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Abstract

Background: Distributed robustness is thought to influence the buffering of random phenotypic variation through the
scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then
the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of
links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-
law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and
cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept
close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN)
distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law
tails.

Objective and Methods: If our assumptions are true, the DPLN distribution should provide a better fit to random
phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a
large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability
distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and
Pareto. The best model was judged by the Akaike Information Criterion (AIC).

Results: Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution
better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions.

Conclusions and Significance: A DPLN distribution is consistent with the hypothesis that developmental stability is
mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction
networks. Alternatively, multiplicative cell growth, and the mixing of lognormal distributions having different variances, may
generate a DPLN distribution.
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Introduction

Developmental homeostasis and robustness are related concepts

having very different histories. Developmental homeostasis, the

older of the two concepts, has two independent aspects:

canalization and developmental stability [1,2]. Canalization is

the stability of development under different environmental and

genetic conditions, while developmental stability is the stability of

development under constant environmental and genetic conditions

[3]. Robustness, a more recent concept rooted in systems biology,

is reduced sensitivity to genetic and environmental perturbations

[4,5,6,7]. Such perturbations include 1) genetic changes, 2)

systematic changes in the external environment, and 3) stochastic

fluctuations of the internal or external environment [5]. Develop-

mental stability is thus a subcategory of robustness. Despite

considerable interest in both developmental stability and robust-

ness, their genetic architectures are largely unknown

[5,6,8,9,10,11].

Developmental stability is thought to be mediated by hetero-

zygosity [12,13], genomic coadaptation [12,14], and stress

proteins such as Hsp90 [15,16,17,18]. Robustness, on the other

hand, is thought to be influenced by the topology of gene-

interaction networks (distributed robustness) and genetic redun-

dancy [5,19]. These differences reflect different research histories

more than any real differences in causation: two different ways of

looking at the problem. In this paper, we focus on the predicted

effects of distributed robustness on the statistical distribution of
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developmental instability and random phenotypic variation (lack

of robustness).

Distributed robustness involves the complexity of gene regula-

tory, metabolic, and protein-protein interaction networks. If a link

in a network is broken, it may (in many cases) be bypassed with

little impact on fitness [20,21]. Wagner and colleagues [19,22]

believe distributed robustness is more important than redundancy,

which involves duplicate genes. If there are two or more identical

copies of a particular gene, inactivating one of them will have a

minimal impact on fitness.

If distributed robustness is the main contributor to develop-

mental stability, then the topology of interactions among genes,

proteins, and metabolites should be critically important (but see

[23]). The degree distributions of such interaction networks are

said to approximate an inverse power-law distribution [24] (but

see [25,26,27,28]), P(k)<k2c, where P(k) is the probability that a

node (or vertex) has k links (or edges) and c is a coefficient that

reflects the declining frequency as k increases. Inverse power-law

distributions are monotonically decreasing and they have long (fat)

tails. Other proposed distributions, such as truncated power-law

and stretched exponential distributions, also suggest scale-free

behavior, but only over a part of the network [25]. These are also

consistent with distributed robustness.

Assuming that distributed robustness contributes to develop-

mental stability and robustness, what should the distribution of

random phenotypic variation (i.e., developmental instability) look

like? Perturbing a highly connected node (i.e., a hub) has a greater

phenotypic effect than perturbing a node with only a few links

[29]. The simplest possible assumption is that the response R to

perturbation of a particular node (or link) in a gene regulatory,

metabolic, or protein-protein interaction network is proportional

to the node’s connectedness, k. This is true for protein-protein

interactions involving single-copy genes and synthetic lethal

interactions involving all genes [29]. Assuming a simple inverse

power-law distribution, the probability distribution of the response

R to a random perturbation will then be given by P(R)<R2c. In

addition, assume that random developmental variation is a normal

(and necessary) component of development, such that zero

variation is impossible for continuous traits [30]. If both

assumptions hold, then the expected distribution of developmental

instability resulting from single-gene knockouts should have these

characteristics: (1) no populations should be composed entirely of

perfectly symmetrical (or uniform) individuals, and (2) the

distribution should have a fat upper tail due to the effect of

network topology. A distribution fitting these criteria is the double

Pareto-lognormal distribution (DPLN), a mixture distribution

introduced into the study of developmental instability by Babbitt

et al. [31]. Various complex networks and natural phenomena

exhibit a DPLN distribution [32]. The abundances of mRNA,

proteins, and metabolites, for example, fit a DPLN distribution

[33].

