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Biliary tract cancers (BTCs) have poor prognosis and limited therapeutic

options. The impact of O6-methylguanine-DNA methyltransferase

(MGMT) inactivation in advanced BTC patients is not established. We

investigated the prevalence, prognostic, and predictive impact of MGMT

inactivation in two multicenter cohorts. MGMT inactivation was assessed

through PCR and immunohistochemistry (IHC) in an Italian cohort; the

results were then externally validated using RNA sequencing (RNA-seq)

Abbreviations

5-FU, 5-fluorouracil; 1L, first-line; BTCs, biliary tract cancers; CI, confidence interval; dCCA, distal cholangiocarcinoma; DKTK, German Cancer

Consortium; ECOG PS, Eastern Cooperative Oncology Group performance status; GBC, Gall bladder cancer; HR, hazard ratio; iCCA,

intrahepatic cholangiocarcinoma; IHC, immunohistochemistry; INT, Fondazione IRCCS Istituto Nazionale Tumori Of Milan; IQR, interquartile

range; MASTER, Molecularly Aided Stratification For Tumor Eradication Research; MGMT, O6-methylguanine DNA methyltransferase; NA,

not available; NCT, Nationale Centrum F€ur Tumorerkrankungen; OS, overall survival; pCCA, perihilar cholangiocarcinoma; PD, progressive

disease; PFS, progression-free survival; RNA-seq, RNA sequencing; TMZ, temozolomide; TPM, transcripts per kilobase million; VIMP,

variable importance.

2733Molecular Oncology 16 (2022) 2733–2746 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-9055-5338
https://orcid.org/0000-0002-9055-5338
https://orcid.org/0000-0002-9055-5338
https://orcid.org/0000-0002-9768-7149
https://orcid.org/0000-0002-9768-7149
https://orcid.org/0000-0002-9768-7149
https://orcid.org/0000-0003-4104-1135
https://orcid.org/0000-0003-4104-1135
https://orcid.org/0000-0003-4104-1135


Tumori di Milano, Via Venezian, 1, 20133

Milano, Italy

Tel: +39 0223903650

E-mail: monica.niger@istitutotumori.mi.it

(Received 31 January 2022, revised 9 May

2022, accepted 25 May 2022, available

online 13 June 2022)

doi:10.1002/1878-0261.13256

data from the BTC subcohort of the Molecularly Aided Stratification for

Tumor Eradication Research (MASTER) precision oncology program of

the National Center for Tumor Diseases Heidelberg and the German Can-

cer Consortium. Among 164 Italian cases, 18% presented MGMT pro-

moter hypermethylation (> 14%) and 73% had negative MGMT protein

expression. Both were associated with worse overall survival (OS; HR 2.31;

P < 0.001 and HR 1.99, P = 0.012, respectively). In the MASTER cohort,

patients with lower MGMT mRNA expression showed significantly poorer

OS (median OS [mOS] 20.4 vs 31.7 months, unadjusted HR 1.89;

P = 0.043). Our results suggest that MGMT inactivation is a frequent epi-

genetic alteration in BTC, with a significant prognostic impact, and provide

the rationale to explore DNA-damaging agents in MGMT-inactivated

BTCs.

1. Introduction

Biliary Tract Cancer (BTC) is a rare disease with over-

all poor prognosis and limited therapeutic options

[1,2]. Emerging evidence reveals that BTC is heteroge-

neous from a pathological and molecular perspective,

with significant differences between intrahepatic

cholangioarcinoma (iCCA), extrahepatic cholangiocar-

cinoma (eCCA), and gallbladder cancer (GBC) [3–7].
There is a growing evidence in favor of biomarker-

directed treatments in BTC, such as pemigatinib and

infigratinib for CCA with FGFR2 fusions [8,9], ivosi-

denib for IDH1 mutated CCAs [10], and BRAF plus

MEK inhibitors in BRAF V600E mutated or HER2

inhibitors in ERRB2 amplified/mutated BTCs [11–13].
Finally, there is an increasing amount of data regard-

ing the identification of DNA damage repair aberra-

tions and distinct DNA hypermethylation patterns in

these cancers [3,4,14].

O6-methylguanine-DNA methyltransferase (MGMT)

encodes for a key DNA repair enzyme, responsible for

the elimination of alkyl groups from the O6-position

of guanine. MGMT promoter methylation, leading to

reduction of MGMT expression, ultimately results in

diminished DNA-repair of O6-alkylguanine adducts

and enhanced sensitivity to alkylating agents, such as

temozolomide (TMZ) [15]. MGMT promoter hyperme-

thylation is a validated biomarker for the efficacy of

TMZ in glioblastoma [15]. Similarly, both MGMT

promoter hypermethylation and reduced/absent

MGMT expression are described in a variety of gas-

trointestinal malignancies, including colorectal cancers

[16,17]. In patients with metastatic colorectal cancer,

several trials showed that MGMT silencing is a poten-

tial biomarker to select patients for TMZ-based treat-

ment [18–20].

In the present study, we investigate the prevalence,

as well as the prognostic and predictive impact of

MGMT inactivation in two independent series of

advanced BTC cases. Moreover, we report the first evi-

dence on the activity of TMZ in patients with BTC.

