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A neural coding scheme 
reproducing foraging trajectories
Esther D. Gutiérrez & Juan Luis Cabrera

The movement of many animals may follow Lévy patterns. The underlying generating neuronal 
dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality 
in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable 
into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a 
conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing 
fractals from recordings of rat hippocampus during open field foraging. Further insights are gained 
analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides 
a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed 
in animals (including humans) and illustrates an until now unknown way to encode information in 
neuronal temporal series.

In the context of animal movement the earliest reference to the superdiffusion of organisms is a study by Shlesinger 
and Klafter1 about Lévy random walks (1986). Since this first theoretical prediction many studies have evidenced 
that the movement of several animals follow Lévy patterns. It is the case of movement patterns of wandering alba-
trosses2, jackals3, reindeers4, microzooplankton5, swarming bacteria6, spider monkeys7,8, root-feeding insects9,10, 
honey bees11, goats12, fresh water fishes13, snails14, fruit flies15, bony fish, sharks, sea turtles, penguins16–18, fallow 
deers19 and humans20, just to name a few. According to optimal foraging theory21,22, evolution through natural 
selection has led over time to highly efficient searching strategies. Remarkably, it has been shown that for the case 
of revisitable targets Lévy search patterns optimizes the searching process23. Indeed, many works aim at identifying 
the ecological scenarios under which Lévy patterns emerge (or not)18. The study of search patterns in organisms is 
an active research area important not only in the field of movement ecology but also because of political, economic, 
environmental, and health-related reasons24. As a matter of fact, biological searching is a particular instance of a 
random search. Random searches can include quite different situations like searches performed by enzymes on 
DNA strands for specific sequences25. An authoritative account of this problem can be found in24.

A reduced number of works have advanced ideas regarding internal biological dynamics producing these search 
patterns. Examples include anomalous diffusion as a result of stochastic time delayed dynamics in the nervous 
system26, adaptive memory losses of previous behavior27 or suppression of the scale-free power law behavior of 
fruit flies by blocking of synapses in the motor cortex28. In this context, one can ask if there are neuronal codifica-
tion processes underlying the generation of animal search patterns. To the best of our knowledge this question is 
still unanswered, the underlying generating neuronal dynamics is currently unknown. In this work, we describe 
a plausible process for the neuro-dynamical origins of animal Lévy searches. The proposed mechanism is rooted 
in the so-called winnerless competition (WLC) dynamics, also known as cyclic dominance. We will show that 
WLC establishes a theoretical ground that facilitates information extraction from real neuronal dynamics that is 
translatable into Lévy search patterns.

Let us recall that WLC is grounded on heteroclinic cycles, i.e., on a collection of solution trajectories connect-
ing equilibriums, periodic solutions, or chaotic invariant sets via saddle-sink connections. In WLC all partici-
pant agents alternate sequentially in time29,30 in such a way that the system outcome can be considered a coding 
sequence30. WLC has been suggested as an archetypal dynamical principle useful to explain a diverse range of 
nervous responses31–33. WLC remarks the importance of itinerant and competitive dynamics in the brain as an 
information processing device. Experimental and theoretical work provides evidence that transient states can better 
represent information processing in the brain34–39. An interesting example of the application of the WLC principle is 
the case of the mollusc Clione limacina, where it is used to understand the competitive dynamics between statocyst 
receptor neurons and how these deliver control signals for swimming and hunting40.
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Results
Detecting multifractality in WLC residence times.  To set up the theoretical background on which this 
work is based let us consider the set of N coupled Lotka-Volterra (L-V) maps given by the equation

∑ρ( + ) = ( )







− ( )