The Pareto distribution is the name given to a cumulative

distribution function that has a power-law tail. In the context of

networks, the value of the Pareto cumulative distribution function

is the number of nodes having degree greater than k [34]. A

power-law probability distribution function, in contrast, gives the

number of nodes whose degree is exactly k. The power-law then is

the probability density function associated with the cumulative

distribution function given by Pareto’s law. Both have fat upper

tails. Gene expression data sets in yeast, mouse, and human cells

follow a Pareto-like probability distribution [35].

Alternative distributions include the right and left Pareto-

lognormal distributions, as well as the normal, lognormal, Pareto,

and exponential distributions. The right-handed Pareto-lognormal

(RPLN) distribution resembles the DPLN, but has a fat upper tail

and a lognormal lower tail [36]. Given our two assumptions, it

should provide as good, or better, a fit as the DPLN, since we have

no a priori reason to expect a fat lower tail. The left Pareto-

lognormal (LPLN) distribution, on the other hand, lacks a fat

upper tail (it has a fat lower tail) [36] and we do not expect this to

fit well. If the response to major perturbation of a node is

proportional to the node’s connectedness, but there is little or no

additional developmental noise (minor perturbations), then we

would expect the Pareto distribution to provide the best fit. If

neither assumption is true, then we might expect a normal

distribution (if errors are additive), a lognormal distribution (if

errors are multiplicative), or an exponential distribution (if

perturbations fit an exponential distribution).

Saccharomyces cerevisiae (Baker’s yeast) is an ideal species in which

to examine the predictions of network topology and developmental

instability. Its genome has been sequenced and the degree

distributions of its metabolic, protein-protein interaction, and

gene regulatory networks roughly approximate the predicted

inverse power-law distribution [10,37,38,39] (but see [25]).

Moreover, phenotypic variation of single-copy gene knockouts

increases with both protein-protein interaction degree and

synthetic-lethal interaction degree (see Figure 3B and 3D in

[29]). And finally, published data are readily available. Here, we

show that random phenotypic variation of haploid single-gene

knockouts in S. cerevisiae fits a double Pareto-lognormal distribution

better than several other skewed and symmetrical distributions.

Materials and Methods

Yeast Data Set
Working with 4,718 strains of haploid single-gene knockouts

[40], Levy and Siegal [29] estimated the overall phenotypic

variance resulting from single deleted genes, which represent a

kind of major genetic perturbation [5]. They called this the

phenotypic potential, which is equivalent to the variation among

clone mates in a common environment, an alternate estimator of

developmental instability. We used Levy and Siegal’s estimates of

phenotypic potential (PP) from Table S1 in [29]. Yeast phenotypes

are described by Ohya et al. [40]. They include long-axis length of

the mother nucleus, long-axis length of the cell, maximal distance

between actin patches, and bud angle.

Statistical Models
The DPLN is a mixture distribution [36]. The left and right tails

are Pareto distributions, which have fat tails, whereas the body of

the distribution is lognormal. The parameters of the DPLN

distribution are the lognormal mean (n) and variance (t2), and

power-law scaling exponents for the right (a) and left tails (b). The

probability density function, dPlN (a, b, n, t2), is

f (x)~
1

x
g( log x),

where g(y) is a normal-Laplace distribution

g(y)~
ab

azb
w(

y{v

t
)½R(at{

y{v

t
)zR(btz

y{v

t
)�:

R(z) is the Mill’s ratio, R(z)~
1{W(z)

w(z)
, where W is the cumulative

density function and w is the probability density function for the

standard normal distribution N(0,1). (See Appendix S1 for

corrections to four of the equations in Reed [36].)