2. Materials and methods

2.1. Patient population and study objectives

We first conducted a multicenter observational study

at Fondazione IRCCS Istituto Nazionale Tumori of

Milan (INT) and Istituto Scientifico Romagnolo per lo

Studio e la Cura dei Tumori (IRST) IRCCS, Meldola.

From October 2017 to November 2020, we included

all patients fulfilling the following eligibility criteria:

(a) histologically/cytologically confirmed diagnosis of

BTC; (b) unresectable primary tumor and/or evidence

of metastases; and (c) available archival tumor tissue

for molecular profiling.

Baseline demographic, clinical, and biological data

were collected through an electronic database. All

patients were followed up until death, loss to follow

up or data cut-off date (December 10, 2020).

The primary aim was to investigate the frequency

and percentage of MGMT promoter hypermethylation

in advanced BTC patients. Secondary aims were: (a) to

investigate the prognostic impact of MGMT promoter

hypermethylation in terms of overall survival (OS); (b)

to investigate the predictive role of MGMT promoter

hypermethylation in first-line (1L) of standard

chemotherapy in terms of 1L-progression-free survival

(PFS); (c) to explore the potential effect on 1L-PFS of

the interaction between MGMT promoter hypermethy-

lation and use of platinum-based chemotherapy; (d) to
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evaluate the prognostic and predictive role of MGMT

expression as evaluated by immunohistochemistry

(IHC), given the growing evidence of the role of IHC as

complementary assessment tool of MGMT status

[18,19,21]; (e) to explore the association between

MGMT promoter hypermethylation and the tumor

molecular profile; and (f) to report safety and efficacy

data of a case series of patients treated with TMZ-

related regimens.

The study was approved by the Institutional Review

Boards of the two institutions and was conducted in

accordance with the Declaration of Helsinki; patients

provided written informed consent.

2.2. External validation cohort

To externally validate the proof-of-concept results of

the Italian cohorts with different omics layers, data

from the BTC subcohort of the Molecularly Aided

Stratification for Tumor Eradication Research (MAS-

TER) study conducted by NCT Heidelberg and the

German Cancer Consortium (DKTK) were interro-

gated [22]. NCT/DKTK MASTER is a registry trial

and analytical platform for prospective, multi-omics-

guided stratification of patients with advanced cancers

diagnosed at a young age (< 51 years) or with rare

cancers, including BTC, and comprises broad molecu-

lar profiling including RNA sequencing (RNA-seq)

and DNA methylation analysis. For the analyses pre-

sented here, all patients enrolled in MASTER from

March 2012 to February 2021 with histologically/cyto-

logically confirmed diagnosis of BTC and available

clinical and RNA-seq data were considered. The study

was approved by the Ethics Committee of the Medical

Faculty of Heidelberg University and was conducted

in accordance with the Declaration of Helsinki;

patients provided written informed consent.

2.3. MGMT status assessment

For samples from the two Italian centers, hema-

toxylin–eosin slides were reviewed by an expert pathol-

ogist to select an area comprising at least 50% tumor

cells. DNA was extracted as previously described [20].

MGMT promoter methylation was assessed by

MGMT plus� Diatech Pharmacogenetics (Jesi, Italy),

which analyzes 10 CpG islands spanning the promoter

region (chr10:131, 256, 507–131, 256 556). Briefly,

after bisulfite conversion of the extracted DNA (range:

200–500 ng) and its amplification by using primers

specific for methylated and unmethylated DNA

sequences, a pyrosequencing of the obtained templates

was performed. The final result provided the number

of methylated CpG islands present in the promoter

region of the MGMT gene, expressed as a percentage.

When sufficient residual tumor tissue was available,

MGMT expression was assessed by immunohistochem-

istry (IHC), as previously described [19]. Additional

tumor molecular characterization was non-uniformly

performed through the Ion Torrent Personal Genome

platform (50 genes ‘Hotspot Cancer Panel, Ion Tor-

rent�’; Life Technologies�, Waltham, MA, USA), as

in [23], or the FoundationOne�CDx panel [24].

In the Molecularly Aided Stratification For Tumor

Eradication Research on Biliary Tract Cancers (MAS-

TER BTC) cohort, processing of tumor specimens and

technical details of RNA-seq analyses are described in

the study done by Horak et al. [22]. MGMT mRNA

expression was measured as transcripts per kilobase

million (TPM). The methylation status of the MGMT

promoter derived from available Illumina Infinium

EPIC array data (n = 50) using the MGMT-STP27

prediction model [25] as implemented in the mgmtst-

p27 R package (https://github.com/badozor/mgmtstp27).

2.4. Statistical methods

MGMT promoter methylation was first analyzed as a

continuous variable (i.e. as number of methylated

CpGs present in the promoter region of the MGMT

gene, expressed as a percentage), with non-linear

effects assessed by means of restricted cubic splines.

Subsequently, the optimal cutoff for OS prediction

was calculated using the maximally selected rank

statistic, as described by Hothorn and Lausen [26].

The cutoff was then adopted also in 1L-PFS analyses

for consistency. Cases from the MASTER BTC valida-

tion cohort were grouped according to MGMT

mRNA expression (TPM value), using the median

value as cutoff. The Fisher’s exact test, Chi-squared

test, and Wilcoxon–Mann–Whitney test were used to

study the distribution of categorical and continuous

variables, respectively, according to dichotomized

MGMT status, as appropriate. Cohen’s kappa was

used to measure the agreement of PCR and IHC

assays assessing MGMT status.