,

( )=
a t ra t a t1 1

1
i i

j

N

ij j
1

where ρij represents the strength of the inhibitory action of i on j, >a 0i  represents the activity of each neuron, 
>r 0 is a control parameter and = , ,…,i N1 2  is the neuron index. Necessary and sufficient conditions for the 

existence of heteroclinic cycles supporting WLC for different values of N and r are known41. An illustrative temporal 
series showing WLC’s characteristic sequential alternation of the activation between different neurons can be 
observed in Fig. 1a. To extract novel encoding possibilities from WLC let us proceed as follows: i) Given a particular 
neuron i and the time series ( )a ti , we calculate the time spent in the vicinity of the saddle point ( )⁎a ri , i.e., the 
residence time in the k-th visit, δ ( ) = ( ) − ( )⁎ ⁎t r t r t rk
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(departing) the neighborhood of ⁎ai . This time can be accessed simply measuring the width of an activation peak. 
With this information we can build the series of the times, δ δ δ( ), ( ), …, ( )t r t r t r{ }i i
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0 1 , until an arbitrary visit index 
>n 0. An illustrative example of this series is depicted in Fig. 1b. ii) At this point, the differences between residence 

times of visits to the saddle, separated by a time interval , is calculated as  δ δ∆ ( , ) = ( ) − ( )+r t r t rk
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temporal series can be assembled according to (at least) two different schemes: I) the temporal series calculating 
∆ ( , )rk

i  for an specific saddle and a fix value of the displacement parameter,
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and II) the temporal series calculating ∆ ( , )rk
i  for an specific saddle point and the same value of the displacement 

parameter, but built including all the activation peaks,

Figure 1.  Scheme II processing of the temporal series and the power spectra for the difference between 
residence times on the (r, f)-plane. (a) Temporal series showing winnerless sequential alternation of activation 
between different neurons for Eq. 1. (b) Temporal behavior of the time spent in the vicinity of the saddle point , 
δk

1. Note the complex variability of the saddle residence times. (c) Difference between residence times according 
to scheme II ( = )D 6 . (d) Power spectrum for a temporal series as in (c). (e) Power spectra for the set of r values 
satisfying necessary and sufficient conditions for winnerless competition and a parameter step ∆ = −r 10 3.  
(f) Zoom on the subset of values ∈ . , .r [1 95 2 05] and a parameter step ∆ = × −r 5 10 5.
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for arbitrary n. Note that these temporal series depend on the value of r. A particular result obtained applying 
scheme II is shown in Fig. 1c. The frequency content of the resulting oscillations is revealed by the power spectrum 
as is shown in Fig. 1d. This is a result obtained for a fixed value of the control parameter r. Therefore, we can cal-
culate the power spectrum for all the values of the control parameter sustaining WLC behavior41, i.e., in the range 
< <r1 3. The result of this calculation is displayed in Fig. 1e . It can be observed that for certain values of r there 

seems to be no frequency content, i.e., the differences between residence times are constant. It has been demon-
strated41 that residence times may show different regimens. In particular, they can display regimes of constant 
increments with the activation time (k), yielding constant differences between residence times. An additional 
situation producing constant differences corresponds to periodic residence times in which the constant equals to 
zero. Now, going back to Fig. 1e, it can be seen that Δ r-regions with nonzero frequency display bands containing 
Δ r-regions without frequency content. When observed in a smaller scale, a similar arrangement is found, evoking 
a certain ordering concealed on the ( , )r f  space (Fig. 1f). To analyze such a potential ordering we proceed by 
submitting the patterns on the ( , )r f  plane to a multifractal analysis. On the ( , )r f -plane two different set of points 
were analyzed: i) ( , )r f  points where ( ) ≠S f 0r

 and ii) ( , )r f  points where ( ) =S f 0r
. The ( , )r f -planes for schemes 

I and II are shown in Fig. 1a,b, respectively. In this representation, the black points correspond to values of r and 
f where ( ) =S f 0r

. These sets of points were analyzed using the Chlabra et al. method for the calculation of the 
singularity spectrum42. Multifractality is determined plotting the Hausdorff dimension ( )f h  versus the Hölder 
exponent h43. A multifractal shows a characteristic ∩− shape curve as those depicted in Fig. 2c. The resulting 
singularity spectra for sets i) and ii) and both schemes, reveals multifractality only for the set of points 

