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Abstract

Background: Rich literature has reported that there exists a nonlinear association between temperature and
mortality. One important feature in the temperature-mortality association is the minimum mortality temperature
(MMT). The commonly used approach for estimating the MMT is to determine the MMT as the temperature at
which mortality is minimized in the estimated temperature-mortality association curve. Also, an approximate
bootstrap approach was proposed to calculate the standard errors and the confidence interval for the MMT.
However, the statistical properties of these methods were not fully studied.

Methods: Our research assessed the statistical properties of the previously proposed methods in various types of
the temperature-mortality association. We also suggested an alternative approach to provide a point and an
interval estimates for the MMT, which improve upon the previous approach if some prior knowledge is available on
the MMT. We compare the previous and alternative methods through a simulation study and an application. In
addition, as the MMT is often used as a reference temperature to calculate the cold- and heat-related relative risk
(RR), we examined how the uncertainty in the MMT affects the estimation of the RRs.

Results: The previously proposed method of estimating the MMT as a point (indicated as Argmin2) may increase
bias or mean squared error in some types of temperature-mortality association. The approximate bootstrap method
to calculate the confidence interval (indicated as Empirical1) performs properly achieving near 95% coverage but
the length can be unnecessarily extremely large in some types of the association. We showed that an alternative
approach (indicated as Empirical2), which can be applied if some prior knowledge is available on the MMT, works
better reducing the bias and the mean squared error in point estimation and achieving near 95% coverage while
shortening the length of the interval estimates.

Conclusions: The Monte Carlo simulation-based approach to estimate the MMT either as a point or as an interval
was shown to perform well particularly when some prior knowledge is incorporated to reduce the uncertainty. The
MMT uncertainty also can affect the estimation for the MMT-referenced RR and ignoring the MMT uncertainty in
the RR estimation may lead to invalid results with respect to the bias in point estimation and the coverage in
interval estimation.
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Background
Ambient temperature has been shown to be a risk factor
for mortality in numerous epidemiological studies [1–5].
Researches have reported that there exists a nonlinear
association between temperature and mortality, charac-
terized by U- or J- shaped association [1–3]. One im-
portant feature in the temperature-mortality association
is the minimum mortality temperature (MMT), which is
defined as the temperature at which the lowest mortality
is achieved. The MMT has been regarded as a threshold
point in describing the population susceptibility to
temperature [5] as mortality increases with temperature
increasing or decreasing from the MMT. Therefore, the
MMT is often used as a reference temperature to quan-
tify the relative risk (RR) related to cold or hot tempera-
tures in many previous studies [1, 5].
Despite the importance of the MMT, little research

has been conducted on statistical inference on the
MMT. A recently proposed approach for estimating the
MMT in a nonlinear temperature-mortality association
is to determine the MMT as the temperature at which
mortality is minimized in the estimated temperature-
mortality association curve [1, 5]. This approach pro-
vides a point estimate but the corresponding uncertainty
is not quantified. Another study [6] proposed an ap-
proximate bootstrap approach to calculate the standard
errors and the confidence interval for the MMT. The
study applied the method to the data for 52 cities in
Spain and showed that the uncertainty can be small or
large depending on the estimated association pattern
which varies among cities.
The statistical properties of the previously proposed

methods were not fully studied. Our research aims to as-
sess these methods in various types of the temperature-
mortality association via a simulation study. Then, we
suggest an alternative approach to provide a point and
an interval estimates for the MMT, which may improve
upon the previous approach if some prior knowledge is
incorporated for the potential range of the MMT. We
compare the previous and alternative methods
through a simulation study and an application. Add-
itionally, as the MMT is often used as a reference
temperature to calculate the cold- and heat-related
RRs [1], we assess how the uncertainty in the MMT
affects the estimation of the RRs.
In Methods section, we describe (1) how we model the

temperature-mortality association, (2) the previous and
alternative methods to calculate a point and an interval
estimates for the MMT, (3) the design of the simulation
study, and (4) the modeling details of the US data ana-
lysis. In Results section, we report the results from the
simulation study and the data analysis for the 135 US
cities. We included discussions and conclusions in the
two final sections.