Median follow-up was quantified with the reverse

Kaplan–Meier estimator [27]. Survival analysis methods

were used to analyze OS and 1L-PFS. OS was calculated

from the date of advanced disease diagnosis to death or

last follow-up, while 1L-PFS was calculated from the

date of first-line treatment start to the first event [i.e.

progressive disease (PD, as defined as according to

RECIST v1.1) or death]. Patients who had not under-

gone PD or death at the time of data cut-off were cen-

sored at their last disease evaluation. Survival curves
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and related descriptive statistics were obtained with the

Kaplan–Meier method and comparisons between curves

were performed with the logrank test. Multivariate anal-

yses in the Italian cohorts were performed with a two-

step strategy: at first, covariates were modeled with a

random forest method [28] according to the following

endpoints: (a) imputation of missing data at random,

using adaptive tree imputation; (b) selection of relevant

covariates, by taking the top-ranked variables by match-

ing the variable importance (VIMP) and Minimal Depth

statistics. Then, multivariable Cox proportional models

were designed using the selected variables and imputed

missing data, and results were summarized using hazard

ratios (HRs), together with the corresponding 95% con-

fidence intervals (CI). Interaction terms were used to

investigate the interplay between MGMT methylation

status and use of platinum-based first-line chemother-

apy in terms of PFS.

In the MASTER BTC cohort, OS was calculated

from the date of first disease diagnosis, and available

data on patients’ age, gender, and primary tumor loca-

tion, prior tumor resection and use of adjuvant ther-

apy were used as covariates in multivariate Cox

proportional models.

A threshold of significance of 0.05 was set for all

statistical evaluations. Statistical analyses were per-

formed in the R (Version 4.0.3) and RSTUDIO (Version

1.3.1073) software [R Foundation for Statistical Com-

puting, Vienna, Austria].

3. Results

3.1. Italian cohort

3.1.1. Patient population

Of a total number of 230 patients, 164 cases were suc-

cessfully profiled for MGMT promoter methylation

status (patients’ flow depicted in Fig. S1). Baseline

characteristics are displayed in Table 1.

At data cut-off date, 138 patients had experienced

disease progression on first-line treatment, and 132

patients had died. The median follow-up was

58.0 months [interquartile range (IQR): 34.9–79.9],
with a median 1L-PFS of 4.9 months (IQR: 2.7–9.1)
and a median OS of 17.3 months (IQR: 8.0–36.1).
First-line-PFS was longer in patients treated with 1-

line platinum-based chemotherapy (5.4 vs 3.5 months,

P = 0.05), while mOS did not differ according to use

of platinum (19.8 vs 10.7, P = 0.2).

Table 1. Patients’ characteristics in the Italian study cohort. 5-FU,

5-fluorouracil; dCCA, distal cholangiocarcinoma; ECOG PS, Eastern

Cooperative Oncology Group Performance Status; iCCA, intrahep-

atic cholangiocarcinoma; IHC, immunohistochemistry; IQR,

interquartile range; MGMT, O6-methylguanine DNA methyltrans-

ferase; NA, not available; pCCA, perihilar cholangiocarcinoma.

Characteristic N (%)

Total number of patients 164 (100.0)

Age in years [median (IQR)] 66 (57–72)

Gender

Male 71 (43.3)

Female 93 (56.7)

ECOG PS

0–1 128 (85.3)

≥ 2 22 (14.7)

NA 14

Primary tumor location

iCCA 100 (61.0)

pCCA 7 (4.3)

dCCA 23 (14.0)

Gall bladder 34 (20.7)

Primary tumor resected

Yes 107 (65.2)

No 57 (34.8)

Adjuvant treatment

Yes 46 (28.0)

No 61 (37.2)

Not applicable 57 (34.8)

Diagnosis of advanced diseasea

Synchronous 85 (51.8)

Metachronous 79 (48.2)

Liver-limited disease 48 (29.3)

Sites of metastatic disease

Lymph nodes 78 (47.6)

Bones 11 (6.7)

Liver 90 (54.9)

Lungs 34 (20.7)

Peritoneum 31 (18.9)

Total lines of treatment for unresectable/metastatic disease

Best supportive care 4 (2.4)

1 43 (26.2)

2 40 (24.4)

> 2 42 (25.6)

NA 35

First line treatment regimen

Best Supportive Care 4 (2.4)

Capecitabine/5-FU 12 (7.3)

Gemcitabine 12 (7.3)

Capecitabine/5-FU + Oxaliplatin 15 (9.1)

Gemcitabine + Oxaliplatin 11 (6.7)

Gemcitabine + Cisplatin 88 (53.7)

Other 18 (11.0)

NA 4

Platinum-based first line regimenb

Yes 115 (73.7)

No 41 (26.3)

NA 8
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3.1.2. Prognostic and predictive impact of MGMT

promoter hypermethylation

We first investigated the impact of MGMT promoter

methylation, as a continuous variable, on OS. In a

univariate Cox regression model, higher MGMT pro-

moter methylation values were associated with an

increased risk of death (unadjusted HR 1.02 per 1%

increase in methylation value, 95% CI 1.01–1.04,
P = 0.009, Fig. S2).

Then, we identified 14% as the best percentage cut-

off of MGMT promoter methylation for the prediction

of OS. Overall, 135 (82%) and 29 (18%) patients were

thus aggregated in the low (≤ 14%) and high (> 14%)

MGMT promoter methylation groups, respectively.