Variation of Yeast Single-Gene Knockouts
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We fitted the phenotypic potential of S. cerevisiae single-gene

knockouts to DPLN, right Pareto lognormal (RPLN), left Pareto

lognormal (LPLN), normal, lognormal, Pareto, and exponential

distributions. For the normal, lognormal, Pareto, and exponential

distributions, we used maximum likelihood estimators of the

parameters (e.g., mean and variance for the normal distribution).

For the DPLN, RPLN, and LPLN distributions, we used two

independent algorithms, the Downhill Simplex Method in Multi-

dimensions (section 10.4 in [41]) and Direction Set (Powell’s)

Methods in Multidimensions (section 10.5 in [41]), to carry out the

maximization of the log-likelihood function. Both algorithms gave

essentially identical parameters for all three distributions.

Model Selection
We used the Akaike Information Criterion (AIC) [42,43] to

select the best model from among DPLN, RPLN, LPLN, normal,

lognormal, Pareto, and exponential distributions. AIC is a measure

of the relative goodness of fit of a statistical model. The models are

ranked by their AIC values, where AIC = 22 ln(L)+2d. ln(L) is the

value of the log likelihood function for a particular model, while d

is the number of parameters in a model. A corrected version for

finite sample sizes is AICc~AICz
2d(dz1)

n{d{1
, where n = the

sample size. The smaller the AIC value for a distribution, the
more likely it is that the distribution fits the data the best. Because
AIC values are relative, the AIC differences (Di) are calculated:
Di~AICi{ min AICð Þ, where min(AIC) is the smallest AIC value

among all of the models. AIC is estimated for each of i models.

Akaike weights (wi) reflect the normalized likelihood of the models

given the data [44], wi~
exp ({1=2Di)

PR
r~1 exp ({1=2Dr)

.

Results

The phenotypic potential of S. cerevisiae fits a DPLN distribution

better than RPLN, LPLN, normal, lognormal, exponential, or

Pareto distributions (Figure 1, and Tables 1 and 2). The superior

fit of the DPLN is especially noticeable in the cumulative

distribution function of the lower tail (Figure 2). The relative

probability of the RPLN, the next best distribution, is 5.5610265.

Having almost 5000 data points means that we can be extremely

confident of the DPLN for the yeast data, even though three other

distributions (RPLN, LPLN, lognormal) look close by eye.

There are two major differences between the DPLN and the

RPLN, LPLN, and lognormal distributions (Figure 1). The DPLN

has fewer nodes (i.e., single-gene knockouts) having low pheno-

typic potential; the mode of the DPLN is shifted to the right of that

of the RPLN, LPLN, and lognormal. The DPLN, however, has

more nodes, simultaneously, in both tails of the distribution (see

Figure 2 for the lower tail).

Discussion

The robustness of living organisms is thought to arise from

redundancy and distributed robustness [4,22]. Redundancy

involves duplicate copies of genes. Distributed robustness involves

the topology of gene regulatory, metabolic, and protein-protein

interaction networks. These networks typically resemble scale-free

networks [24,45,46], at least in part [25], and they are robust to

perturbation [47,48]. But a metabolic pathway’s fragility lies in the

highly connected nodes, or hubs, in this network. Error tolerance

comes at a price [49]. Knock out a highly connected node and the

system fails.

