performance).

RESULTS

Compilation of CPA data and ‘core’ CPA motifs

We began by organizing a system to computationally in-
terrogate the contributions of the five established cis-acting
RNA elements, and their positions relative to the cleavage
site (Figure 1 shows a schematic). This system is comprised
of four basic components: (i) a dataset of CPA sites (posi-
tives), and non-CPA sites (negatives); (ii) motif models (i.e.
PWMs), individual k-mers, and other scores that represent
predicted affinity of RBPs to any given sequence, and scores
obtained from these models for tiled sequence windows rel-
ative to the CPA sites; (iii) algorithms that input the RNA
binding motif scores for each tiling window as features, and
output both a probability that reflects confidence that any
given example is a CPA site, as well as information about
the relative importance of the individual features and (iv)
a testing regime, which quantifies the predictive ability of
each algorithm using several criteria. Implementing each of
these components involves numerous choices. In each case,
we sought to minimize bias and circularity, and to achieve
results that are mechanistically interpretable, in order to be
biologically meaningful, and as simple as possible, to avoid
overfitting and ambiguity.

For the dataset of CPA sites (‘positives’), we employed
PolyA DB 3, which is based on 3′-READS (a 3′-end se-
quencing method) applied to a panel of cell lines and also
to mixed tissue (37). This database includes 58 676 CPA
sites, each associated with values including mean RPKM

and PSE (Percentage Samples Expressed). Because our ini-
tial goal was to characterize contributions of the core ma-
chinery to CPA, and the core machinery is presumably con-
stitutive, we selected our initial set of positives as 15 848
CPA sites (allowing only one per UCSC gene) with both
high RPKM and PSE scores that overlap or flank 3′UTRs
(see Materials and Methods). We refer to these as ‘constitu-
tive’ CPA sites. We excluded all other CPA sites annotated
in PolyA DB 3, as they represent alternative CPA sites. We
used a 500 nt window to represent each CPA site (–250 to
+250). We generated ‘negative’ sequences (i.e. those that are
not CPA sites) by first collecting all 500-nt tiling windows
(with offset 100 nt) in the sense strand of genes with con-
stitutive CPA sites, and then removing windows that over-
lap more than 10% with any CPA site in PolyA DB 3. This
process generated 15,352,546 negative examples; generally,
only a randomly selected subset of ∼100 000 were used for
training the models, and ∼400,000 employed for testing. We
generated training and testing sets by splitting the chromo-
somes (Chromosomes 1–14 are used for training, and 15–22
and X are used for testing).

We compiled RNA binding motif models from diverse
sources (shown in Figure 1; see Materials and Methods for
details) in order to calculate features in the models. We in-
cluded multiple representations for each component of the
core CPA machinery (e.g. several PAS signals have been de-
scribed, and to our knowledge it is unknown which best
reflects binding of CPSF, or whether a single motif is suf-
ficient). It is unclear whether motif models learned from
CPA sites accurately represent the full sequence preferences
of these proteins; therefore, where possible, we used RNA
binding motifs derived from data collected without using
knowledge of established CPA sequences (e.g. from in vitro
assays such as RNAcompete (43)). We note that some of
the motifs have been learned from human mRNA sequences
present in the training data, which could lead to circularity,
but we also note that the motif representations are simple
(and thus less likely to be overfitted). To generate a feature
vector for each CPA site (positive or negative), we scored
windows of length 30 bases, in 10 base tiling steps, over each
500 base sequence. The motif scores were represented in lin-
ear domain (i.e. 10∧log(odds)), which we reasoned would
reflect relative preference (i.e. relative Ka). We used the max
score for each window. Thus, with 47 windows and 15 dif-
ferent representations of the elements (Figure 1), there are
initially 705 features comprising the feature vector for each
example sequence.

