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Abstract
In this paper, we present a framework for investigating coloured noise in reaction–
diffusion systems.We start by considering a deterministic reaction–diffusion equation
and showhowexternal forcing can cause temporally correlated or colourednoise.Here,
the main source of external noise is considered to be fluctuations in the parameter
values representing the inflow of particles to the system. First, we determine which
reaction systems, driven by extrinsic noise, can admit only one steady state, so that
effects, such as stochastic switching, are precluded from our analysis. To analyse the
steady-state behaviour of reaction systems, even if the parameter values are changing,
necessitates a parameter-free approach, which has been central to algebraic analysis
in chemical reaction network theory. To identify suitable models, we use tools from
real algebraic geometry that link the network structure to its dynamical properties.
We then make a connection to internal noise models and show how power spectral
methods can be used to predict stochastically driven patterns in systems with coloured
noise. In simple cases, we show that the power spectrum of the coloured noise process
and the power spectrum of the reaction–diffusion system modelled with white noise
multiply to give the power spectrum of the coloured noise reaction–diffusion system.

Keywords Coloured noise · Reaction–diffusion · Power spectra ·
Injectivity criterion · Chemical reaction networks

1 Introduction

One of the central challenges in mathematical biology is understanding mechanisms
involved in development processes. Within the context of developmental biology,
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the emergence of large-scale spatial structure has often been theoretically explored
through a common framework of deterministic partial differential equations defining
reaction–diffusion systems (Murray 2008; Hochberg et al. 2003; Turing 1952). Whilst
current frameworks may explain a variety of phenomena in development, they can
also suffer from over-simplification (McKane et al. 2014), with the additional caveat
that finding theoretical models both consistent with mechanism-based knowledge and
capable of predicting observed patterns is a highly complex task, suffering from both
model and parameter fine-tuning (Butler and Goldenfeld 2011; Xavier 2013).

Manymodels that describe pattern formation assume parameters are constant; how-
ever, this deterministic assumption is not suitable for certain conditions. Some systems
are better suited towards a stochastic approach. When a system is coupled to external
and stochastic drivers, the parameter values can change. The stochastic driving is often
represented by stochastic parameters, that is a parameter which is drawn from a certain
distribution at each time step or spatial point, and referred to as extrinsic noise below.
This contrasts with most previous work on stochastic pattern formation, referred to
as intrinsic noise, which assumes low copy number, and it does not assume external
drivers as the source of noise (Schumacher et al. 2013; McKane and Newman 2005;
McKane et al. 2014; Biancalani et al. 2011; Woolley et al. 2011a, 2012). Extrinsic
noise has been studied extensively in García-Ojalvo and Sancho (2012), however, not
in the context of chemical reaction network theory and reaction–diffusion systems.

The structure of intrinsic noise is often taken to be highly constrained and in par-
ticular uncorrelated in time, leading to white noise representations. For instance, if
the noise is due to low copy number-induced dynamics, Gaussian white noise forcing
emerges from the chemical Langevin equation approximation to the chemical mas-
ter equation (Gillespie 2000). Even with such constraints, there is a rich diversity of
noise-induced phenomena, such as spatio-temporal pattern formation (Schumacher
et al. 2013; Woolley et al. 2012), stochastic oscillations (McKane and Newman 2005),
metastability (McKane et al. 2014), waves (Biancalani et al. 2011) or enhanced oscil-
lation amplitude (Dauxois et al. 2009), and a general introduction to the effects of
noise in spatial system can be found in Sagués et al. (2007).

However, when the source of the noise is extrinsic, other forms of noise are permis-
sible. In particular, the defining special properties of white noise may in general be
relaxed and hence stochastic forcing can emergewith non-trivial temporal correlations,
often termed coloured noise. Our objective is to show how extrinsic noise influences
spatio-temporal reaction–diffusion patterns, in particular by developing power spec-
tral methods to analyse the impact of coloured noise. In this paper, it is assumed that
the effects of intrinsic noise are negligible and only the extrinsic noise provides a
stochastic perturbation of the system. Therefore, in contrast to internal noise models,
the common description of a stochastic chemical reaction network as a continuous time
Markov chain (and its computational solution via the Gillespie algorithm (Gillespie
1977)) cannot typically be applied.

To proceed, we abstract the biological system to a chemical reaction network and
use techniques from themathematical modelling of chemical reaction networks. How-
ever, for biological interpretations it is imperative to remember that many cellular
processes are governed by biochemical reactions (Alberts et al. 2007) and, hence,
can be described by chemical reaction networks. First, we note that deterministic pat-
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tern formation reaction diffusion systems in biological applications with n interacting
biochemical species take the form Turing (1952); Murray (2008)

∂x
∂t

= D
∂2x
∂s2

+ f (x) (1)

in one spatial dimension, where x ∈ R
n≥0 is a vector of n chemical concentrations. The

models we consider are networks with mass action kinetics (Horn and Jackson 1972),
rendering the term f (x) = ( f1(x), . . . , fn(x))T a vector of polynomial functions.
The polynomials describe the underlying reaction network between the species, and
D(∂2x/∂s2) with D = diag(D1, . . . , Dn) describes the diffusion of x. Let there
be M chemical reactions in the spatially homogeneous system whose dynamics are
described by ∂x/∂t = f (x). Each reaction is parameterised by a rate constant ki > 0,
and therefore,we have a vector of rate constants k = (k1, . . . , kM ) ∈ R

M
>0. Throughout

this paper, we use homogeneous Neumann boundary conditions

∂x
∂s

∣
∣
∣
∣
s=0,L

= 0, (2)

where L is the domain length.Note that, althoughourwork is only applied to systemsof
one spatial dimension, the theory can easily be extended to an arbitrary number of spa-
tial dimensions. To do so, one replaces the one-dimensional diffusion term D∂2x/∂s2

with D∇2x, where ∇2 is the d-dimensional Laplacian relative to the coordinates si
and i ∈ {1, . . . , d}.

Counter-intuitively, it has been shown that under certain conditions (Murray 2008),
diffusion can drive an otherwise spatially uniform stable state to instability. Such
unstable systems, which can form stable patterns, such as stripes or spots, are called
Turing systems (Turing 1952; Woolley et al. 2017). To avoid the complications of
bistable dynamics, and later stochastic analogues such as switching between steady
states, we impose the constraint that the spatially homogeneous solution has a unique
stable steady state, x∗, such that f (x∗) = 0 (Murray 2008). To find models which
have this property, we use techniques from real algebraic geometry (Müller et al. 2016)
which provides simple tools, ensuring that there exists only a single steady state in a
model. Since Turing’s work in 1952, many biological patterning systems have been
suggested to be Turing systems (Castets et al. 1990; Cartwright 2002; Kondo and
Miura 2010).

Fundamentally, the application of a set of partial differential equation (PDE)models
for a biochemical reaction system assumes that the species of interest are in high
enough concentration to allow continuum modelling. By contrast, when the number
of particles in the biological system is low, intrinsic stochasticity of the system must
be included in the model (Schumacher et al. 2013; Woolley et al. 2012; McKane and
Newman 2005; McKane et al. 2014; Biancalani et al. 2011), which typically yields
studies that investigate the impact of white noise.