According to each tumor entity, high MGMT hyper-

methylation was observed in 10 (10%) iCCA, 6 (26%)

dCCA, and 13 (38%) of GBC patients.

Patients and disease characteristics according to

MGMT promoter methylation are summarized in

Table S1. Of note, highly methylated cases more

frequently had worse baseline Eastern Cooperative

Oncology Group Performance Status [ECOG PS ≥ 2

in 11/29 (39%) vs 11/135 (9%), respectively] and did

not receive first-line platinum-based chemotherapy [16/

29 (57%) vs 25/135 (19%)].

Patients with MGMT hypermethylation experienced

worse median OS (mOS 8.0 vs 18.4 months, unadjusted

HR 2.16; 95% CI 1.41–3.29; P < 0.001, Fig. 1A).

Then, we investigated the impact of MGMT pro-

moter methylation on patient OS, as evaluated as a

dichotomous variable with the 14% cutoff, in a multi-

variable model. Via a Random Survival Forest

approach, the following covariates were selected as the

most relevant, together with MGMT status (i.e. vari-

ables in the lower left quadrant of Fig. S3): ECOG

PS, patient age, previous adjuvant treatment, presence

of bone and lung metastases, and number of treatment

lines for advanced disease. In a multivariable Cox

model including these variables, MGMT status was

confirmed as an independent negative prognostic fac-

tor for OS (adjusted HR 2.31; 95% CI 1.44–3.71;
P < 0.001, Table 2).

Concerning 1L-PFS, outcome data were available

for 144 (88%) patients. MGMT promoter methylation

values were not significantly associated with 1L-PFS,

neither as a continuous variable (unadjusted HR 1.01

per 1% increase in methylation value, 95% CI 0.99–
1.03, P = 0.219, Fig. S4), nor as dichotomized variable

(mPFS 2.9 vs 5.1 months, HR 1.24, 95% CI 0.78–
1.98, P = 0.363, Fig. 1B).

Next, the potential interaction between MGMT pro-

moter hypermethylation and use of platinum-based

chemotherapy as first-line regimen was assessed. In a

multivariate Cox model including the most relevant

covariates affecting PFS (i.e. the use of platinum-based

Table 1. (Continued).

Characteristic N (%)

MGMT promoter methylation [median (IQR)] 5 (3–10)

MGMT expression by IHC

Positive 27 (27.0)

Weakly positive 32 (32.9)

Negative 41 (41.0)

NA 64

a

Diagnosis of advanced disease was considered synchronous if

occurring < 6 months from primary tumor detection, metachronous

if ≥ 6 months.
b

One patient was treated with Carboplatin-based chemotherapy.

Fig. 1. MGMT promoter methylation status. Overall survival (A) and first-line progression-free survival (B) represented through Kaplan–Meier

curves according to MGMT promoter methylation status in the Italian cohort. Patients with MGMT hypermethylation (blue) experienced

worse median overall survival as compared with patients with low MGMT methylation (red) (A). MGMT promoter methylation values did not

impact the progression-free survival of patients treated with first-line systemic treatment for advanced disease (B). Dotted lines indicate the

median survival time. MGMT, O6-methylguanine-DNA methyltransferase.
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chemotherapy, patient age, previous adjuvant treat-

ment, and presence of lung metastases; Fig. S5), a sig-

nificant interaction between these two factors was

observed (P for interaction = 0.038, Table S2).

First-line-PFS Kaplan–Meier curves of patients with

high (> 14%) and low (≤ 14%) MGMT promoter

methylation, stratified according to the use of

platinum-based regimens as first-line chemotherapy,

are shown in Fig. S6a,b: patients in the high MGMT

methylation subgroup treated with first-line platinum-

based chemotherapy showed longer 1L-PFS compared

to those treated with platinum-free regimens (mPFS

8.1 vs 2.8 months, unadjusted HR 0.28; 95% CI 0.09–
0.85; P = 0.018), while no difference was highlighted

in the low MGMT methylation subgroup (mPFS 5.4

vs 4.5 months, unadjusted HR 0.86; 95% CI 0.55–
1.36; P = 0.530). As an alternative representation of

the interaction, the impact of MGMT promoter

methylation on 1L-PFS was assessed according to the

chemotherapy regimen: in patients not treated with

platinum salts, patients with high MGMT promoter

methylation had significantly poorer 1L-PFS (mPFS

2.8 vs 4.5 months, unadjusted HR 3.95; 95% CI 1.69–
9.25; P < 0.001), while this effect was neutralized in

patients treated with platinum-based chemotherapy

(mPFS 8.1 vs 4.5 months, unadjusted HR 0.83; 95%

CI 0.44–1.55; P = 0.550).

3.1.3. Exploratory analysis of MGMT expression as a

biomarker

Within the study cohort, 100 (61%) patients had

evaluable tumor tissue for MGMT expression by IHC.

In detail, MGMT expression was positive in 27 (27%),

weakly positive in 32 (32%), and negative in 41 (41%)

patients. The impact of MGMT expression on patient

OS and PFS was first explored in the three-level defini-

tion, showing that weakly positive and negative cases

had similar outcomes (see Fig. S7a,b). For further

analyses, these two groups were thus merged and con-

sidered as negative.