For the learning algorithms, we employed two commonly
used implementations of different machine learning strate-
gies. The first, Random Forests (RF), employs a large set
of decision trees, which has the advantage that it inherently
captures logic relationships and is thought to be less prone
to overfitting because it uses an ensemble of decorrelated
classifiers. It can also be used to obtain importance scores
for each feature. The second, Logistic Regression (LR) with
L1 regularization, does not inherently capture logical rela-
tionships, but it has the advantage that the feature selection
through Lasso regularization tends to collapse redundant
features, giving zero weight to noninformative features. The
directional weights (coefficients) given to each feature are
easily obtained.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 5

Performance of prediction methods confirms critical impor-
tance of PAS and DSE

To evaluate the performance of the models, we report both
AUROC (Area under the Receiver Operating Curve) and
AUPRC (area under the Precision Recall Curve), with a
∼30-fold excess of negatives to positives (which represents
a large excess, but avoids unwieldy run times). Figure 2
shows these values for six different variants of the predic-
tors, which together with the feature importance scores and
weights (Figure 3) enable dissection of the contributions of
the core machinery. The first two models are the initial RF
and LR models, with 705 features per example; we refer to
the 705 feature RF model as the ‘baseline’ model. These are
the best performing models (Figure 2), and RF and LR are
in reasonable agreement regarding which features are im-
portant (Figure 3). Strikingly, the AUROC values obtained
(0.98 and 0.97, respectively) are similar or better to those
reported in previous studies that employed more complex
and less interpretable models (33–35). The models largely
confirmed the regions where the CPA factors are known to
act, with the PAS most critical 20–30 bases upstream of the
CPA site, and the DSE at 10–20 bases downstream. The fea-
ture importance scores for the models differ somewhat, pre-
sumably because only LR involves a regularization step, in
which the number of weighted features is minimized, but
overall the two models are consistent. The CA/UA dinu-
cleotide appears to be dispensable to both models, perhaps
because it occurs frequently at random and controls precise
local placement of the CPA site, which was not considered
here.

The third and fourth curves (Top10 LR and Top10 RF)
in Figure 2 show the performance of RF and LR models
encompassing the ten features with highest weights in the
baseline LR model (all reside in the PAS and DSE in Fig-
ure 3B; indicated with black boxes and white circles). These
models are nearly as effective as the full 705 features, albeit
with a ∼10% decrease in AUPRC. Upon further simplifi-
cation, however, the models are deeply compromised: the
fifth and sixth curves in Figure 2, ‘PAS/DSE’, are derived
using the maximum scores of the three PAS features and
seven DSE features within the bins where they are boxed
in Figure 3B, respectively. Intriguingly, four very different
representations of the DSE all appear to be important, at
the same positions: collapsing them into a single value (by
taking the maximum score of any of them per bin) results in
substantial decline in performance. We speculate that the in-
teraction of CPSF and CstF with each individual sequence
and with each other may be more complex than what can
be captured by PWM motif models (see Discussion).

Model predictions on complete pre-mRNAs and pathogenic
mutations

We next asked how well the baseline model specifically pre-
dicts the 3′ ends of genes. To do this, we obtained the pri-
mary transcripts from UCSC for the 15 848 human protein-
coding genes that had a ‘constitutive’ CPA site, as defined
above, and analyzed all possible 500-base tiling windows
within the pre-mRNA, i.e. starting at every base. Examples
are shown in Figure 4A and B, illustrating that there is lit-

tle bias in position within the gene; the probability distri-
butions for the constitutive CPA sites and all negative se-
quences are shown in Figure 4C. Strikingly, the baseline
model assigned the highest probability to the ‘constitutive’
CPA site for 41% of all genes. The significance of this out-
come is discussed below (see Discussion), but we believe it
is a higher figure than would have been anticipated, and we
take it to confirm that the core CPA machinery plays a ma-
jor role in determining not only CPA sites but also gene
ends. As expected, short genes are more likely to have the
highest scoring sequence at the end of the gene, because the
probability of encountering a cryptic site at random would
be lower (Figure 4D).