However, as mentioned, stochasticity in biological systems can also arise from
extrinsic noise and hence temporal variations in parameter values (Picco et al. 2017).
Thus, instead we generalise the deterministic system to include stochastic parameter

123



44 Page 4 of 28 M. F. Adamer et al.

values. Specifically, we focus on the effect of stochastic fluctuations of reactions of the
form ∅ → X , resulting in a constant term in the chemical reaction network f (x), the
“inflow” term. As the extrinsic noise can arise from a vast number of different mech-
anisms, such as varying experimental conditions (Lenive et al. 2016), it is largely free
of microscopic constraints, especially the absence of temporal correlation. However,
the impact of correlated external noise has, to the authors’ knowledge, received little
theoretical modelling attention. Thus, we proceed to develop a framework to study
external coloured noise forcing of the above deterministic system for pattern formation
in biologically motivated scenarios, analysing how temporal correlation in noise, as
described by colour, impacts self-organisation properties.

The paper is organised as follows. In Sect. 2, we introduce required notions of
chemical reaction network theory to select a class of models relevant to our frame-
work, i.e. those whose number of steady states is unaltered by changes in parameter
values, temporal or otherwise. We then introduce stochastic inflow parameters and
describe their connection coloured noise. In Sect. 3, we highlight the impact of noise
colouring on the spatio-temporal patterns formed by example of the Schnakenberg
system. In particular, we discuss noise arising from stochastic subnetworks and vary-
ing experimental conditions. Our numerical results are discussed in Sect. 4 where we
summarise the distinguishable differences between the various noise colours.

2 Theoretical Background and Power Spectra Analysis

In this section, we introduce the theoretical background of this paper.

2.1 Chemical Reaction Network Theory

Acentral aim of chemical reaction network theory (CRNT) is to describe the properties
of a chemical reaction network from its reaction graph alone (Feinberg 1987, 1988).
One such property is the capacity for multiple steady states. Define a chemical reaction
network by the multi-setN = {S, C,R}, where S, C,R are defined below. We begin
by embedding the network into n-dimensional Euclidean space Rn by associating a
basis vector ei to each chemical species Xi such that X1 → e1 = (1, 0, 0, . . .)T,
X2 → e2 = (0, 1, 0, . . .)T and so on. Let S = {X1, . . . , Xn} be the set of all chemical
species in the network, then a generic reaction can be expressed as

n
∑

i=1

αi Xi
k−→

n
∑

i=1

βi Xi . (3)

The constants αi and βi are stoichiometric coefficients which give information about
how many molecules of Xi are consumed and produced in each reaction. By letting
Xi → ei , we can formulate a reaction vector describing the consumption, or produc-
tion, of a species Xi in a reaction
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r =
n

∑

i=1

(βi − αi )ei . (4)

If an entry of r is negative, then a species is consumed, whilst if an entry of r is
positive, then a species is produced.

Denote the set of all reaction vectors in a network by R = {r1, . . . , rM }. To
complete the description of a chemical reaction network in terms of sets and their
embedding into Euclidean space,we introduce the notion of complexes. Complexes are
linear combinations of species which appear on the left- or right-hand sides of reaction
vectors. In Eq. (3), the two complexes are C1 = ∑n

i=1 αi Xi and C2 = ∑n
i=1 βi Xi ,

where C1 is the reactant complex and C2 is the product complex. Let the set of all
complexes be C = {C1, . . . ,Cl}. The reaction network, N , is therefore a directed
graph with vertex set C and a directed edge between vertices Ci and C j if and only
if C j − Ci ∈ R, with the same embedding, Xi → ei . Note that the description of
the reaction network does not include any notion of rate constants k; however, many
results in chemical reaction network theory include the rate constants explicitly as a
positive vector k = (k1, . . . , km)T ∈ R

M
>0.

Example 1 (Schnakenberg) The (non-spatial) Schnakenberg system is one of the sim-
plest chemical reaction networks whose dynamics exhibit a Hopf bifurcation and,
therefore, present rich dynamical behaviour (Schnakenberg 1979). The system fol-
lows the reaction scheme

X2
k2←− ∅ k1−−⇀↽−−

k−1

X1, 2X1 + X2
k3−→ 3X1, (5)

with species S = {X1, X2} and complexes C = {∅, X1, X2, 2X1 + X2, 3X1}.
In this paper, we study the influence of noise on reaction–diffusion systems that are

able to produce patterns in a well-defined parameter region. In particular, we study
the Schnakenberg system. Critically, we will see that coloured noise is able to have
both a constructive influence outside of this previously defined parameter region (i.e.
the noise stabilises patterns where we would not expect them deterministically) and a
destructive influence on patterns which normally would arise. In particular, we would
like to exclude the intrinsically stochastic effect of stochastic switching, which occurs
for a system that has multiple steady states in some parameter region. Stochastic
switching describes the phenomenon that a chemical reaction network can jump from
one steady state to another when subject to finite stochastic perturbations. To avoid
this scenario, we use a network structure-based tool described in Müller et al. (2016)
which a priori excludes multistationarity.

Take a chemical reaction network N and embed its complexes and reactions into
R
n . Then, define the matrices m1 = (r1r2 . . . rM ) for ri ∈ R and mT

2 = (b1b2 . . . br )
where {bi } is the set of reactant complex vectors of N . Let diag(k1, . . . , kM ) be the
diagonal matrix of reaction constants. Using the law of mass action, the dynamics of
the species concentrations can be described by

dx
dt

= f (x) = m1 diag(k1, . . . , km) xm2 , (6)
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where xm2 = (xb111 xb122 . . . xb1nn , . . . , xbM1
1 xbM2

2 . . . xbMn
n )T. Note that the reactant com-

plexes and the reactions are structural properties of the reaction graph. Further,
let a ∈ R

n and define its sign vector σ(a) = {−, 0,+}n by applying the sign
function to each component of a. Therefore, the i th component of the sign vector
σ(a)i = sign(ai ) ∈ {+, 0,−}.

The link from network structure to multistationarity is outlined in Müller
et al. (2016, Theorem 1.4), and it concerns the injectivity of the map f : x 	→ dx/dt .
If f (x) is injective, then there exists a unique vector x∗ ∈ R

n such that f (x∗) = 0.
In other words, the network is monostationary. The conditions for an injective f (x)

hold for all parameter values k = (k1, . . . , kM ). A corollary of Müller et al. (2016,
Theorem 1.4) is that f (x) is injective if

ker(m2) = {0} and σ(ker(m1)) ∩ σ(im(m2)) = {0}. (7)

Note that this condition depends on the network structure, specifically the spaces
spanned by the kernel of the reaction matrix,m1, and the image of the source complex
matrix, m2, but not on the parameter values.