MGMT methylation and IHC expression had poor

agreement (Cohen’s j �0.003, 95%CI -0.068–0.061).
Patient and disease characteristics according to MGMT

expression by IHC are summarized in Table S3.

Patients with negative MGMT expression showed sig-

nificantly worse OS (mOS 17.3 vs 31.6 months, unad-

justed HR 1.99; 95% CI 1.17–3.41; P = 0.012) and 1L-

PFS (mPFS 4.7 vs 9.1 months, unadjusted HR 2.24;

95% CI 1.36–3.68; P = 0.001; Fig. 2A,B). No signifi-

cant interaction with use of platinum-based chemother-

apy regimens was observed (P for interaction = 0.898).

3.1.4. Molecular profiling

Among the study cohort, 130 (79%) cases treated at

INT underwent additional tumor molecular profiling,

as depicted in Fig. S8. The most frequent alterations

identified were TP53 mutations (29%), KRAS muta-

tions (18%), followed by FGFR2 alterations (11% and

4% had FGFR2 fusions and mutations, respectively),

IDH1 mutations (10%), and PIK3CA mutations (9%).

Among cases in the MGMT promoter hypermethyla-

tion subgroup, only 9/29 (31%) were profiled. In this

group, no cases harbored IDH1/2 mutations, while 3/9

(33%) were found as FGFR2 rearranged.

3.2. MASTER BTC cohort

3.2.1. External validation of the prognostic role of

MGMT

We analyzed 76 BTC cases enrolled in the NCT/

DKTK MASTER trial with available RNA-seq data.

Patients’ characteristics are reported in Table 3.

Table 2. Multivariable cox proportional hazards model for overall survival. The HR for continuous variables is expressed as the HR variation

per unit increase of the variable value (i.e. per 1 year increase). CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group

Performance Status; HR, Hazard Ratio; MGMT, O6-methylguanine DNA methyltransferase.

Variables HR 95% CI P

MGMT promoter methylation High (> 14%) vs low (≤ 14%) 2.31 1.44–3.71 < 0.001

ECOG PS ≥ 2 vs 0–1 1.68 1.01–2.79 0.044

Age Continuous 1.03 1.01–1.05 < 0.001

Adjuvant treatment Not applicable (no tumor resection) vs no 1.51 0.99–2.30 0.054

Yes vs no 1.51 0.96–2.40 0.071

Lines of treatment for unresectable/metastatic disease 1 vs best supportive care 1.12 0.32–3.88 0.860

2 vs best supportive care 0.82 0.24–2.79 0.755

> 2 vs best supportive care 0.70 0.20–2.40 0.570

Presence of lung metastases Yes vs No 1.43 0.93–2.19 0.101

Presence of bone metastases Yes vs No 2.00 1.01–3.95 0.045
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Cases were grouped according to the median

MGMT mRNA expression value (27.9). No significant

differences were observed between patients with high

and low MGMT expression in terms of baseline char-

acteristics. Methylation data were available for 47

(62%) cases, of which 5 (11%) had MGMT promoter

hypermethylation. No association between MGMT

expression and promoter methylation was observed

(Wilcoxon P = 0.44, Fig. S9).

At data cut off, the median follow-up was

39.4 months (18.0–66.5) and the median OS was

25.4 months (IQR 16.4–60.7); 53 (70%) patients

received first-line chemotherapy, with a median 1L-

PFS of 5.0 months (IQR 3.0–9.0); median 1L-PFS and

mOS were not affected by use of platinum in 1-line

chemotherapy (mPFS 5.0 vs 5.7, P = 0.8; mOS 20.9 vs

71.4, P = 0.1).

Patients with lower MGMT mRNA expression

showed significantly poorer OS (mOS 20.4 vs

31.7 months, unadjusted HR 1.89; 95% CI 1.01–3.56;
P = 0.043), which was confirmed in a multivariable

model accounting for patients’ age, gender, and pri-

mary tumor location, prior tumor resection and use of

adjuvant therapy (Fig. 3A and Table S4). For 1L-

PFS, MGMT mRNA expression showed no signifi-

cant impact (mPFS 5.0 vs 5.2 months, unadjusted HR

1.27; 95% CI 0.72–2.22; P = 0.405), and a multivari-

ate model showed only a trend for interaction

(P = 0.115) between MGMT expression and use of

platinum-based chemotherapy (Fig. 3B and Table S5).

Concerning DNA methylation data, no reliable associ-

ation with survival outcomes could be observed, both

in terms of OS and PFS, as this analysis was limited

by the low number of cases and events (n = 2) in the

subgroup of patients with MGMT promoter hyperme-

thylation.

3.3. Case series of temozolomide-treated BTC

patients

Based on the published clinical activity of TMZ in

MGMT methylated colorectal cancers [18,20], four

patients with no other therapeutic options were treated

at INT with TMZ-based therapies from December

2018 until September 2019. Among these, two patients

were treated with TMZ plus irinotecan (TEMIRI regi-

men) [18], while two patients received single-agent

TMZ. The clinical characteristics of these patients are

detailed in Table S6. Of note, all but one cases were

affected by iCCA, and all were previously treated with

at least one platinum-based chemotherapy. Median

MGMT promoter methylation value was 12 (range 9–
49), and three patients were evaluated for MGMT

expression by IHC, all resulting negative. Figure S10

shows the swimmer plot of PFS during TMZ-based

treatment: three patients had stable disease as best

response, with a PFS ranging from 2.0 to 6.1 months

overall. No new safety signals were observed.