Figure 2.  Hidden Multifractality. The set of points on the plane (r, f) where the power spectrum reveals no 
frequency content (black points), describe multifractal patterns both for (a) scheme I and (b) scheme II. These 
results are for neuron i =  1 with =D 6, r was scanned with a step ∆ = .r 0 001. (c) Multifractal singularity 
spectra, ( )f h  vs. h, is determined for scheme I (black line) and scheme II (red line), while (d) no multifractality 
is detected for the set of points with nonzero frequency content, independently of the scheme used. (e) From the 
multifractal pattern and a fix value of the control parameter, = .r 1 541, a fractal dust can be drawn. (f) Fractal 
dust gaps induce a superdifussive random walk on the plane with δ θ≡ ( ) ( )x f cosi  and δ θ≡ ( ) ( )y f seni ; 
∪θ π∈ , )[0 2  and ∈ , −i n[1 1]. (g) It superdiffuse with a Hurst exponent = .H 0 689 calculated from the 

mean squared displacement of (f) (black line) and the generalized Hurst exponent (red line).
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corresponding to ( ) =S f 0r
 (see Fig. 2c,d), using both schemes. This outcome is robust when considering different 

values of N and under changes in the precision of r.

Unveiling the neural code.  We have been able to show hidden multifractality in WLC residence times. If 
transient sequential dynamics is subjacent to neuronal information processing31, it seems logical to us to enquire 
how this multifractality could encode neuronal information. We address this question in the following lines. Let 
us start at Fig. 2e, there we show the fractal dust, that we will denote by ( ) = , , …,r m m m{ }n0 0 1 , for a given 
>n 0. Such fractal dust has been extracted from the multifractal depicted at Fig. 2b, given an arbitrarily chosen 

fixed value of the control parameter, = .r 1 5410 . Each mi represents a frequency value where ( ) =S f 0r0
. As the 

precision used to calculate the power spectrum is increased (∆ → )f 0  it is possible to detect more values of f sat-
isfying the condition ( ) =S f 0r0

. Thus, a fine-grained dust is approached asymptotically. The fractal dust shown 
in Fig. 2e has fractal dimension .~d 0 841. Now, lets consider the possibility of ( )r0  being a coding pattern, 
where the difference in the position of the dust points, the gap δ ≡ −+f m mi i i1  ,  ≤ ≤ −i n1 1, carries useful 
functional information. With this idea in mind we can built a random walk on the plane such that δ θ≡ ( ) ( )x f cosi , 

δ θ≡ ( ) ( )y f seni , were θ (i) is arbitrarily selected from a random uniform distribution in the interval π, )[0 2  
( , − )n[1 1] . Figure 2f shows the resulting random walk. It is characterized by a short scale spatial exploration 
alternated with jumps covering larger scales. These movement yields a Hurst exponent . >~H 0 689 1

2
 (Fig. 2g), 

i.e., it is a superdiffusive movement. We stress that not all sets ( )r  display the fractal structure required to yield 
a superdiffusive pattern. The reported pattern makes necessary tuning of the control parameter r.

As we said before, WLC dynamics is rooted in the existence of heteroclinic cycles. These trajectories can connect 
not only equilibrium points but also more complex solutions, as periodic or chaotic sets, producing temporal 
bursting behavior. We would like to know if the approach used above can also account for cases where bursting 
behavior is present. In such a case, instead of dealing with the difference between the residence times we would be 
dealing with the difference between the residence times in each one of the cycles composing a complex oscillation, 
i.e., the width of each constituent bursting spike. To better explain this case consider the temporal series obtained 
with Eq. (1) for the particular case of = .r 2 962 (Fig. 3a). This signal shows evident bursting behavior. By estab-
lishing an arbitrary edge value (red line in Fig. 3a) we can determine the width of each constituent bursting spike 
and with this information we can proceed to calculate the difference between those widths (Fig. 3b) according to 
scheme II. After calculating the power spectrum for this temporal series (Fig. 3c) we extract a fractal dust, as shown 
in Fig. 3d. The fractal dimension of this dust is .~d 0 873. Indeed, this fractal induces a bidimensional random 
walk (Fig. 3e) with a temporal evolution of its mean squared displacement characterized by a Hurst exponent 