Networks consist of nodes and links [50]. In a metabolic

network, the nodes are chemical intermediates (substrates and

products), and the links are enzymatically mediated reactions

(enzymes). In a protein-protein interaction network, the nodes

are individual proteins and the links are their binding

relationships with other proteins. In a gene regulatory network

(protein-DNA interactome), which is a directed network, the

nodes are genes, which interact through transcription factors,

chromatin regulatory proteins, and other DNA-binding mol-

ecules. In such a network, one can distinguish in-degree and

out-degree distributions. The in-degree of a gene (or node)

represents the number of other genes influencing that

Figure 1. Probability distributions fit to a histogram of random
phenotypic variation (phenotypic potential) in Saccharomyces
cerevisiae gene knockouts. Histogram data are from Table S1 in [29].
DPLN is the double Pareto-lognormal distribution. RPLN is the right
Pareto-lognormal distribution. LPLN is the left Pareto-lognormal
distribution. Simple Pareto and exponential distributions omitted.
doi:10.1371/journal.pone.0048964.g001

Figure 2. Lower tail of the cumulative distribution function
(cdf) of random phenotypic variation (phenotypic potential) in
Saccharomyces cerevisiae gene knockouts, and the DPLN, RPLN,
LPLN, and lognormal fits. Data are from Table S1 in [29]. DPLN is the
double Pareto-lognormal distribution. RPLN is the right Pareto-
lognormal distribution. LPLN is the left Pareto-lognormal distribution.
Simple Pareto and exponential distributions omitted.
doi:10.1371/journal.pone.0048964.g002

Variation of Yeast Single-Gene Knockouts
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particular gene, while its out-degree represents the number of

other genes that it influences.

A highly connected node is a hub. In many biological networks,

or parts of these networks, the connectivity P(k) of nodes follows a

power law, P(k)<k2c, distribution. Most nodes have few links, but

a few hubs may have hundreds or thousands of links. The hubs

connect the less connected nodes to the system. These systems are

typically scale-free [45,51] and hierarchical [52]. Most perturba-

tions should have little effect on organism-wide developmental

instability, unless they perturb a hub [9,29].

Other degree distributions have also been fitted to biological

networks, including truncated power-law, exponential, and

stretched exponential distributions [25]. The truncated power-

law distribution resembles a power-law distribution, followed by a

sharp drop off. It fits yeast co-expression networks [25]. A

stretched exponential has a power-law exponent inserted into an

exponential function. It fits protein-protein interaction networks of

Drosophila and Caenorhabditis [53]. Purely exponential distributions

fit some network data too. For example, the in-degree of some

gene-regulatory networks follows an exponential distribution,

while the out-degree follows a scale-free distribution [54,55,56].

Nevertheless, these other distributions are qualitatively similar to

inverse power-law distributions (few hubs and many nodes having

few links) [25]. Consequently, these degree distributions are still

consistent with distributed robustness.

In yeast, Saccharomyces cerevisiae, the balanced distribution of

nodes and hubs buffers phenotypic variation [29]. (Buffering refers

to the ability of a system to minimize, or soften, perturbations [9].)

Most single-gene knockouts have almost no effect on phenotypic

variation because they are not hubs. According to Levy and Siegal

[29], approximately 300 gene products are responsible for most of

the phenotypic variation when they are knocked out. These are

phenotypic capacitors, genetic elements whose mutation serves as

a major perturbation, reducing genetic robustness and increasing

heritable phenotypic variation [5]. When the source of the

increased variation is non-genetic, Masel and Siegal [5] refer to

these as phenotypic stabilizers. In yeast, these 300 capacitors (or

stabilizers) are predominantly single-copy hubs.

Our results, the close fit to the DPLN, are consistent with the

hypothesis that network topology, and hence distributed robust-

ness, plays a role in developmental stability. Nevertheless, it is

unlikely to play the only role. Levy and Siegal [29] also found that

many hubs in S. cerevisiae genetic networks exist in multiple copies,

which would blunt the effect of a mutation in just one copy.

Consequently, capacitors of phenotypic variation are more likely

to be single-copy hubs. But even these single-copy hubs are likely

to be idiosyncratic capacitors. Based upon evolutionary simula-

tions of gene-regulatory networks, Siegal et al. [23] argue that

network topology is only a weak predictor of the response to

perturbation. Given the uncertain, and complicated, role of

network topology, other, unknown, influences may be responsible

for, or contribute to, the power-law behavior in the upper and

lower tails of the distribution. For example, the DPLN emerges in

the size distributions of cities. According to Reed [57] and Giesen

et al. [58], the DPLN distribution is the steady-state of a stochastic

urban growth process, with random city formation. It can also

arise from a continuous mixture of lognormal distributions having

different variances [31]. Similar processes can be easily envisioned

in cell growth, which is inherently a multiplicative process.