4. Discussion

Here we showed that both a high MGMT promoter

hypermethylation and low/absent MGMT expression

are associated with worse OS in patients with

advanced BTC. Our evidence was consistently vali-

dated in two independent cohorts of patients and by

investigating different assays including methylation-

specific (MSP) PCR, IHC, and RNA-seq. Previous

Fig. 2. MGMT expression assessed by immunohistochemistry. Overall survival (A) and first-line progression-free survival (B) represented

through Kaplan–Meier curves according to MGMT status assessed by IHC in the Italian cohort. Patients with negative MGMT expression

(blue) showed significantly worse overall survival (A) and progression-free survival with first-line systemic treatment (B), as compared with

patients with positive MGMT expression (red). Dotted lines indicate the median survival time. MGMT, O6-methylguanine-DNA methyltrans-

ferase.
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studies investigated the frequency of MGMT promoter

hypermethylation in BTC [29,30] and its role in tumor

progression [31,32] with inconclusive results, mostly

due to the small sample size, the lack of clinical infor-

mation, and the variability of assays used for testing

this biomarker. Whether MGMT inactivation may be

associated with a more aggressive behavior and which

are the mechanisms causing this is not yet fully eluci-

dated. However, MGMT loss is linked with an

increased susceptibility to acquiring other mutations in

both oncogenes and tumor suppressor genes, thus

potentially stimulating tumor progression and poorer

prognosis [17].

The prevalence of MGMT promoter hypermethyla-

tion in the Italian cohort was 18%, which is clinically

relevant in these rare cancers. Furthermore, despite the

over-representation of iCCAs in the Italian cohort, we

found a greater proportion of MGMT hyper-

methylated samples in eCCA and GBC. Given the

heterogeneity of the disease, there is an unmet need

Table 3. Patient characteristics of the MASTER BTC cohort according to MGMT expression (TPM value). The P value of the v2 test,

Fisher’s exact test (for categorical variables), or Mann–Whitney test (for continuous variables) assessing the association between each

characteristic and MGMT status is indicated in the right column of the table. MASTER: Molecularly Aided Stratification for Tumor

Eradication Research; eCCA: extrahepatic cholangiocarcinoma; iCCA: intrahepatic cholangiocarcinoma; IQR: interquartile range; MGMT: O6-

methylguanine DNA methyltransferase; NA: not available; NOS: not otherwise specified.

Characteristic Total, N (%) MGMT high, N (%) MGMT low, N (%) P value

Total number of patients N = 76 N = 38 N = 38

Age in years [median (IQR)] 47 (38–50) 45 (35–49) 48 (44–52) 0.079

Gender

Female 31 (40.8) 17 (44.7) 14 (36.8) 0.641

Male 45 (59.2) 21 (55.3) 24 (63.2)

Primary tumor location

CCA NOS 7 (9.2) 4 (10.5) 3 (7.9) 0.937

iCCA 44 (57.9) 22 (57.9) 22 (57.9)

eCCA 16 (21.1) 7 (18.4) 9 (23.7)

Gallbladder 9 (11.8) 5 (13.2) 4 (10.5)

Primary tumor resected

No 40 (52.6) 18 (47.4) 22 (57.9) 0.491

Yes 36 (47.4) 20 (52.6) 16 (42.1)

Adjuvant treatment

Yes 9 (11.8) 3 (7.9) 6 (15.8) 0.230

No 27 (35.5) 17 (44.7) 10 (26.3)

Not applicable 40 (52.6) 18 (47.4) 22 (57.9)

Total lines of treatment for unresectable/metastatic disease

1 19 (26.4) 11 (30.6) 8 (22.2) 0.687

2 19 (26.4) 8 (22.2) 11 (30.6)

> 2 34 (47.2) 17 (47.2) 17 (47.2)

NA 4 2 2

First line treatment regimen

Capecitabine/5-FU 1 (1.9) 1 (3.8) / 0.554

Capecitabine/5-FU + Oxaliplatin 4 (7.5) 2 (7.7) 2 (7.4)

Gemcitabine 2 (3.8) 1 (3.8) 1 (3.7)

Gemcitabine + Cisplatin 35 (66.0) 19 (73.1) 16 (59.3)

Gemcitabine + Oxaliplatin 2 (3.8) 1 (3.8) 1 (3.7)

Other 9 (17.0) 2 (7.7) 7 (25.9)

NA 23 12 11

Platinum-based first line regimen

Yes 49 (92.4) 24 (92.3) 25 (92.6) 1.000

No 4 (7.5) 2 (7.7) 2 (7.4)

NA 23 12 11

MGMT promoter methylation status

Yes 5 (10.6) 3 (12.5) 2 (8.7) 1.000

No 42 (89.4) 21 (87.5) 21 (91.3)

NA 29 14 15
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for new therapeutic targets, especially for patients

lacking targeted options such as those with eCCA and

GBC, since most of the known actionable molecular

alterations are usually found in iCCA. Therefore, our

finding is potentially important from a clinical point of

view, given the increasing body of evidence on efficacy

for TMZ-based regimens in MGMT-methylated gas-

trointestinal tumors and especially colorectal cancer

[19,20,33,34]. TMZ may indeed be considered as a ‘tar-

geted chemotherapy’ and even an agnostic investiga-

tional option in cancers with MGMT inactivation.