Example 2 (Schnakenberg (cont.)) We check for a potential multistationarity in the
Schnakenberg system by formulating the matrices m1 and m2.

m1 =
(

1 −1 0 1
0 0 1 −1

)

and m2 =

⎛

⎜
⎜
⎝

0 0
1 0
0 0
2 1

⎞

⎟
⎟
⎠

. (8)

It is easy to confirm that ker(m2) = {0}. Further, we have

σ(ker(m1)) = {(+,+, 0, 0)T, (−, 0,+,+)T}

and

σ(im(m2)) = {(0,+, 0,+)T, (0, 0, 0,+)T}. (9)

Therefore, the Schnakenberg system is monostationary for all choices of (positive)
parameter values.

2.2 Stochastic Inflow in Chemical Reaction Networks

We will now show how chemical reaction networks (CRNs) that satisfy injectivity
(preclusion of multistationarity) can be applied to consider parameter stochasticity,
especially to the case of stochastic inflows. In particular, this subsection serves to
show the mathematical equivalence between stochastic inflows and internal noise
systems but also to introduce a novel way of modelling external noise in chemi-
cal reaction networks. Readers interested in applying coloured noise to stochastic
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reaction–diffusion equations with internal noise modelled by reaction–diffusion PDEs
or chemical Langevin equations may skip this subsection.

Much effort in the CRNT literature has been made to investigate “fully open sys-
tems”; these are CRNs in which every species has an inflow and an outflow reaction
(Banerjee and Bhattacharyya 2014; Joshi and Shiu 2014; Félix et al. 2016; Banaji and
Pantea 2018). By contrast, here we change the nature of the model by generalising
the inflow rate constants to stochastic processes, rather than simply adding inflow
processes as deterministic reactions. It should be noted that despite the name we do
not assume that these reactions are inflows into the domain of simulation; rather, the
inflow reactions correspond to the creation of particles from some other process which
happens throughout the domain. Sometimes, these inflow reactions are called “inputs”
in engineering applications and the concentrations are the “outputs”, and therefore,
the study of chemical reaction networks with varying inflows can be rephrased into a
study of the “input–output” relation as has been the approach in previous work (Frank
2013).

Consider a chemical reaction network N . An inflow reaction for species Xi is
manifested in the reaction graph as

∅ kin−→ Xi .

Usually, the work in CRNT assumes the rate constant kin to be constant in time (and
space). However, the zero complex, ∅, symbolises a process not included in the model
such as the production of Xi by another network,whichwe call an “auxiliary network”,
or a mechanical addition of Xi to an experimental set-up. Both mechanisms are often
subsumed into ∅ and usually approximated as constant or “perfect” inflow; however,
they can exhibit intricate dynamics. We model the dynamics of “non-perfect” inflows
by a stochastic process whose origin can be twofold (Fig. 1):

(a) Experimental fluctuations: In chemical engineering, it is assumed that inflow of
chemicals into a reactor is a perfectly deterministic process; however, due to
mechanical, or other experimental imperfections, the inflow into a reaction can
vary stochastically. This, again, renders the influx parameter kin into a stochastic
process Kin(t).

(b) Stochastic subsystems: We assume that the inflow into the deterministic reaction
diffusion system is proportional to the concentration of a chemical in another
chemical reaction networkwith a unique fixed point, the auxiliary network.When
the number of particles in the auxiliary network is large, the auxiliary system is
at steady state and the inflow rate kin is constant. However, when the particle
number in the auxiliary system is low, stochastic fluctuations cannot be ignored
and, whilst still proportional to the concentration of a species in the auxiliary
system, the actual influx parameter kin is a stochastic process Kin(t). Due to
correlations and interactions within the auxiliary system, Kin(t) may not simply
be white noise. In this paper, we assume that the particle number of the auxiliary
network is in the weak noise regime (van Kampen 1983).

Whereas the two sources of parameter noise are conceptually different, their mathe-
matical description is the same. Consider a stochastic process K (t)with an underlying
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Fig. 1 The two mechanisms contributing to stochastic inflows. The boxes on the left are usually treated as
black boxes, resulting in some constant inflow modelled by the parameter kin. We differentiate between
experimental fluctuations, symbolised by a correlation τ in (a) and auxiliary networks described by faux( y)
in case (b) (Color figure online)

distribution D(t). To be biologically relevant (i.e. to ensure all chemical concentra-
tions are non-negative at every t), we require D = 0 for all K (t) < 0 and, hence, the
distribution D needs to be continuous almost everywhere. To simplify the following
mathematical analysis, we approximate the distribution of K (t) as a truncated Gaus-
sian, sincewewould like to connect our analysis to the internal noise case. Futurework
could focus on other non-negative distributions, such as the log-normal distribution,
on a continuous probability space. Therefore, we can describe K (t) by

K (t) = k + 1√
Ω

η(t),

with

〈η(t)〉 ≈ 0 and 〈η(t), η(t ′)〉 = g(t, t ′), (10)

where g(t, t ′) is a positive function and η follows a (truncated) Gaussian distribution
whose non-truncated mean is exactly zero.We assume that the truncation is small such
that in analytic calculations the truncated moments can be approximated by the full
moments of η. Due to the negligible truncation, we assume that the moments of the
truncatedGaussian can be approximated by themoments of the full Gaussian, such that
〈K (t)− k〉 = 0 and 〈(K (t)− k)(K (t ′)− k)〉 = Ω−1g(t, t ′). In other words, the small
exponential tail which is truncated would only provide a negligible perturbation to the
moments of the non-truncated Gaussian. The validity of this assumption is confirmed
in the computational results of Sect. 3. In the remainder of this paper, we will show
how various functions g(t, t ′) can arise in mathematical modelling, especially when
stochastic auxiliary networks are considered.

We can further connect the parameter Ω to physical quantities of the underlying
chemical reaction network by again considering the sources of stochastic inflow. We
assume that the origin of the stochastic inflow is stochastic auxiliary networks or exper-
imental imperfections. In the limit of either a perfect experiment or a deterministic
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auxiliary network, the inflow should be deterministic and 〈(K (t)−k)(K (t ′)−k)〉 = 0
implying Ω → ∞. The parameter Ω , therefore, represents the noise strength. Large
Ω (small noise) is required for the assumptions on the moments of the truncated
Gaussians to hold.

Next, consider a chemical reaction network N in which a subset of species has
an inflow reaction. Denote the set of species with (stochastic) inflow by Sin ⊆ S. If
there is more than one (stochastic) inflow |Sin| > 1, the stochastic process will be a
multi-dimensional version of (10). Further, assume that the stochastic process has a
spatial dependence. The description of the stochastic process outlined in this section
still applies in this case, if we have K in(s, t) as the vector of stochastic inflow such
that

K in(s, t) = kin + 1√
Ω

η(s, t),

with

〈η(s, t)〉 ≈ 0

〈η(s, t)ηT(s′, t ′)〉 = B(s, s′)G(t, t ′)
= {Bi j (s, s′)Gi j (t, t

′)}, (11)

where B(s, s′) represents the potential covariances between the stochastic inflows and
G(t, t ′) models the temporal correlations.