To assess the ability of the baseline model to forecast
the consequences of mutation events, we used FOXP3
and TP53 CPA sequences and compared the prediction
scores with and without known PAS mutations (17,18). For
FOXP3, the original CPA site was assigned a probability
of 0.67, and the mutated sequence 0.04. In case of TP53,
the performance changed from 0.73 to 0.34. These results
show that the model is sensitive to known pathogenic mu-
tations and further demonstrate its ability to identify func-
tional CPA sites.

Predicting modifiers of CPA beyond the baseline model

We next asked whether inclusion of additional features in
the model would aid in discriminating constitutive from
cryptic CPA sites. We defined cryptic sites as those that the
baseline model assigned probability scores higher than the
overall average for constitutive CPA sites (D > 0.8), and that
did not overlap with any known CPA sites in PolyA DB 3,
therefore excluding the possibility that these sequences are
alternative CPA sites. Among the 15 848 genes, there were
58 271 such sites. We formulated the problem as a discrimi-
nation task between the constitutive CPA sites and the cryp-
tic sites, instead of discrimination between constitutive CPA
sites and randomly selected pre-mRNA sequences as previ-
ously, but otherwise applied a similar framework as above.

We first examined the ability of U1 recognition elements
to discriminate globally between the constitutive and cryp-
tic CPA sites, because U1 can suppress CPA (20–23). We
considered two representations of U1 binding: RNAhybrid
(41), to calculate binding affinity of the classical U1 7-mer
(44) to any given 7 base RNA sequence, and 5′MaxEntScan,
which calculates the likelihood that a given 9-mer is a 5′
splice site (of which U1 recognition is a major component)
(40). Both models displayed some bias in constitutive vs.
cryptic CPA sites (lines show medians at each base rela-
tive to the predicted CPA site in Figure 5A and B). We ob-
served a slight overall decrease in high-affinity U1 RNAhy-
brid scores for constitutive CPA sites, as expected if U1 sup-
presses CPA. MaxEntScan displayed more striking biases,
including a depletion following constitutive CPA sites. But,
both U1 measures also displayed high standard deviation
(shading in Figure 5A and B), and we note that their overall
scores would be biased by deviations in base content caused
by the core CPA sequences.

We then asked how well the U1 scores serve in a classifi-
cation framework. Here, we used a sequence window of –70
to +70, with 20 nt windows tiled every 10 nt, because initial
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A B

Figure 2. Performance of the baseline models (i.e. those built using elements recognized by known CPA machinery). (A) Receiver operating curve
(ROC); (B) Precision recall curve (PRC), with a 50-fold excess of negatives. Models shown on the plots include baseline RF and LR models with all
705 features, Top10 RF and LR models with only Top10 features based on LR weights, and PAS/DSE RF and LR models that are built using only two
features (i.e. PAS and DSEs), as described in the text. The legends show area under the curve values for each model. Dotted lines show the performance of
a random guessing classifier.

A

B

Figure 3. Heatmaps showing feature importance scores identified from (A) RF and (B) LR baseline models. Black vertical lines indicate the location of
the CPA site relative to top-scoring features. In panel (B), the matrix rows are normalized prior to plotting, and black boxes and white dots indicate the
Top10 features.
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Figure 4. Overview of cryptic CPA sites. (A, B) Baseline model CPA probability scores for the genes GOLGA6C (a) and SCGB1D1 (b) at base-level
resolution. (C) Distribution of CPA site probabilities the model assigns to constitutive CPA sites and all other sites. (D) Scatter plot showing the number
of cryptic sites per gene (i.e. those with D>0.8, grouping adjacent bases exceeding this metric) vs. the length of the corresponding gene. The number of
genes having 0, 1 and 2 cryptic sites and their proportion are indicated.

trials with different window sizes indicated that most of the
predictive signal is near the centre (i.e. the CPA site), and
also in order to accommodate a larger number of features
(see below). We used an LR model as it allowed us to per-
form L1 regularization with the goal of reducing potential
redundancy in training data, and generating a subset of top
scoring features. Together, the two U1 representations do
provide some classification ability (AUROC of 0.58) (Fig-
ure 5C and D), with depletion just upstream of CPA having
greatest impact (Figure 5E). By the conventional interpreta-
tion of AUROC, addition of these U1 measures represents
a ∼16% performance increase over random guessing.