Methods
Modeling the temperature-mortality association
Let Yt be the daily death count on day t, with t = 1 ,… ,
N, and xt = (xt, xt − 1,…, xt − L)

′ be the vector of daily
mean temperatures on day t and over the previous L
days. We model the association between Yt and xt using
a generalized linear model (GLM) with a quasi-Poisson
family.

Y teQuasi−Poisson μtð Þ

log μtð Þ ¼ αþ s xt ;ηð Þ þ
XJ

j¼1
hj ujt; ; γ j

� �
ð1Þ

where μt is the expected death count on day t, s(·) is a
flexible function characterized by parameter η to depict
the effects of temperature, ujt is the j-th confounding
variable measured on day t, hj(·) is a flexible function to
represent the effects of j-th confounding variable, and γj
is the corresponding parameter. We assume a quasi-
Poisson family to allow for overdispersion (meaning that
the variance of the outcome counts is higher than
predicted under a Poisson distribution) which is a well-
known feature observed in the time-series analysis for
temperature-mortality association [7]. For s(), we use the
distributed lag nonlinear model (DLNM) [7] to describe
the nonlinear and lagged dependency as has been used
in many of the previous studies [1, 2, 5–8]. In DLNM, a
cross-basis is specified for temperature and lag. Let ϕ1 �ðÞ;
⋯;ϕvx �ðÞ be the basis to describe the temperature-
mortality association and ψ1 �ðÞ;⋯;ψvl �ðÞ be the basis to
depict the lag-mortality association. The DLNM is
expressed as.

s xt ; ηð Þ ¼
Xvx

j¼1

Xvl

k¼1
r′tjckηjk ð2Þ

where rtj = (ϕj(xt), ⋯ , ϕj(xt − L))
′ is the vector of xt trans-

formed through the j-th basis ϕj(·) in the temperature
dimension and ck = (ψk(0), ⋯ , ψk(L))

′ is the vector de-
rived by applying the k-th basis ψk(·) for lag dimension

to the vector (0, ⋯ , L)′. Then, η ¼ η11;…; ; ηvxvl

� �′
is

the vector of coefficients for the cross-basis with the di-
mension vx × vl. Different choices of the basis can be
considered in DLNM and model selection criteria such
as QAIC or QBIC (Akaike and Bayesian information cri-
teria for models with overdispersed outcomes fitted
through quasi-likelihood) can be used to determine an
optimal choice [8].
In order to estimate the lag-cumulated temperature-

mortality association, η is reduced through the following
transformation [9].

β ¼ Mη

V βð Þ ¼ M V ηð Þ MT ð3Þ
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where M ¼ 1′Lþ1ð ÞC⨂I vxð Þ is a reducing matrix, β
¼ β1; ; β2;…; ; βvx

� �′
is the reduced parameter, and V(β)

is the associated error (co)variance matrix. In M,

C ¼ c1;⋯; ; cvlð Þ ¼
ψ1 0ð Þ ψ2 0ð Þ
ψ1 1ð Þ ψ2 1ð Þ

⋯
⋯

ψvl 0ð Þ
ψvl 1ð Þ

⋮ ⋮ ⋱ ⋮

ψ1 Lð Þ ψ2 Lð Þ ⋯ ψvl Lð Þ

0BBB@
1CCCA
ð4Þ

and ⨂ is the notation of the Kronecker product. Then,
β is the parameter to describe the temperature-mortality
association cumulated over the lags.

Estimating the minimum mortality temperature (MMT)
First, we describe the previously proposed approach to
estimate the MMT [6]. Let β be the maximum likeli-
hood estimate obtained from model (1) through (3).
Given β, the previously proposed point estimate for the
MMT is a solution of argmin xQxβð Þ where Qx

¼ ϕ1 xð Þ;⋯;ϕvx xð Þ� �
is the vector of basis variables by

applying the basis for temperature to a particular
temperature value x, and x ranges from the minimum to
maximum temperatures observed in the data. The solu-
tion can be the minimum or maximum temperature, in
which case it has been suggested to constrain the solu-
tion within the 1st – 99th percentiles of the temperature.
To quantify the uncertainty, an approximate bootstrap
method was proposed to derive the empirical distribu-
tion of the MMT. Based on the maximum likelihood
principle [10], if the sample size is sufficiently large, it
can be assumed that the true β follows a multivariate
normal distribution with the mean as the estimate (β )
and the variance as the corresponding error (co)variance
(V βð Þ) [11–13]. Then, one can simulate the true β and
the true MMT through the following procedure.