. >~H 0 858 1
2
  and a distribution of steps characterized by an exponent µ − .~ 1 943 (Fig. 3g). This case exemplifies 

how a superdiffusive Lévy walk can be obtained from the underlying WLC multifractality. Note that the analysis 
of bursting spikes yields larger temporal series, therefore facilitating a proper estimation of the characteristic 
exponent.

At this stage we have shown how a superdiffusive Lévy pattern can be obtained from WLC multifractality. 
However, our demonstration was not done using a realistic neuronal model. To overcome this limitation we con-
sider a conductance based neuronal model also showing WLC dynamics44. Details about the model and its simu-
lation can be found in the Supplementary Information. The conductance based model was analyzed with the same 
procedure as with the L-V map. Results for the scheme II are reported here. The temporal series obtained from the 
conductance model is shown in Fig. 4a and the series corresponding to the difference in residence times for visits 
separated a time interval =D 3, is depicted in Fig. 4b. The observed behavior is qualitatively similar to the one 
obtained from the differences in the case of the L-V map. The power spectrum for this signal is depicted in the 
Fig. 4c (calculated with 210 data points). We calculated power spectra for different values of the model parameter 
gaba and, following the same treatment as with the L-V model, the set of values ( , )gaba f , satisfying ( ) =S f 0gaba

, 
are represented on the plane, as depicted in Fig. 4d. A multifractal analysis reveals multifractality for the set of 
points satisfying ( ) =S f 0gaba

 (see Fig. 4e). In particular, for a fix value of gaba =  50 nsec, we can extract a fractal 
dust with dimension .~d 0 612, as shown in Fig. 4f. This fractal allows for the construction of a random walk 
(Fig. 4g) whose mean squared displacement obeys a power law with a Hurst exponent ,~H 0 717. The distribution 
of steps does not show a promising shape. Even so, we fitted a power law to this collection of points obtaining an 
exponent µ − .~ 4 643. Clearly, this result is not conclusive of Lévy superdiffusion.

Decoding Lévy walks from experimental neuronal data.  Notwithstanding these outcomes it is still 
unclear if real experimentally determined neural time series would share the same dynamics as the biomathematical 
models analyzed above. We address this concern analyzing temporal series from multichannel simultaneous record-
ings made from layer CA1 of the right dorsal hippocampus of three Long-Evans rats during open field tasks in 
which the animals chased randomly placed drops of water or pieces of Froot Loops while on a elevated square 
platform45,46. Here we show results from one of these recordings. The temporal series (see Fig. 5a) was processed 
following the scheme II. Figure 5 resumes our findings: it can be seen that the analyzed experimental data behaves 
as expected: The Δ -series displays complex oscillations (Fig. 5b) and exhibits a power spectrum (see Fig. 5c, it has 
been calculated with a temporal series of 217 points) whose zero power values allows us to extract a fractal set 
(Fig. 5d), with fractal dimension .~d 0 707, that induces a Levy walk on the plane (Fig. 5e) characterized by a Hurst 
exponent .~H 0 942 (Fig. 5f) and a power law distribution of steps with an exponent µ − .~ 1 301 (Fig. 5g). Our 
approach seems to reveal an until now unknown coding mechanism based on a hidden multifractal. Indeed, it 
also points towards a relation between real neuronal dynamics and WLC, as evidenced by an excellent matching 
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between theory and the outcomes obtained with the Long-Evans search related experimental temporal series. 
While these measures may not involve only motor related neurons we assume that the signal is carrying the relevant 
information related to the search process.