MGMT hypermethylation did not show an impact

in terms of 1L-PFS, probably due to the heterogeneity

of treatments administered in this retrospective series.

However, we found a significant interaction between

the use of platinum-based chemotherapy and MGMT

promoter hypermethylation, despite these data should

be interpreted with caution, given the non-randomized

nature of our treatment groups. From a biological per-

spective, our data are consistent with the growing evi-

dence suggesting that MGMT may be involved in

platinum-induced DNA damage response (DDR) by

playing a role in the homologous recombination sig-

naling in cancer cells [35]. The latter consideration is

particularly interesting given the amount of new evi-

dence regarding possible combinations of TMZ with

DDR inhibitors such as Poly-ADP-ribose polymerase

(PARP) [36,37] and ataxia telangiectasia mutated and

Rad3-related (ATR) inhibitors [38]. Furthermore, vari-

ous preclinical and clinical observations have linked

acquired resistance to TMZ to the emergence of alter-

ations in the mismatch repair system and increased

tumor mutational burden, that could be exploited in

combinations of TMZ and immune checkpoint

inhibitors [21,39]. Here, we reported four cases that

were treated with TMZ-based regimens, with three

patients experiencing stable disease as best response.

Though we cannot derive conclusions from such a

small number of patients, these patients were heavily

pretreated and not strictly selected according to a

MGMT methylation cutoff, thus highlighting the

opportunity to better investigate the potential activity

of TMZ in molecularly hyper-selected subgroups and

as part of combination regimens with potentially syn-

ergic drugs [18,40]. Interestingly, the patient achieving

the longest PFS had a lower methylation value com-

pared to others; in this regard, the results may be

explained by the fact that tumor MGMT expression

was negative, other than that the patient was less pre-

treated than the others and received a combination

regimen (TEMIRI).

In the Italian cohort, we explored whether any

molecular alteration was enriched in cases with

MGMT inactivation, but no clear pattern was

observed. The lack of significant association with

IDH1/2 mutations in the high MGMT methylation

group is somewhat unexpected, given that these muta-

tions ultimately lead to the formation of oncometabo-

lite 2-hydroxyglutarate (2HG), which has been

associated with hypermethylator phenotype [CpG

island methylator phenotype (CIMP)] and MGMT

silencing [41–45]. However, given the overall rarity of

individual molecular alterations and the non-

uniformity of the molecular characterization per-

formed in this cohort, further studies on larger data-

sets are required.

Our analysis has limitations, mainly originating in

the retrospective nature of the investigation in both

Fig. 3. MGMT expression assessed by RNAseq (TPM values). Overall survival (OS) (A) and first-line progression-free survival (B) represented

through Kaplan–Meier curves according to MGMT expression in the MASTER BTC cohort. Patients with lower MGMT mRNA expression

(blue) showed significantly poorer OS as compared with patients with high MGMT expression (red) (A). MGMT mRNA expression had no

significant impact on progression-free survival of of patients treated with first-line systemic treatment (B). Dotted lines indicate the median

survival time. MGMT, O6-methylguanine-DNA methyltransferase; TPM, transcripts per kilobase million; RNAseq, RNA sequence; MASTER

BTC Molecularly Aided Stratification For Tumor Eradication Research on Biliary Tract Cancers.
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cohorts, which included heterogeneous series of

patients in terms of primary tumor origin, molecular

profiling, and adopted treatments. Concerning the Ital-

ian cohort, limited evidence could be derived from

IHC analysis, which was performed only on ~ 60% of

cases. As for the MASTER BTC cohort, OS was avail-

able from the first tumor diagnosis instead of diagnosis

of advanced disease, data regarding the classification

of different subtypes of eCCA (pCCA and dCCA)

were not available and only a small number of cases

were profiled with methylation analysis, thus limiting

the evidence derived from this data layer.

Both cohorts included only patients with advanced

disease, either at initial diagnosis or at metachronous

relapse after surgery. However, while the Italian

cohort also included patients with rapidly progressing

disease and treated with best supportive care, as per

clinical practice, all patients in the MASTER BTC

cohort were pretreated with standard chemotherapy

options and had optimal ECOG PS at enrolment. Of

note, highly methylated cases in the Italian cohort

more frequently had worse baseline ECOG PS and did

not receive first-line platinum-based chemotherapy.

This does not seem to influence the results of our

study, since MGMT status was confirmed as an inde-

pendent negative prognostic factor for OS in the multi-

variable models that considered other prognostic

variables in both cohorts. Overall, despite these differ-

ences, the two cohorts are well representative of this

rare tumor entity: median 1L-PFS was in line with lit-

erature and real-life data, while the OS is coherent

with the availability of new treatment options in later

lines of treatment and the patients’ selection that inevi-

tably occurs in high-volume cancer centers. While

detailed data about later lines of treatment are not

available, 26% and 47% of Italian and German

patients were treated with more than two lines, respec-

tively, and this likely had an impact on the OS.

Finally, in both cohorts, MGMT promoter methyla-

tion and expression did not show an optimal concor-

dance, as previously reported in other works [17].