sample β ið ÞeMVN bβ;V bβ� �� �
θ ið Þ ¼ argmin xQxβ ið Þ

� �
ð5Þ

where (i) indicates i-th simulated sample, β(i) are inde-
pendent and identically distributed sample, and θ(i) are
the samples to approximate the empirical distribution of
the true MMT. Then, based on the empirical distribu-
tion of the MMT, it was proposed to use the empirical
percentiles (i.2., 2.5th - 97.5th) as an interval estimate
for the MMT (i.e., 95% confidence interval (CI)).
Now, we describe an alternative procedure to estimate

the MMT, which may improve upon the previous
method when a prior knowledge is available on the
MMT. In the previous approach, the empirical

distribution for the MMT is determined by the multi-
variate normal distribution with mean (β ) and (co)vari-
ance ( V βð Þ ), and thus the uncertainty for the MMT
tends to be large if V βð Þ is large. In such case, adding
some restrictions for the MMT distribution based on a
prior knowledge may reduce the uncertainty. Applying a
Bayesian inferential framework, we specify a prior distri-
bution for the MMT and combine it with the sampling
procedure (5). That way, a posterior distribution for the
MMT is derived as a trade-off between the prior know-
ledge and the information in the data. In the context of
the MMT, a realistic prior would be a Uniform distribu-
tion with a support (α1 , α2) representing a plausible
range of the MMT. The support can vary depending on
the level of informativity of prior knowledge (e.g., min-
imally informative prior range: 1st – 99th percentiles of
observed temperature distribution or strongly inform-
ative range: 50th -70th percentiles). With such prior as-
sumption, the posterior distribution can be obtained
through the sampling procedure (5) by discarding the
samples of θ(i) which do not fall within the range of
(α1,α2). That is,

sampleβðiÞsuchthatα1≤ argmin

 
xQxβðiÞ

!
≤α2

θ ið Þ ¼ argmin xQx β ið Þ

� �
ð6Þ

Then, the empirical mean (or median) and percentiles
(e.g., 2.5th - 97.5th) can serve as a point and an interval
estimates for the MMT. The empirical distribution of the
MMT is often not symmetric but skewed, and in such
case, the choice of percentiles may be adjusted depending
on the shape of the empirical distribution (e.g., 0th – 95th
percentiles for a highly right-skewed case).

Estimating the relative risk (RR) accounting for the
uncertainty of MMT
Here, we describe how we estimate an RR with the
MMT used as a reference temperature accounting for
the uncertainty in the MMT. Given the Monte Carlo
samples of β(i) and θ(i) obtained through procedure (5)
or (6), one can calculate an RR comparing an arbitrary
temperature value x and the MMT as

ζ ið Þ ¼ Qx−Qθ ið Þ

� �
β ið Þ

exp ζ ið Þ
� � ¼ RR ið Þ ð7Þ

where ζ(i) indicates the log of RR calculated using i-th
sample of β(i) and θ(i) and RR(i) is the i-th sample of the
true RR. Then, a point and an interval estimates for the
RR can be derived from the empirical distribution of the
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RR in the same way as the MMT estimates. Often, scien-
tific interest is on the cold- and the heat- related RRs
which are defined as the RRs comparing the 1st percentile
of temperature distribution and the MMT and comparing
the 99th percentile and the MMT, respectively. Hereafter,
we call these RRs as the cold- and heat- related RRs.