Since our assumptions made the inflow process additive and uncoupled to the
species, the stochastic reaction network can be described by the system of stochastic
partial differential equations (SPDEs)

∂x
∂t

= D
∂2x
∂s2

+ f (x) + 1√
Ω

η, (12)

where η is a vector of stochastic processes such that its support is supp(η) = Sin.
Note that in our limit randomising inflows leavesN as well as f (x) invariant, and

hence, the steady-state structure of the system; i.e. if we start out with an injective
function f (x), then adding stochasticity will not change this injectivity.

The assumption of rate constants being stochastic processes rather than constants
can be extended to non-inflow reactions too. However, Eq. (12) will have extra terms
of multiplicative noise (see Example 3). In the next section, we study perturbations
to the steady state whose scaling will render the study of non-inflow stochastic rate
constants a trivial extension of the analysis of this subsection.

Example 3 (Non-inflownoise) Suppose that in the Schnakenbergmodel the non-inflow
reaction

2X1 + X2
k3−→ 3X1
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is subject to external noise. Hence, the rate constant k3 becomes a stochastic process
k3 → K3, and applying similar modelling assumptions as for inflow reactions, we
assume that K3 follows a truncated Gaussian distribution whose moments can be
approximated by the moments of the full Gaussian. Hence, we let K3 ≈ k3+1/

√
Ω η

as before. Substituting k3 → k3 + 1/
√

Ω η into the governing equations for the
Schnakenberg system yields a model with multiplicative external noise.

Further, it should be added that in this paper it is assumed that in the reaction–
diffusion system internal noise due to low particle numbers is negligible compared
to the effects of external noise which arises from the rate constants being stochastic
processes. However, if internal noise was to be included, then the reaction–diffusion
system would have to be described by a chemical master equation with stochastic
inflow rate constants.

2.3 Power Spectra for Stochastic Inflows

To fully classify the patterns arising from the addition of stochastic inflows, we cal-
culate the power spectra of the patterns. Power spectra are an analytic tool showing
which spatial and temporal frequencies are present in a pattern (Adamer et al. 2017;
Schumacher et al. 2013; Woolley et al. 2011b). Peaks in power spectra give informa-
tion about dominant frequencies and, hence, about oscillatory behaviour of a system
in space and time.

First, we linearise equation (12) about the fixed point x ∼ x∗ + δx, where δx
represent small perturbations. These perturbations should decay in the deterministic
limit as the system will converge to the steady state outside the Turing parameter
regime. Inside the Turing regime, the system is assumed to converge to a stable pattern
rather than a stable state which is not considered in this paper. Hence, our analysis is
valid only outside the Turing pattern regime. Substituting the linearisation ansatz into
Eq. (12) and keeping lowest order terms only, we get

∂δx
∂t

= D
∂2δx
∂s2

+ J |x=x∗δx + 1√
Ω

η, (13)

where J |x=x∗ is the Jacobian of f (x) evaluated at the fixed point x∗, which for
notational convenience we will denote as J .

We make one further assumption, namely the scaling of the perturbation δx with
the parameter Ω controlling the magnitude of the stochastic input. Let δx = Ωαδx.
This gives

Ωα ∂δx
∂t

= ΩαD
∂2δx
∂s2

+ Ωα Jδx + Ω
− 1
2 η. (14)

Then, if α < −1/2 and in the limit Ω → ∞, the leading-order term is the stochastic
process η only. Equally, if α > −1/2, then η could be neglected to leading order in
Ω . Hence, we let α = −1/2 for a dominant balance and Eq. (14) simplifies to

∂δx
∂t

= D
∂2δx
∂s2

+ Jδx + η. (15)
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The reasoning behind choosing α = −1/2 is analogous to the reasoning of the scaling
in the weak noise expansion of van Kampen (1983), especially the requirement that
in the limit Ω → ∞ the noise correlations are zero. However, the system size in
the external noise case is imposed by an external mechanism such as a non-modelled
stochastic network with system size Ω .

The scaling of the perturbations to the steady state determines a hierarchy on the
terms of Eq. (12), and in the case of non-inflow stochastic rate constants, all multi-
plicative noise terms are linearised to additive terms with all non-trivial multiplicative
perturbations only manifesting at higher order. The approach of this paper is similar
to a weak noise approximation, however, with the fundamental difference that the
weak noise expansion is used to approximate a probability distribution, whereas the
perturbations to the steady state used in this paper approximate the local dynamics of
a systems of PDEs.

Note that the parameter Ω controls the amplitude of the perturbation to the steady
state and, therefore, is also responsible for size of the amplitude of any patterns one
might observe. Increasing Ω decreases the amplitude of the patterns. If Ω is too
small, then the perturbations δx are not small and the linear approximation breaks
down, i.e. the concentrations of the chemicals go negative.

Note that Eq. (15) is mathematically equivalent to a chemical Langevin equation
of compartmentalised diffusion in the limit of the compartment size, Δs , going to
zero (Smith 1985). However, in our derivation the source of the noise is external. To
emphasise the mathematical connection with internal noise, we will in fact discretise
equation (15) into a finite number of compartments, such that for an n species network
with K compartments we have

δx = [δx1, . . . , δxK, δxK+1, . . . , δx2K, . . . , δxnK]T, (16a)

η = [η1, . . . , ηK, ηK+1, . . . , η2K, . . . , ηnK]T, (16b)

s ≈ si = iΔs where i = {1, . . . ,K}, (16c)

∂2δx(s)

∂s2
≈ δx(si + Δs) + δx(si − Δs) − 2δx(si )

(Δs)2
, (16d)

and the matrices D and J turn into block matrices such that

D =
⎛

⎜
⎝

[D1]K×K 0 0 · · ·
0 [D2]K×K 0 · · ·
...

...
...

. . .

⎞

⎟
⎠ . (17)

The i j th block of J is [Ji j ]K×K to give

J =

⎛

⎜
⎜
⎜
⎝

[J11]K×K [J12]K×K · · ·
[J21]K×K [J22]K×K · · ·
[J31]K×K [J32]K×K · · ·

...
...

. . .

⎞

⎟
⎟
⎟
⎠

. (18)
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Compartmentalisation results in a system of nK coupled SDEs

dδx = Aδx dt + η dt, (19)

with A = D/Δ2
s + J , 〈ηi (t)〉 = 0 and 〈ηi (t)η j (t ′)〉 = Bi jGi j (t, t ′). Note that after

compartmentalisation B(s, s′) is a block matrix of n2 K×K matrices, describing the
spatial auto-correlation of each species and the spatial correlations between species.