To extend our analysis we decided to further explore different available datasets. Consequently, we analyzed 
extracellular recordings from the anterior motor cortex neurons related to voluntary movement in mice47 (see 
further details in the Supplementary Information). Results from this insight are summarized in Fig. 6. Again, a 
fractal set (this time with dimension . )~d 0 603  is obtained from the zero power values of the spectrum (calculated 
with a temporal series of 210 points), inducing a superdiffusive random walk with a Hurst exponent ,~H 0 702. 
When analyzing the steps’ distribution it is found that the quality of the obtained profile is very poor. Even so, we 
attempt to fit a power law with exponent µ − .~ 2 708. Obviously, this outcome is far from conclusive of a Levy 
superdiffusion random walk. While this latter case is not fully satisfactory, it can be said that the present approach 
has been successful unveiling the fractal code hidden in the two motor neuron’s series - i.e., both potentially related 
with searching - and obtaining (at least) superdiffusion. But, is this behavior exclusive of motor neurons or can it 
also be detected in non motor neurons - i.e., in neurons not directly related with searching - ? To answer this 
question, we analyze available data from experiments with the grasshopper (Locusta migratoria) auditory receptor 
cell48 (see Supplementary Information). Results for the grasshopper are shown in the Fig. 7 (the power spectrum 
was calculated with only 210 available points). The behavior of the mean squared displacement correspond to a 
superdiffusive regime characterized by a Hurst exponent ,~H 0 779 (Fig. 7f). However, the profile shown by the 
distribution of steps is insufficient to draw a solid conclusion. Again, we attempt to fit a power law, obtaining an 
exponent µ − .~ 2 498. This result reveals that the superdiffusive behavior is not exclusive to motor neurons record-
ings and that they can also be obtained from auditory receptor cells.

Discussion
It has been shown that WLC multifractality is an useful framework to generate neurologically based superdiffu-
sive search patterns and to reproduce Lévy search patterns from a search related experimental temporal series 
(Long-Evans rats). Non conclusive results were obtained for Lévy search patterns in the cases of modeled and 

Figure 3.  Lévy walks can be obtained from bursting temporal series. (a) Temporal series showing bursting 
behavior for Eq. (1) with = .r 2 962. To measure spike’s width an arbitrary threshold is established (red line).  
(b) Difference between residence times on each constituent bursting spike (spike’s widths), according to scheme 
II ( = )D 6 . (c) Power spectrum of a temporal series calculated with 216 points as shown in (b). (d) A subset of 
fractal dust for ∈ . ,f [0 397 0400] obtained from the power spectrum. (e) Induced random walk on the plane.  
(f) Mean squared displacement versus time calculated as in Figure 2(g) and (g) distribution of steps lengths for 
the induced random walk (e). 
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experimental neuronal time series not related with searching tasks. However, let’s note that this result could be 
caused by the limited number of points available to generate a Lévy random pattern. The power spectrum’s fre-
quency precision is proportional to the number of data used in its calculation. In the cases of L-V and Long-Evans 
rats the temporal series were large enough to yield dense power spectra resulting in rich fractal dust. These sets 
were able to induce a random walk running on a diversity of steps lengths that were able to draw a well profiled 
power law. The detailed observation of the power spectra in Figs 4c,6c and 7c indicates that these power spectra 
do not show the frequency precision required to generate a fine grained fractal dust. Accordingly, one could expect 
to obtain Lévy search patterns also from larger temporal series in these situations. However, this can only be fully 
corroborated analyzing long temporal series. Thus, we have shown that Lévy search patterns can be obtained from 
non neurologically meaningful dynamics -the L-V equations- and real neuronal data related to a search process 
-the Long-Evans dataset-, while superdifussive random walks have been obtained in all the considered cases.