Multiplicative errors, which generate lognormal distributions,

occur whenever growth is active, which is whenever cytoplasm at

time t21 actively participates in the production of cytoplasm at

time t [59].

Lu and King [33] have speculated that the DPLN distribution

of abundances of mRNAs, proteins, and metabolites may be a

consequence of multiplicative error, which is ubiquitous in

biological systems. They argue that independent multiplicative

processes contribute to the central lognormal part of the

distribution, while mutually dependent multiplicative processes

contribute to the power-law tails. They posit that positive feedback

and network topology are the most likely interactions generating

the tails.

In addition to these alternative explanations for the DPLN, we

have not accounted for the better fit to the DPLN over the RPLN.

The lower tail of the distribution of phenotypic potential appears

to fit a power-law distribution, but with a positive slope. Allometric

relations, such as the scaling of metabolic rate with mass, are the

best-known scaling relationships having a positive slope [60,61]. At

the lower end of the DPLN distribution, below a phenotypic

potential of 0.6, random molecular and sub-cellular noise

maintains a background level of variation, which network

buffering effectively keeps under control. This might occur if the

weak links within gene regulatory, metabolic, and protein-protein

interaction networks are doing most of the buffering [62].

Alternatively, we are simply looking at a mixture of lognormal

distributions having different variances.

Table 1. The AICc values for the fit of seven distributions to
the phenotypic potential data from Saccharomyces cerevisiae.

Distribution log(L) d AICc Di wi

DPLN 2713.77 4 1435.55 0.0 1

RPLN 2862.73 3 1731.47 295.92 5.5610265

LPLN 2888.88 3 1783.76 348.21 2.4610276

Lognormal 2902.96 2 1809.93 374.39 5.0610282

Normal 22525.41 2 5054.82 3619.27 0

Exponential 22912.06 1 5826.13 4390.58 0

Pareto 27478.32 2 14960.64 13525.09 0

Log(L) is the log-likelihood function. d is the number of parameters. AICc is the
corrected Akaike Information Criterion (AIC). The rescaled AICc is Di and the
Akaike weights are wi. DPLN is the double Pareto-lognormal distribution. RPLN
is the right Pareto-lognormal distribution. LPLN is the left Pareto-lognormal
distribution. The sample size n was 4,680. Data is from Table S1 in [29].
doi:10.1371/journal.pone.0048964.t001

Table 2. Parameter estimates for the fit of seven distributions
to the phenotypic potential data from Saccharomyces
cerevisiae.

Distribution Parameters

DPLN a= 3.141, b= 3.242, t= 0.1909, n= 20.5121

RPLN a= 4.124, t= 0.4165, n= 20.7446

LPLN b= 5.198, t= 0.4432, n= 20.3098

Lognormal t= 0.4849, n= 20.5021

Normal s= 0.4151, m= 0.6854

Exponential a= 1.459

Pareto a= 0.3328, xm = 0.03

DPLN is the double Pareto-lognormal distribution. RPLN is the right Pareto-
lognormal distribution. LPLN is the left Pareto-lognormal distribution. Data is
from Table S1 in [29].
doi:10.1371/journal.pone.0048964.t002

Variation of Yeast Single-Gene Knockouts
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Other researchers have examined the statistical distribution of

developmental errors, but have done so with radially or bilaterally

symmetrical traits in natural populations of multicellular organ-

isms. Van Dongen and Møller [63], for example, examined

random developmental variation (fluctuating asymmetry) in flower

petals, ray flowers, and bird tails. They studied multiple petals and

ray flowers from individual plants, and tail feathers from

consecutive molts of individual birds. They found that the normal

distribution was a good approximation to the distribution of

developmental noise among random genotypes within these three,

presumably outbred, populations. The yeast knockouts in the

Levy-Siegal study [29], however, are not a random sample of

genotypes from a natural population; they are a random sample of

single-gene knockouts having a homogeneous genetic background.