To calculate the power spectra of the system, we introduce the discrete cosine
transform (Briggs and Henson 1995)

fκ = Δs

K
∑

j=1

cos[κΔs( j − 1)] f (s j ). (20)

The cosine transform incorporates the Neumann (no flux) boundary conditions, which
are commonly used for reaction–diffusion systems; however, other boundary condi-
tions can easily be implemented (Briggs and Henson 1995). Due to the boundary
conditions, we require κ = mπ/l with m ∈ {0, 1, 2, . . .}. We refer to m as the spatial
mode. Note that the use of ( j − 1) instead of j which is due to the fact that the com-
partment labelling starts at j = 1. Hence, by applying the spatial Fourier transform
we reduce the system of nK SDEs (19) to a system of n coupled SDEs

dδxκ = Aκδxκ dt + ηκ dt . (21)

Finally, applying the temporal Fourier transform

f̃ (ω) =
∫ ∞

−∞
f (t)e−iωtdt, (22)

we get an expression for δ x̃κ(ω). Note that the Fourier transform always exists if we
consider the system to have a fixed point (Woolley et al. 2011c).

δ x̃κ(ω) = [−Aκ − iω]−1 η̃κ(ω). (23)

Therefore, the power spectra of the pattern, Pδx (κ, ω), can be expressed as the diagonal
elements of

〈δ x̃κ(ω)δ x̃†κ(ω)〉 = Φ−1 〈η̃κ(ω)η̃†κ(ω)〉
︸ ︷︷ ︸

N

(

Φ−1
)†

, (24)

where we defined
Φ = − [Aκ + iω] , (25)

and † denotes the Hermitian conjugate of a matrix. In order to be guaranteed real
power spectra, we need N = N †. In the case of Gaussian noise, we have

N = Fcos
(F(BG(t, t ′))

)

, (26)
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where Fcos denotes the cosine transform and F the temporal Fourier transform. Note
that when all temporal correlations are equal such that Gi j (t, t ′) = g(t, t ′) the trans-
form factor becomes

N = Fcos (B)F(g(t, t ′)) = Bκ PCorrelations(ω), (27)

where PCorrelations is the power spectrum of the correlation function g(t, t ′) and Bκ is
the n × n matrix of covariances. For white noise, we take ηdt = ξ

√
dt to reduce (19)

to the Itô form
dδx = Aδx dt + ξ

√
dt, (28)

with 〈ξ〉 = 0 and 〈ξi (t)ξ j (t ′)〉 = Bi jδ(t − t ′) and, therefore, PCorrelations = 1. Hence,
we see that for white noise the power spectra are

〈δ x̃κ(ω)δ x̃†κ(ω)〉 =
[

Φ−1〈η̃κ(ω)η̃†κ(ω)〉
(

Φ−1
)†

]

=
[

Φ−1Bκ

(

Φ−1
)†

]

= Pwhite. (29)

For general temporal correlations g(t, t ′), we have

〈δ x̃κ(ω)δ x̃†κ(ω)〉 =
[

Φ−1Bκ PCorrelations
(

Φ−1
)†

]

= PwhitePCorrelations, (30)

such that the spectra of the noise colour appear as a multiplicative factor modulating
the white noise spectra.

2.4 Application to the Schnakenberg System

We illustrate our analysis via the example of the one-dimensional spatial Schnakenberg
kinetics. Thenon-spatialmodelwas discussed inExample 1.TheSchnakenberg system
is an n = 2 species reaction–diffusion system which, despite its apparent simplicity,
exhibits a wealth of different behaviours in the deterministic (Iron et al. 2004; Maini
et al. 2012; Ward and Wei 2002; Flach et al. 2007) as well as stochastic (Schumacher
et al. 2013; Woolley et al. 2011b) regimes. The Schnakenberg system is a system in
which every species has an inflow reaction and, hence, both species can be subject to
stochastic inflow. Hence, the Schnakenberg system is a perfect candidate to highlight
the effects of coloured noise computationally and illustrate how the above analysis
can be applied in practise.

The dynamics of the Schnakenberg system is described by the system of PDEs

∂x1
∂t

= D1
∂2x1
∂s2

+ k1 − k−1x1 + k3x
2
1 x2,

∂x2
∂t

= D2
∂2x2
∂s2

+ k2 − k3x
2
1 x2. (31)
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From Example 2, we see that the Schnakenberg system is monostationary for all
positive parameter values and, therefore, stochastic fluctuations in the inflow param-
eters cannot trigger stochastic switching.

Next, we consider stochastic inflows, which result in ki → ki + 1/
√

Ωηi for
i ∈ {1, 2} and the equations

∂x1
∂t

= D1
∂2x1
∂s2

+ k1 − k−1x1 + k3x
2
1 x2 + 1√

Ω
η1,

∂x2
∂t

= D2
∂2x2
∂s2

+ k2 − k3x
2
1 x2 + 1√

Ω
η2. (32)

Linearising equations (32) about the steady state x∗
1 = (k1 + k2)k

−1
−1, x

∗
2 =

k2k2−1k
−1
3 (k1 + k2)−2 and discretising space, we get a system of linear stochastic

differential equations similar to the ones arising from the study of internal noise (Schu-
macher et al. 2013)

dx
dt

= Ax + η, (33)

with

A =
(

a b
c d

)

, (34)

where a, d are tridiagonal matrices with diagonal elements

a0 = −2D1/Δ
2
s − k−1 + 2k3x

∗
1 x

∗
2 ,

d0 = −2D2/Δ
2
s − k3x

∗2
1 , (35)

and off-diagonal (sub- and super-diagonal) elements

a1 = D1/Δ
2
s ≡ du,

d1 = D2/Δ
2
s ≡ dv. (36)

The matrices b and c are diagonal matrices with entries

b0 = k3x
∗2
1 ,

c0 = −2k3x
∗
1 x

∗
2 . (37)

Note that the vector x has 2K components. There areK components for species x1
and K components for species x2.

Hence, Fourier transforming Eq. (33) in space and time we can compute the power
spectra,

P(κ, ω) = [Aκ + iω]−1 〈η̃κ (ω)η̃†κ(ω)〉
(

[Aκ + iω]−1
)†

, (38)
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Table 1 An overview of our main results on various noise colours

Colour Correlation function Effect Possible origin Section

White 1 N/A Internal 3.2

Ornstein–Uhlenbeck 1/
(

ω2τ2 + 1
)

Suppresses small ω Experimental apparatus 3.3

Red 1/ω2 Excites small ω Deterministic 3.4

Predator–prey
(

α + βω2
)

/
(

ω4 + γω2 + δ
)

Induces oscillations Stochastic subsystems 3.5

with

Aκ =
(

a0 + 2a1 cos κΔs b0
c0 d0 + 2d1 cos κΔs

)

. (39)

In the following section, we will discuss the effect of various noise correlations on
the power spectra, and hence, the patterns generated.

3 Computational Results

In this section, we highlight the computational patterns generated by a Turing system
with coloured noise (Table 1).

3.1 Numerical Methods

The system of SDEs (19) is simulated by an Euler–Maruyama scheme (Peter 1995)
with time step �t such that

x(t + �t) = x(t) + Ax�t + η�t . (40)

The important step of the integration is to find the correct vector η.
The white noise and Ornstein–Uhlenbeck noise are generated by an auxiliary noise

process. In particular, at teach time step the white noise is sampled from a multivariate
Gaussian distribution

η�t ∼ N (0, B�t).