Simulation study
Simulation study was carried out to compare different
methods in estimating the MMT and the cold- and heat-
related RRs. We considered six methods. The first one
(named as Argmin1) is to use the solution of the
argmin xQxβð Þ without any constraint as a point esti-
mate for the MMT and to use the MMT estimate for
calculating the RRs. The second method (named as Arg-
min2) is the same as the first one except that the solu-
tion is constrained within the 1st - 99th temperature
percentiles. The third method (named as Empirical1) is
to use the empirical mean and percentiles (2.5th –
97.5th) as a point and an interval estimates for the
MMT without any prior knowledge combined, and to
calculate the RR accouting for the MMT uncertainty.
The fourth, fifth, and sixth methods (named as Empiri-
cal2strong, Empirical2moderate, and Empirical2minimal) are
the same as the third one except that the empirical dis-
tribution of MMT is derived with prior knowledge.
Empirical2strong, Empirical2moderate, and Empirical2minimal

incorporate strongly, moderatly, and minimally inform-
ative priors, respectively.
To generate the data, four different scenarios were

considered for the temperature-mortality association: U-
shape (Scenario 1), reverse J-shape (Scenario 2), rotated S-
shape (Scenario 3) and sector shape (Scenario 4).
Additional file 1: Figure S1 displays the shape of the true
RR curve and the true MMT. To obtain the model param-
eters for each scenario, we used part of the US data ana-
lyzed in the application section. For scenarios 1, 2, and 4,
we fit eqation (1) for the data of New York with
temperature metric as 0–2 day moving average, 0–1 day
moving average, and the current day value, respectively.
For scenario 3, the same model was fit with 0–3 day mov-
ing average for the data of Ockland. For all scenarios, we
controlled for the day of week using indicator variables
and for the long-term and seasonal pattern using natural
cubic spline with 8 degree of freedom for each year. For
s(·), as we use moving average as temperature metric, we
used one-dimensional basis (quadratic B-spline with the
knots placed at the 10th, 75th, and 90th percentiles). Once
the parameters are estimated, the mortality data were gen-
erated from the fitted model using the covariates in the
data for each scenario. For the distribution for mortality,
we considered Quasi-Poisson distribution with the over-
dispersion parameter set to be equal to the model fit.

For each scenario, we generated 1000 replicates of data-
set. For each dataset, we fitted eq. (1) with the same speci-
fications used to generate the data and obtained the
coefficient estimates. Because we use moving avearage as
temperature metric, which is a special case of distributed
lag nonlineear model, the coefficients in eq. (1) can be
considered as the reduced coefficients (β) in eq. (3). Using
the coefficient estimates, we estimated the MMT and the
cold- and heat-related RRs by the six different methods.
For Empirical2, we incorporated prior knowledge with dif-
ferent levels of informativity using Uniform prior with dif-
ferent supports. Empirical2strong uses, as the prior support,
the 70th - 95th temperature percentiles for scenarios 1 and
3, the 40th - 65th for scenario 2, and the 1st - 10th for sce-
nario 4. Empirical2moderate uses the 50th -99th percentiles
for scenario 1 and 3, the 30th – 80th for scenario 2, and the
1st – 50th for scenario 3. Empirical2minimal uses the 1st
-99th percentiles for all scenarios. These prior ranges are
indicated in Additional file 1: Figure S1. To compare differ-
ent methods, we calculated mean bias (Bias) and root mean
squared error (RMSE) for the point estimate and coverage
probability (%CP) and mean length (Length) of the interval
estimate for the MMT and the cold- and heat-related RRs
using the 1000 replicates of dataset.
Additionally, we conducted a series of sensitivity ana-

lysis to evaluate the robustness of different methods
varying the sample size and the specification of the
splines and knots in modeling the temperature-mortality
association. We considered five methods excluding
Empirical2moderate as its performance is between Empiri-
cal2strong and Empirical2minimal. First, we varied the
sample size, 5 and 10 years of data, and compare with
the full period (22 years) of data. Second, we varied the
splines, natural cubic B-splines and quadratic B-splines,
in the true and fitted models. Finally, we varied the
locations of the knots, a set of 25th, 50th, and 75th
temperature percentiles and another set of 10th, 75th,
and 95th percentiles, in the true and fitted models.