We then extended the constitutive versus cryptic CPA
model to include all known RNA binding motifs for human
RBPs. Because the number of CPA sites is large, there is suf-
ficient statistical power to simultaneously consider all 324
different PWMs for human RBPs (obtained from CisBP-
RNA (38) and from (39)) as well as U1. The LR model
resulting from a standard procedure of feature reduction
(see Materials and Methods) is roughly four times better
than the model utilizing only U1 (0.86 versus 0.58 ROC, i.e.
72% versus 16% performance increase over random guess-

ing). This model retains many features (71 out of 325, in-
cluding U1) with further reduction resulting in rapid loss
of performance. A heatmap of feature importance scores is
shown in Figure 6C. A clear outcome of this analysis is that
there are potentially a large number of sequence elements
and corresponding trans-acting factors that modulate CPA
usage. RNA binding proteins shown in Figure 6C include
many known or suspected CPA regulators (names colored
in blue). U1 recognition sites are retained, but do not have
a major influence on the model performance.

Given that we are including 324 different PWMs, it is
possible that the predictive power of the model comes from
capturing base content in the region and is not necessarily
related to structure of the corresponding motifs. To assess
this possibility, we trained an additional model, where nu-
cleotide positions of each PWM were permutated. The re-
sulting model had a dramatic decrease in performance (see
Figure 6A and B), indicating that the precise composition
of motifs is important.

Finally, we asked whether combining the two models (the
‘baseline’, and the ‘constitutive CPA vs cryptic’ models), by
simply multiplying their probabilities, would increase the
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C

E

D

Figure 5. Overview of U1 analyses. (A, B) Average scores for RNAhybrid (A) and MaxEntScan (b) in a 140 nt sequence window centered on CPA sites.
The line shows median and shading shows the standard deviation at each position. (C, D) ROC and PRC of the cryptic CPA versus constitutive CPA model
trained using U1 RNAhybrid and MaxEntScan scores. (E) LR weights for RNAhybrid and MaxEntScan scores at each position.

proportion of genes for which the constitutive CPA site is
given the highest score. Indeed, this combined score yielded
the highest value at the constitutive CPA site for 49% of all
genes (relative to 41% for the baseline model alone). Thus,
while a clear increase in specificity is achieved by the two-
stage model, there is still a large proportion of gene ends
that are not fully explained even by the combined model
(discussed below).

DISCUSSION

A major outcome of this study is that a model utilizing rep-
resentations of the sequence preferences of only four dif-
ferent components of the ‘core’ CPA machinery has good
ability at the difficult task of pinpointing the ends of hu-
man genes. To our knowledge, this is the first such global
demonstration encompassing the majority of human gene
sequences. The model identifies ‘cryptic’ sites, but they are

not nearly as prevalent as would be expected from consid-
ering only the PAS, which is often used to identify cryptic
sites. We propose this outcome to signify that the use of
PWMs, and models that can incorporate spatial preferences
and (potentially) interactions among the features is benefi-
cial, relative to simple calculations based on the appearance
of k-mers and consensus sequences. As a corollary, this out-
come also shows that components of the known CPA ma-
chinery are quite specific in combination: specificity of the
models is cut in half when only simplified PAS and DSE are
included.