TheOrnstein–Uhlenbeck process is a generated by the stochastic differential equation

dη

dt
= −1

τ
η +

√
B

τ
ξ ,

where ξ is a standard white noise vector. Therefore, at time t the vector η(t) is added
to the system of SDEs. The Ornstein–Uhlenbeck “auxiliary equation” is integrated by
an Euler–Maruyama scheme as described in Milshtein and Tret ’yakov (1994).
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To simulate power law noise for which, in general, no auxiliary SDE exists, we
use inverse transforms (Timmer and Koenig 1995). To generate a vector η(t) with
correlations 〈η(t)ηT(t ′)〉 = Bg(t − t ′), we first use the fact that η = √

Bξ where ξ

may be correlated in time but not in space, i.e. 〈ξ(t)ξT(t ′)〉 = δi j g(t − t ′). Then, let
the power spectrum of ξi be 1/ωα as described in Sect. 3.4 and use the algorithm of
Timmer and Koenig (1995) to create a time series. Multiplication of ξ(t) with

√
B

gives the desired noise process, η(t), which can be added to the SDE system. Auxiliary
networks as in 3.5 can be simulated by either method, and in this paper, the auxiliary
network input is generated by using the inverse transforms technique.

The truncation of the Gaussian distribution is implemented by setting negative
values of the noise to zero at each time step. However, negative inflows were a rare
occasion (for the simulation parameters chosen, only for violet noise any truncation
was needed) and, hence, truncation had no effect on our simulations.

3.2 White Noise

First, we consider external white noise. In this special case, the noise vector η is just a
Wiener process with correlation matrix B. This case is mathematically identical to the
case of internal noise in the weak noise limit as studied in Schumacher et al. (2013).
The main differences between internal noise and the parameter noise considered in
this paper are the amplitude of the noise and the exact forms of the covariances of the
stochastic processes η.

Both approximations (the weak noise limit, as well as our “truncated Gaussian”
approximation) assume that the stochastic effect is a perturbation to the deterministic
limit. However, as derived in Schumacher et al. (2013), the covariance matrix of
the stochastic processes η is determined by the microscopic processes, whereas for
external noise, whose origin can be manifold, the covariance matrix is arbitrary. For
mathematical simplicity, we choose the covariance matrix

Bκ =
(

1 1
1 1

)

. (41)

Throughout the remainder of this paper, we fix the parameter values to

k1 = k2 = 10.0, k3 = 0.01, k−1 = 20.0,

L = 0.1, K = 40,

with diffusion coefficients

D1 = 10−4,

D2 = 10−2, (42)

which results in steady-state concentrations of x∗
1 = 1, x∗

2 = 1000. The parameters
chosen are not generic, but they represent a particularly interesting point in parameter
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The deterministic solution of the Turing
system at the given parameter point

A stochastic realisation with white noise
with subsystem size of Ω = 5000.

ω
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m
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0.20

(c) The power spectra of the analytical calculations (dashed lines)
and their simulated curves averaged over 50 realisations of length
T = 1000 and subsystem size Ω = 5000. We attribute the differ-
ences in peak height to the finite time steps used.

(a) (b)

Fig. 2 An overview of the deterministic and white noise behaviour of the system with parameters as in (42).
The peak in 2c at zero spatial mode,m = 0, indicates temporal oscillations, which result from deterministic
limit cycle oscillations. Due to the choice of reaction kinetics, the temporal oscillations of species x1 and
x2 are in phase (Color figure online)

space. The parameters are in the (stable) oscillatory regime of the Schnakenberg sys-
tem and outside the Turing space. Themain function of the noise will be to temporarily
move the system into the Turing regime. Note that the system has large inflows (and
outflows) compared to the chemical reaction parameterised by k3 which allows for
larger variations in the noise translating into larger pattern amplitudes. The modifica-
tions to the power spectra due to coloured noise are generic and apply all points in
parameter space. However, the visibility of these modifications depends on the point
in parameter space and the correlation matrix. Similarly, the results on amplitude of
the patterns are parameter dependent. To simulate the system, we discretise the space
into 40 compartments of width Δs = 0.0025 (which gives a total domain length of
L = 0.1).

Simulating Eq. (33) under the influence of white noise and with the given parameter
values, we obtain Fig. 2 and its corresponding averaged power spectrum. The power
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spectrum shows the temporal frequencies, ω, and spatial modes,m, present in the pat-
tern. The amplitude of the oscillations is about 3% of the steady-state value for species
x1, whereas for species x2 it is much lower. Therefore, we assume that any patterning
of x2 is not generally measurable and, therefore, we focus our attention on x1. The
prominent temporal oscillations with no spatial dependency manifest themselves as a
sharp peak in the power spectrum. This is due to the fact that the chosen parameter
point is in the oscillatory regime of the Schnakenberg model. Upon close inspection,
slight spatial variations in the pattern of x1 can be seen, but with white noise these
are not very pronounced. In the following sections, we show how noise colour can
enhance spatial modes, create additional oscillations or even create a stable pattern.

3.3 Ornstein–Uhlenbeck Noise

Next, we investigate the effect of exponentially correlated noise also known as
Ornstein–Uhlenbeck noise (Hanggi and Jung 1995). This stochastic process has a
finite correlation time τ which we interpret as a response time. Consider an experi-
ment in which the inflow rate is highly sensitive to the ambient temperature. Further,
suppose this temperature undergoes randomfluctuations about a regulatedmean value.
Therefore, the correlation time τ could represent the average response time of the tem-
perature regulator.

We make the simplification that all the temporal correlations in Eq. (11) originate
from Ornstein–Uhlenbeck processes with the same correlation time, τ , such that

gi j (t, t
′) = g(t, t ′) = 1

2τ
e−|t−t ′|

τ . (43)

Hence, it follows that

〈η̃κ (ω)η̃κ (ω)†〉 = Bκ

1

ω2τ 2 + 1
(44)

where Bκ is the same matrix as in the white noise case and therefore P(κ, ω)Or-Uhl =
P(κ, ω)white/(ω

2τ 2 + 1). Hence, the noise colouring will dampen temporal frequen-
cies of ω �= 0 and, therefore, stabilise the pattern. Consequentially, in systems with
Ornstein–Uhlenbeck noisewewould expect any present stationary patterns thatmaybe
obscured by transient noise effects to be more prominent. We simulated the Schnaken-
berg system with Ornstein–Uhlenbeck noise and plot the resulting patterns and power
spectra in Fig. 3. The pattern of x2 has the same characteristic as in thewhite noise case,
except for a smaller amplitude. Interestingly, x1 shows a very different behaviour to
the white noise case. Clear spatial structures can be seen, in particular the phenomenon
of polarity switching (Woolley et al. 2011b; Schumacher et al. 2013). A Turing pattern
of mode m = 1 is generated with a given polarity, namely a minimum at s = 0 and a
maximum at s = L or vice versa. Polarity switching describes the inherently stochas-
tic phenomenon of a sudden change in polarity as shown in Fig. 3. The temporal
oscillations, although still present, are reduced to a practically unobservable level. We
attribute this to the fact that the exponential noise correlations dampen the oscillations
present in the white noise system.
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Fig. 3 The patterns and power spectra for the species x1 (left) and x2 (right) with noise generated by an
Ornstein–Uhlenbeck process and τ = 100. Spatial patterns become visible in the Ornstein–Uhlenbeck case
which can be attributed to its dampening effect on temporal oscillations. This can be observed as a visible
excitation of the m = 1 mode in the power spectrum of x1 with the dashed line representing the analytical
prediction. The well-known phenomenon of polarity switching (Schumacher et al. 2013) is observed in the
pattern of x1. The spectra were averaged over 50 repetitions with T = 1000 and subsystem size Ω = 100
(Color figure online)