The conditions used in the Long-Evans (L-E) rat experiments do not seem to correspond to a search with 
revisitable targets as is required for an optimizing Lévy walk23. However, in this case once the rat drank the water 
the researchers dropped new drops randomly (György Buzsáki, private communication). While this fact does 
not exclude a particular spot to be filled again, chances are that this happened rarely. However, the animal has no 
information about this fact. Therefore, there is no reason to think that the animal is not revisiting small regions. 
It could happen if the water or food served in different instances fell randomly around the same area. Indeed, the 
rat would revisit such regions. Therefore we would not exclude revisiting dynamics in the L-E case. The biological 
mechanisms currently proposed to explain the generation of Lévy superdiffusion are not based on neuronal dynam-
ics as the actual mechanism of WLC multifractality based coding does. The present approach may not show an 
evident relation with prioritization processes49 or with bursts of rapidly occurring reorientations50; two processes 
that have been related with the generation of superdiffusion24. In particular, in our case reorientation was dictated 
by an uniform distribution, i.e., unable to produce bursts of rapidly occurring reorientations. However, as it was 
already explained, in the current mechanism superdiffusion is generated by picking up randomly distances between 
the points of the fractal dust. This procedure may lead to a consecutive (bursting) extraction of large differences 

Figure 4.  Multifractal induced superdiffusion in a conductance model. (a) Temporal series showing bursting 
of neural activity in the conductance model (used threshold in red). (b) Temporal behavior of the differences ∆i 
( = )D 3 . (c) Power spectra calculated with 210 points for (b). (d) (Black) points satisfying ( ) =S f 0gaba

 on the 
plane (gaba, f), (yellow) points not satisfying such a condition. (e) Multifractal singularity spectra for the set of 
black points. (f) A fractal dust determined from the cero frequency points of (d) for a fix value of gaba.  
(g) Induced superdiffusive random walk and its (h) mean squared displacement calculated as in Figure 2(g). (i) 
Steps distribution (best fit in red).
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alternated with the consecutive (bursting) extraction of small ones. Therefore, one could conjecture the existence 
of some coincidences between the above mentioned ideas and the current mechanism.

In addition, a new approach to analyze coding in neurons has been presented. It may be possible to stimulate 
new experimental approaches to improve our insights into neuronal multifractal coding. The grasshopper results 
suggest that the underlying multifractality could be found at several processing levels, including receptor neurons. 
There is evidence that the metathoracic auditory system - to which auditory receptor neurons belong - could be a 
feedforward network51, however the presence of small but significant correlations between two receptor neurons 
does not allow to rule out the possibility of undetected weak synaptic contacts among receptors51, even though to 
present knowledge no synapses exist among them52. Our results favor the hypothesis that some sort of coupling 
between auditive receptors could be present. It seems important to recall pioneering results on the auditive recep-
tor interaction of Locust that suggested electrotonic interaction among receptors in the region of the subreceptor 
plexus, given the absence of schwann sheaths and the penetration of receptor axons by collateral receptor axons53. 
Hence, it may be conjectured that auditive receptor neurons form a sensory network that support WLC multi-
fractality. Notoriously, studies of sensory arrays mimicked by cellular automata excitable elements have shown 
collective nonlinear properties that improve input sensitivity and dynamic range54.

Instead of designing an experiment on the particular aspect of the generation of movement patterns perhaps 
it could be better to pay attention to the more general context of neuron coding. One may envisage that a possible 
experimental validation of this study could be achieved in a set up consisting of a neural system with a fractal 
dust precisely determined while the system controls a particular response. Subsequently, such a neural activity 
would be optogenetically turned off and the response triggered with a different simulated signal resembling the 
original one only in the fractal dust composition. An animal model for such a test could be the peripheral axons 
in the rat’s sciatic nerve where optical inhibition of motor neurons and muscle activity in vivo55,56 and in freely 
moving57 non-transgenic animals has been demonstrated. A possible limitation with this idea is the requirement 
of real-time monitoring of the local field of a population of neurons in the targeted branch of the rat’s sciatic nerve 
for its processing and fractal dust determination - this information would be used to produce the faked activation 
response after optical inhibition -. In this context it is still not clear how to achieve the process of faked signal 
injection or what would be the dimensionality of such a signal. No doubt the design of a proper experiment would 
need deeper insights to identify best fitted alternatives and/or possible simpler models.