The models themselves have properties that may reveal
intriguing biology. UGUA, for instance, is important to the
models only between 30–50 nt upstream, although it is de-
scribed in the literature as appearing <100 (13), and the LR
model assigns weights up to 100 bp from the CPA site. We
note that CFIm is a dimer, such that a second UGUA up-
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Figure 6. Overview of cryptic vs constitutive CPA model incorporating all known RBP motifs. (A, B) ROC and PRC of the model that uses both U1
representations, and 70 retained RBP PWMs, and ROC and PRC of the model trained using shuffled PWMs. (C) LR weights for the top-scoring RBP
PWMs and U1 feature. RBP names highlighted in red have been previously reported in the literature to act as CPA regulators.

stream at a constrained distance may contribute to binding.
But, if this were the case, the RF model should have detected
it. If the second site did not have a constrained position, it
would not be expected to greatly impact specificity. We also
note that both the RF and LR models indicate that incorpo-
ration of multiple representations of the DSE is important.
A trivial explanation would be that the current PWMs are
inadequate, but it is also possible that a single PWM mo-
tif cannot fully capture the sequence specificity of the RNA
binding activity, and/or that the DSE sequence impacts the
spatial organization of the larger complexes. If so, this ob-
servation may provide an explanation why no simple regular
expression has emerged that accurately identifies CPA sites.

The outstanding question remains as to how bona fide
CPA sites are distinguished from cryptic sites. Models that
incorporate U1 sites and all known RBP motifs provide
some benefit, but not a satisfying explanation. The RBPs
identified in our cryptic vs. constitutive model (Figure 6C)
do encompass several that were previously associated with

alternative polyadenylation, supporting their relevance in
this framework, and also showing that their importance can
be captured in the models. Since this analysis included all
known RBP RNA binding motifs, it would seem that there
may be missing information––either a known RBP has an
unknown or erroneous motif, or there are as-yet unknown
RBPs (or other factors such as miRNAs or specific sec-
ondary structures)––otherwise, the model would have been
more effective.

It is likely that other aspects of mRNA transcription and
processing play a role in definition of gene ends, e.g. by li-
censing CPA activity. Indeed, the specificity of CPA for Pol
II transcripts is believed to be controlled largely by the phys-
ical association of CPA-related proteins with the carboxyl-
terminal domain (CTD) of the RNA polymerase II (Pol
II) large subunit (45), which is in turn associated with the
phosphorylation of Ser2 residues of the CTD heptad re-
peats (46,47), observed mainly near gene ends (48). Nuclear
export factors also accumulate on the terminal exon, and
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can influence CPA (49). Perturbation of other aspects of
transcription and RNA processing (e.g. mRNA capping)
can have an effect on polyadenylation (50), suggesting that
longer-distance interactions along transcripts can occur.

How all of these events are dictated by the DNA and
RNA sequence is unclear. The terminal exon structure itself
is an obvious candidate: terminal exons are distinguished by
large size, and by lacking a 5′ splice site. Surprisingly, how-
ever, 48% of terminal exons in our data set do contain at
least one sequence scoring above 7.5 in MaxEntScan (the
median score of bona fide 5′ sites we examined in known
internal exons); thus, absence of a 5′ splice site sequence ap-
pears unlikely to be a discriminating factor. It has long been
observed that the 3′-terminal intron is important for effi-
cient RNA 3′-end formation (51), and in vitro, the terminal
3′ splice cite and the CPA site are coupled and mutually rein-
forcing (52). We speculate that sequence features analogous
to splicing enhancers may exist. Identifying such elements
is complicated due to the large size of terminal exons and
the presence of multiple constraints: both coding sequence
and 3′ UTRs are often highly conserved, presumably due to
mechanism other than CPA specification. Nonetheless, dis-
secting how other sequence properties of gene ends interact
with the core CPA sequence elements, potentially over long
distances, may be the key to a complete understanding of
how gene ends are recognized. The models we present pro-
vide a strong framing for the problem and will also be in-
strumental in this endeavor.
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