3.4 Power Law Noise

By power law noise, we mean a stochastic process whose frequency distribution fol-
lows a power law in Fourier space

Ppower = 1

ωα
. (45)

Various types of power lawnoise are common in engineering and are definedby colours
summarised in Table 2. In this paper, we study red noise, white noise (Sect. 3.2) and
violet noise to illustrate the effects of a positive, zero and negative exponent, α.

Red noise amplifies small temporal frequencies with 1/ω2 → ∞ as ω → 0.
Therefore, the zero-frequency behaviour dominates the pattern.As shown inFig. 4, due
to the amplification of small ω, the pattern becomes stable, even though the amplitude
grows beyond the biologically viable (non-negative) bound, indicating that nonlinear
effects need to be considered in the model. To investigate the red noise further, we look
at the noise vector η. For the simulation times chosen, T = 1000, the noise vector is
independent of the time t such that each ηi has a constant, but random value. Hence,
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Table 2 The various colours of
power law noise

Colour α

Red α = 2

Pink α = 1

White α = 0

Blue α = −1

Violet α = −2

In this paper, we focus on red and violet noise
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Fig. 4 The patterns and power spectra for the species x1 (left) and x2 (right) with noise generated by a red
noise process. As predicted, the spectra are dominated by the behaviour the ω = 0, which amounts to the
stabilisation of a particular spatial mode. The species concentrations, however, go negative, indicating that
a full nonlinear model needs to be used. The peak in the power spectrum for x2 is a numerical artefact.
The spectra were averaged over 50 repetitions with simulation time T = 200. The subsystem size was
Ω = 5000 (Color figure online)

the effect of red noise is deterministic and Eq. (33) is just a linear ordinary differential
equation with a constant drift term. After applying the spatial Fourier transform, we
obtain the equation

dδxκ

dt
= Aκδxκ + ηκ , (46)

and denoting the eigenvalues and eigenvectors of Aκ as λ1(κ), λ2(κ) and ν1(κ), ν2(κ),
respectively, the linear equation can be solved to give
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δxκ(t) = c1ν1(κ)eλ1(κ)t + c2ν2(κ)eλ2(κ)t − A−1
κ ηκ , (47)

where c1 and c2 are constants determined by the initial conditions. Investigating the
spatial modem = 0, which corresponds to the dynamics of the non-spatial system, we
find that the dynamics corresponds to a stable spiral and, therefore, transient oscilla-
tions around ω ≈ 0.5 are expected. Indeed, Fig. 4 shows that transient oscillations are
present and in order to calculate the power spectrum accurately only the time points
in t ∈ [800, 1000] are used. If the entire data were used for the calculation of power
spectra, a peak at ω ≈ 0.5 would appear which is not accounted for in the analytic
spectrum. The same caveat does not apply to other coloured noise processes due to
the constantly varying perturbations to the steady state.

To illustrate the behaviour of the system on the other end of the colour spectrum,
and to highlight the limits of our analysis, we simulated violet noise which stabilised
the temporal oscillations further and due to large power at largeω drove the oscillation
amplitude in the linear treatment to unphysical values. Again, this indicates that violet
noise cannot be treated in biological applications with a simple linear theory, but a
full nonlinear theory must be used. For violet noise, the effect of the truncation of
the Gaussian became too large to obtain an accurate prediction of the power spectra
as shown in Fig. 5. Further, whilst noise colours with positive exponent are actively
studied in biology (Szendro et al. 2001), the potential emergence of blue or violet
noise in applications is not clear.

3.5 Stochastic Auxiliary Networks

We now proceed to the second major source of random inflows, namely the depen-
dence on a stochastic auxiliary network. An auxiliary network is a chemical reaction
network which provides an input into the Turing system (Fig. 6). The auxiliary net-
work is connected to the main network only via an inflow reaction, and if the auxiliary
network reaches a steady state, it can be subsumed into the zero complex for practical
modelling. If, however, the auxiliary network exhibits more complex dynamics such
as deterministic or stochastic oscillations, then it needs to be treated as a part of the
main network. We focus on auxiliary networks which are deterministically stable, but
show stochastic quasi-cycles. The dynamics of such systems are modelled by using a
correlated stochastic inflow parameter as outlined in Sect. 2.2.

As an illustrative example, we use the predator–prey system described in McKane
and Newman (2005),

Y1
d1−→∅ d2←− Y2,

2Y1
p1←−Y1 + Y2

p2−→ Y1. (48)

In McKane and Newman (2005), it was shown that in the deterministic regime system
(48) has exactly one attractor for any choice of rate constants. Hence, as the inflow
parameters k1 and k2 are proportional to the concentration of Y1, they will have a
constant value. However, when the copy numbers of Y1 and Y2 are small and stochastic
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Fig. 5 The patterns and power spectra for x1 (left) and x2 (right) with noise generated by a violet noise
process. The discrepancy in the power spectra originates from the truncation of the Gaussian process. The
negative species concentrations indicate that a nonlinear theory needs to be used to fully model a violet
noise system. The spectra were averaged over 50 repetitions with simulation time T = 200. The subsystem
size was Ω = 5000 (Color figure online)

Fig. 6 A schematic of an
auxiliary network and its input
to the main system. This is a
specific example of scenario (b)
of Fig. 1 (Color figure online)

fluctuations are important, the predator–prey model (48) can exhibit so-called quasi-
cycles which are stochastic analogue of limit cycles and manifest themselves as peaks
in the power spectra.

Consider this “predator–prey noise” in a Schnakenberg system. Suppose the inflows
k1 and k2 in the Schnakenberg system depend on the presence of the chemical species
Y1, such that k1 ∝ y1 and k2 ∝ y1, where y1 denotes the concentration of Y1. Again,
we assume gi j (t, t ′) = g(t, t ′) for mathematical simplification. In Fourier space, the
power spectrum of Y1 is

PPredator−Prey = α + βω2
(

ω2 + Ω2
0

) + Γ 2ω2
, (49)
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Fig. 7 The power spectra for the species x1 (left) and x2 (right) with noise generated by a stochastic
predator–prey network (McKane and Newman 2005). The power spectra inherited a second peak from the
subsystem which activates oscillatory modes on top of the deterministic oscillation frequency. The spectra
were averaged over 50 repetitions and simulation time T = 200 with m indexing the spatial mode. The
subsystem size was Ω = 100 (Color figure online)

where we use the parameter values from McKane and Newman (2005) α =
0.000384, β = Γ = 0.04, Ω2

0 = 0.016.
Equation (49) has a peak at ω ∼ 0.06, so we expect peaks at a similar frequency for

each nonzero spatial mode in the power spectrum of the Schnakenberg system. The
resulting patterns and the corresponding average power spectra are presented in Fig. 7.
The power spectra gained a second peak in the m = 0 mode and peak in all modes
m > 0 at ω ∼ 0.06. Therefore, it can be seen that a deterministic parent system can
inherit the dynamics of a stochastic auxiliary network and mix it with its own intrinsic
dynamics.