Figure 5.  A superdiffusive Lévy random walk can be decoded from a real searching task. (a) From the 
temporal series of multichannel simultaneous recordings (here only a subset is shown) made from layer CA1 of 
the right dorsal hippocampus of three Long-Evans rats45,46, using the red threshold we can determine (b) a 
complex temporal behavior for the quantity ∆ ( = )D 2i  and its (c) power spectra calculated with 217 points.  
(d) From the set of values satisfying ( ) =S f 0 a fractal dust is determined and from the gaps in this fractal a (e) 
2D random walk is induced. (f) Its mean squared displacement calculated as in Figure 2(g), evidencing 
superdiffusion; while its (g) steps distribution show it is a superdiffusive Lévy pattern (best fit in red).
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Summarizing, evidence of a WLC multifractality based coding mechanism was presented. This phenomenon 
unveils a parameter-tuned fractal set that induces a 2D superdiffusive Lévy random walk for some of the cases 
analyzed. The current insight provides a theoretical ground to analyze modeled and real experimental neuronal 
time series. This work shows evidence about the possible neuronal basis of observed Lévy search patterns in 
animals. It should be remarked that the observed patterns are a result of tuning a control parameter. There are 
control parameter values for which a fractal dust able to induce superdiffusion can’t be obtained. We call attention 
to this point as it may be related to the fact that certain animals may not be following superdiffusive Lévy search 
patterns18,24 or displaying a multi-scale pattern58.

One could conjeture that if Lévy search patterns are an optimal searching solution, it could also be present in 
the computational exploration of a space of solutions associated to complex nervous system tasks. Obviously, a test 
of this conjeture requires further and deeper insights. Finally, it is well known that each spike carries information59. 
Remarkably, our approach is able to extract the information contained in the width of each spike -the duration 
of each bursting spike- to translate it into a detectable code. In this context, it must be noted that detectability is 
related to the determination of the constituent frequencies. However, from the point of view of nervous infor-
mation processing, operating conditions based on long temporal series may be impractical. This suggest that the 
encoding mechanisms presented here may be well suited for better performance in a network context were each 
neuron generates its own (low-intermediate precision) fractal dust based on short temporal series, while the full 
network could induce well profiled Lévy walks superimposing all the generated single fractal dust. Our under-
standing of the discovered mechanism is still in an initial stage implying that it may contain a certain degree of 
speculation. Maybe the observed multifractality is also present in different nonlinear dynamical scenarios with 
the same coding potential.

Methods
Simulation of the L-V map was done using the connectivity matrix specified in the Supplementary Information. 
The conductance model was numerically integrated with a backward differential formula (more details in the 
Supplementary Information). Peaks widths for the models and the experimental time series were determined fixing 
the threshold maximizing the number of widths. The Hurst exponents were determined using the Generalized 
Hurst exponent approach60 and the mean squared displacement was plotted based on the displayed random walk.

Figure 6.  Superdiffusive random walks decoded from mice motor neurons. We extend our analysis to 
include the (a) action potential from adult mice (used threshold in red) whose (b) ∆ ( = )D 2i  signal also 
behaves in a complex manner displaying a (c) power spectrum calculated with 210 points with a diverse 
frequency content. From values of frequency satisfying ( ) =S f 0 we can determine (d) a fractal dust whose gaps 
induces a (e) 2D random walk with (f) a superdiffusive mean square displacement calculated as in Figure 2(g). 
(g) The number of available data points used in the power spectra calculation is not enough to detect the 
possible Lévy character of this superdiffusion (best fit in red).
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