There is no unique explanation to the discordance

between methylation and protein expression results

and the regulation of MGMT inactivation is far from

being fully clarified. Methylation is probably not the

only mechanisms behind MGMT protein silencing, as

several transcription factors, such as secreted protein 1

(SP1), CCAAT-enhancer-binding proteins (CEBP),

activator protein 1 (AP1), hypoxia inducible factor-1a
(HIF-1a), and the p65 (RELA) subunit of the nuclear

factor kappa-light-chain-enhancer of activated B cells

(NF-jB) [46], bind to the MGMT promoter to induce

or suppress MGMT expression [47]. Furthermore,

MGMT promoter CpG islands may present a differen-

tial pattern of methylation along the region, with some

CpGs being more important in terms of gene tran-

scription and correlation with protein expression.

Finally, methylation data in both cohorts may be

influenced by contamination of the tumor sample from

surrounding normal tissue, and spatial and temporal

tumoral heterogeneity may influence the results of

IHC.

Given these considerations, our findings are in line

with previous evidence, suggesting that these method-

ologies should be used as complementary and not

interchangeably in clinical practice [17] and that IHC

could be regarded as a method for refining the dis-

criminative ability of MGMT assessment in terms of

survival. This approach has shown promising results in

metastatatic colorectal cancer, as proved by the

recently published MAYA trial [21].

Overall, despite these limitations, in these large ser-

ies of BTCs cases treated at three European compre-

hensive cancer centers and tested with three different

methodologies, our results are a convincing proof of

concept of the negative prognostic impact of MGMT

inactivation in BTCs.

5. Conclusions

We provide the first clear evidence that MGMT inacti-

vation is a frequent epigenetic alteration in BTC

patients, with a relevant prognostic impact. Based on

our data, we believe that MGMT is indeed a new piece

of the molecular puzzle of BTCs and could serve to

prospectively explore the efficacy of alkylating agents

in MGMT-silenced BTCs in future trials, possibly in

combinations with DNA damaging agents or novel

DDR inhibitors.
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Fig. S1. Study flowchart for the Italian cohort.

Fig. S2. Graphical representation of Cox regression

model evaluating MGMT promoter methylation

impact on patients’ OS, with non-linear effects handled

by restricted cubic splines (Italian cohort). MGMT,

O6-methylguanine-DNA methyltransferase; OS, overall

survival.

Fig. S3. Graphical comparison of Minimal Depth and

VIMP rankings for OS prediction. Covariates ranking

in the lower left quadrant were included in multivari-

able Cox Proportional Hazard Model (Italian cohort).

MGMT, O6-methylguanine-DNA methyltransferase;

VIMP, variable importance; OS, overall survival.
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Fig. S4. Graphical representation of Cox regression

model evaluating MGMT promoter methylation on

impact on patients’ 1L-PFS, with non-linear effects

handled by restricted cubic splines (Italian cohort).

1L-PFS; first-line progression-free survival; MGMT,

O6-methylguanine-DNA methyltransferase.

Fig. S5. Graphical comparison of Minimal Depth and

VIMP rankings for PFS prediction. Covariates ranking

in the lower left quadrant were included in multivariable

Cox Proportional Hazard Model (Italian cohort). VIMP,

variable importance; PFS, progression-free survival.

Fig. S6. (a,b). Progression-free survival represented

through Kaplan–Meier curves according to use of plat-

inum-based chemotherapy (CT) in patients with high

(>14%, 6a) and low (≤14%, 6b) MGMT promoter

methylation status (Italian cohort). MGMT, O6-

methylguanine-DNA methyltransferase.

Fig. S7. (a,b). Overall survival and progression-free

survival represented through Kaplan–Meier curves

according to MGMT status assessed by IHC reported

on three levels. MGMT, O6-methylguanine-DNA

methyltransferase; IHC, immunohistochemistry.

Fig. S8. Oncoplot of molecular alterations in patients

profiled with the IonTorrent� or Founda-

tionOne�CDx panel in the INT cohort.

Fig. S9. MGMT mRNA expression (TPM values)

according to MGMT promoter methylation in the

MASTER BTC cohort. MASTER BTC Molecularly

Aided Stratification For Tumor Eradication Research

on Biliary Tract Cancers; MGMT, O6-methylguanine-

DNA methyltransferase; TPM, transcripts per kilobase

million.

Fig. S10. Swimmer plot of patients treated with temo-

zolomide-based regimens. MGMT promoter methyla-

tion values are reported right to each patients’ bar.

MGMT, O6-methylguanine-DNA methyltransferase.

Table S1. Patients’ characteristics according to

MGMT promoter methylation (with the 14% cutoff)

in the Italian cohort. MGMT, O6-methylguanine-

DNA methyltransferase.

Table S2. Multivariable Cox proportional hazards

model for progression-free survival in the Italian

cohort. Missing data of covariates included in the

model were imputed.

Table S3. Patients’ characteristics according to

MGMT expression by IHC in the Italian cohort.

MGMT, O6-methylguanine-DNA methyltransferase;

IHC, immunohistochemistry.

Table S4. Multivariable Cox proportional hazards

model for overall survival in the MASTER BTC

cohort. MASTER BTC Molecularly Aided Stratifica-

tion For Tumor Eradication Research on Biliary Tract

Cancers.

Table S5. Multivariable Cox proportional hazards

model for progression-free survival in the MASTER

BTC cohort. MASTER BTC Molecularly Aided Strat-

ification For Tumor Eradication Research on Biliary

Tract Cancers.

Table S6. Clinical characteristics of patients treated

with temozolomide.
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