3.6 Mixed Noise

Next, we investigated the case of mixing noise processes; in particular, we consider
an Ornstein–Uhlenbeck process which has a different correlation time for x1 and x2,
τ1 and τ2, respectively. Then, we let τ2 → 0 in order to recover the white noise case
for species two.

We introduce the auxiliary normal stochastic processes ξ , and hence, the spatial
modes of the noise ηκ are described by Hanggi and Jung (1995)
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dηκ

dt
= −

(
1
τ1

0
0 1

τ2

)

ηκ +
(

1
τ1

0
0 1

τ2

)

bκξ, (50)

where bκ is a 2 × 4 matrix satisfying bκbTκ = Bκ . We Fourier transform (50) and
define the matrix,

φ =
(

1
τ1

+ iω 0
0 1

τ2
+ iω

)

(51)

to give

η̃κ = φ−1

(
1
τ1

0
0 1

τ2

)

bκ ξ̃ . (52)

Letting τ2 → 0 and computing the covariance matrix give

N = 〈η̃κ (ω)η̃κ (ω)†〉 =
(

Bκ,11
1

1+ω2τ 21
Bκ,12

1
1+iωτ1

Bκ,12
1

1−iωτ1
Bκ,22

)

, (53)

where Bk,i j are the i j th elements of the Bκ matrix. Note that N is Hermitian and
therefore we expect real power spectra for the patterns of x1 and x2.

Simulating Eq. (15) with the noise process described by (50) gives rise to the
mixed patterns shown in Fig. 8. Note that computationally the limit τ2 → 0 is equal
to setting τ2 to the time step dt . The patterns of both species appear similar to the pure
Ornstein–Uhlenbeck patterns, however, with reduced amplitude.

3.7 Reduced Stochastic Inflows

In the final subsection, we instigate the case of only species x1 being subjected to
stochastic inflows. The species x2 is assumed to only have deterministic inflow at a
rate k2 and η2 = 0. Hence, the correlation matrices N will be reduced to

N =
(〈η̃1κ η̃∗

1κ〉 0
0 0

)

. (54)

In the noise processes studied in this paper, the behaviour of the species is virtually
unchanged and the patterning is robust with respect to disregarding cross-correlations.

4 Conclusion

In this paper, we investigated the effect of stochastic inflows on a deterministic
reaction–diffusion system. We restricted the class of networks considered to mono-
stationary systems and used results from real algebraic geometry to show how
monostationarity is related to network structure. We then introduced a stochastic per-
turbation to an inflow reaction as a truncated Gaussian process with the expectation
value at the deterministic inflow parameter. After linearising, we computed the power
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Fig. 8 The patterns generated for the species x1 (left) and x2 (right) with Ornstein–Uhlenbeck noise and
τ = 100 for x1 and x2 with white noise. The patterns are phenomenologically similar to the Ornstein–
Uhlenbeck patterns, however, with reduced amplitude. The power spectrum of x2 is a mixture of white noise
and Ornstein–Uhlenbeck noise. The power spectra were averaged over 50 simulations with simulation time
T = 1000 and subsystem size Ω = 5000 (Color figure online)

spectra for arbitrary noise colours and showed that in simple cases the power spectra
can be derived as a multiplicative factor. The remainder of the paper consisted of
applying our analysis to the Schnakenberg system and highlighting the effects various
noise colouring can have on a reaction–diffusion system.

We briefly restated the results from the white noise analysis, proceeding to add
coloured noise and then demonstrating its effect by computing the power spectra. In
particular, for the simple case when all species experience the same temporal correla-
tions, the power spectra of the correlations appear as a multiplicative factor in the total
power spectra. Hence, depending on the nature of the correlations they will suppress
or excite temporal frequencies at all spatial modes. Ornstein–Uhlenbeck noise has
a Lorentzian frequency distribution and, therefore, suppresses positive frequencies.
Power law noise can either completely stabilise or destabilise the pattern depending
on the sign of the exponent, α. This is due to the fact that for positive α temporal fre-
quencies at ω = 0 go to infinity and, therefore, all oscillations are suppressed, which
results in a stable pattern which resembles a pattern arising from simulations inside
the Turing regime.

For the simulation times used in this paper, the noise vector was actually constant,
and therefore, deterministic methods could be used to study the stabilising effect of
pink or red noise. The opposite is the case for negative α where the frequency contri-
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bution in the power spectrum increases as ω increases and oscillations are enhanced.
However, certain aspects of the red, blue, or violet, noise cases cannot be explained by
our simple analytic prediction. The significance and the correct analytic description
of blue/violet noise could form a part of further work.

When turning to stochastic auxiliary networks, we see that the reaction–diffusion
system can inherit traits of the dynamics of the auxiliary network. In particular,
we showed that when the auxiliary network exhibits a predator–prey dynamic with
stochastic oscillations, these oscillations can still be observed in the deterministic
main network. We concluded the range of applications by considering mixed noise
with Ornstein–Uhlenbeck input for species x1 and white noise for species x2. In this
case, the system behaves similar to a system with pure Ornstein–Uhlenbeck dynamics
and differences can only be found by a power spectral analysis. Finally, we observed
in the cases considered that when only one species experiences stochastic inflow the
patterns created are, except for potential special cases, similar to the ones when the
inflow to both species is randomised. However, the extent to which such results may
hold in generality is for further work.

Further directions could also include attempting to relate these studies to potential
mechanisms of left–right symmetry breaking amplification in developmental biology,
in particular the impact of induced Nodal production on one side of the embryonic
node, which is hypothesised to be driven by ciliary fluid flows and also highly error
prone (Blum et al. 2014). It is generally asserted that the resulting interactions of the
gene products Nodal and Lefty, which are major contenders as Turing morphogens
(Müller et al. 2012;Chen andSchier 2002; Schier 2003), amplify this initial error-prone
signal to generate robust patterning, driving downstream developmental left–right
asymmetry. However, the ability of Turing systems to amplify the spatially localised,
error-prone and thus stochastic influx of activatormorphogen (Blum et al. 2014, Figure
2) to robustly amplify a stochastic symmetry breaking in self-organisation, as well as
any additional constraints required to do so, is theoretically untested. Thus, examin-
ing the mechanistic basis of these postulates in this critical developmental biological
process provides a fundamental application for the theoretical foundations developed
here.
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