It will be informative to have both kinds of studies, since they

represent the extreme ends of a continuum.

How does the DPLN alter our understanding of networks and

organismal evolution? All yeast single-gene knockouts (or loss-of-

function mutations) are heritable, by definition, but not all of the

phenotypic variation generated by such knockouts is heritable.

Most knockouts barely increase phenotypic variation beyond the

cloud of random, non-heritable, developmental noise. This is the

variation generating the lower tail of the DPLN. The knockouts in

the upper tail of the distribution, however, represent heritable

variation in developmental noise. Such heritable variation should

be accessible to natural selection, which could then fine-tune

developmental noise to maximize fitness. Consequently, by

understanding the complex relationships between gene regulatory,

metabolic, and protein-protein interaction networks and pheno-

typic variation, we may eventually begin to understand why

organisms are not less variable (or more variable) than they

already are.

The close fit of phenotypic variation in single-gene knockouts of

yeast to the DPLN distribution suggests that disruption of most

nodes has a minor, but significant, impact on phenotypic

variation. This impact is greater than one would expect from

the RPLN, LPLN, and lognormal distributions. Consequently, the

DPLN distribution suggests that more random phenotypic

variation is potentially heritable than one would expect under,

say, a lognormal distribution, or less random phenotypic variation

is heritable than one would expect under a normal distribution.

The generality of our results will have to await further research

on random phenotypic variation of gene deletion and RNAi lines

of multicellular organisms, such as Arabidopsis thaliana, Drosophila

melanogaster, and multicellular colonies of S. cerevisiae. The gene

deletion and RNAi lines exist, and the methods of estimating

random phenotypic variation in plants [64,65,66] and animals [9]

are well developed, using the methods of fluctuating asymmetry

[9]. In addition, Raz et al. [67] recently showed how to apply

methods of fluctuating asymmetry to colonies of microorganisms.

Unfortunately, however, the phenotypic data sets for these lines do

not exist at this time.

An obvious extension of our study to multicellular organisms

should begin with S. cerevisiae. Yeast are unicellular eukaryotes, but

colonies on agar plates behave somewhat like multicellular

organisms. Palkova and colleagues [68] have studied the

relationship between variation at the unicellular and multicellular

(colonial) levels in yeast. Knocking out the CCR4 gene increases

phenotypic variation among cells and also increases the irregular-

ity of entire colonies [69]. This suggests a possible linkage between

cellular and multicellular variation, at least for this gene in this

species.

In conclusion, we have demonstrated that the DPLN fits the

distribution of random phenotypic variation of yeast single-gene

knockouts better than several competing distributions. This result

is consistent with the hypothesis that distributed robustness

operating in a noisy developmental system buffers phenotypic

variation, at least in part. It is also consistent with the hypothesis

that the DPLN arises from multiplicative cell (or cytoplasmic)

growth and the mixing of lognormal distributions having different

variances. Moreover, these hypotheses, one a biological hypothesis

and the other a statistical hypothesis, are not mutually exclusive.

Further research will be necessary to distinguish between them.

Finally, it will be important to refine the behavior of the DPLN for

future models of phenotypic variation. For example, how will the

DPLN change if the nodes experience only minor perturbation?

Will it approach a lognormal distribution instead, as a and b
approach infinity? And what will the distribution of phenotypic

variation look like in a population of yeast in which each clone is a

product of sexual reproduction? Will it approach the lognormal

distribution? Or will it fit the normal distribution, as Van Dongen

and Moller [63] suggest for flowering plants and birds?

Supporting Information

Appendix S1 Errata in the original article on the double Pareto-

lognormal distribution by Reed.
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68. Palková Z (2004) Multicellular microorganisms: laboratory versus nature.

EMBO Rep 5: 470–476.
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