Application
We applied three methods (Argmin2, Empirical1, and
Empirical2minimal) to estimate the MMT and the cold-
and heat-related RRs in the temperature-mortality asso-
ciation for 135 cities in the US for the period of January
1, 1985 to December 31, 2006. Daily mortality counts
were obtained from the National Center for Health
Statistics and non-external cause mortality counts were
used (ICD-9: 0–799; ICD-10: A00–R99). Daily mean
temperatures (24-h mean) were obtained from the
National Climate Data Center of the National Oceanic
and Atmospheric Administration. These data were
analyzed in a previous study [1] and the city-specific
descriptive statistics are reported in Additional file 1:
Table S1.
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For each city, we fit eqs. (1) and (2) with the following
modeling choices. For cross-basis, the quadratic B-spline was
used with the knots placed at the 10th, 75th, and 90th per-
centiles of the city-specific temperature distributions. For the
lagged dependency, we used the natural cubic B-spline with
an intercept and three internal knots (equally spaced values
in the log scale) with 21 lag days. We controlled for the day
of week using indicator variables and for the seasonal and
long-term trends via a natural cubic B-spline of time with 8
degrees of freedom per year. These choices were based on
the results in a previous study [1]. Because the city-specific
modeling accompanies relatively large estimation error, we
combined evidence across all cities using multivariate meta-
regression [14] with city-specific average temperature and
temperate range as meta-predictors and obtained the best
linear unbiased predictor (BLUP) β and the corresponding
standard error for each city. Then, using the BLUPs, we ap-
plied the three methods for estimating the MMT and the
cold- and heat- related RRs. For Empirical2minimal, we
assumed Uniform prior with the support as the 1st - 99th
percentiles of city-specific temperature.

Results
Simulation study
Table 1 reports the results in estimating MMT by six dif-
ferent methods. Because Argmin1 and Argmin2 do not

provide an interval estimate, the %CP and Length are not
reported. In scenario 1, all six methods show small Bias
and small RMSE. In scenarios 2–4, Argmin1 and Empir-
ical1 show relatively large Bias and large RMSE (8.896 and
6.979 in scenario 2, 28.011 and 21.092 in scenario 3, and
8.686 and 6.259 in scenario 4) while Argmin2 and Empiri-
cal2’s show small Bias and small RMSE (mostly less than 3
and 3.592 at maximum). The %CP is near or greater than
95% for Empirical1 and Empirical2’s in all scenarios except
that the %CP was relatively lower for Empirical2moderate

and Empirical2minimal in scenario 4. In scenario 4, the em-
pirical distribution of the MMT was observed as highly
right-skewed with the two empirical methods and an ad-
justment to percentiles in the CI as the 0th – 95th recov-
ered over 95% coverage (98.6% and 98.3%, respectively).
The Length was similar between Empirical1 and Empiri-
cal2minimal and smaller for Empirical2moderate and Empiri-
cal2strong in all scenarios. In summary, our results suggest
that Argmin2 (previously proposed in [6]) is a reasonable
point estimator, though RMSE may increase depending on
the association shape, and Empirical1 (previously pro-
posed in [6]) provides an interval estimate with near 95%
coverage while the length can be too large in some scenar-
ios. If prior knowledge is available even at a minimal level,
the RMSE can be reduced with Empirical2’s compared
with Argmin2, and the Length of the interval estimate can

Table 1 Mean Bias (Bias) and root mean squared error (RMSE) for the point estimate and the coverage probability (% CP) and mean
length (Length) of the interval estimate in estimating the minimum mortality temperature (MMT) by six different methods (Argmin1,
Argmin2, Empirical1, Empirical2strong, Empirical2moderate, and Empirical2minimal) for each of the 4 scenarios; U-shape (Scenario 1),
reverse J-shape (Scenario 2), rotated S-shape (Scenario 3) and sector shape (Scenario 4)

Methods

Argmin 1 Argmin 2 Empirical 1 Empirical 2strong
a Empirical 2moderate

b Empirical 2minimal
c

Scenario 1
(True MMT = 23.889)

Bias -0.178 -0.183 -0.203 -0.203 -0.194 -0.152

RMSE 1.046 1.073 0.859 0.836 0.823 0.870

% CP 97.2% 96.4% 96.8% 95.6%

Length 3.385 3.210 3.410 3.387

Scenario 2
(True MMT = 11.274)

Bias 2.680 -0.245 4.197 -1.183 -0.772 -0.311

RMSE 8.896 2.243 6.979 1.542 2.279 2.428

% CP 96.4% 98.0% 95.3% 93.8%

Length 10.415 5.631 8.917 10.440

Scenario 3
(True MMT = 29.167)

Bias 16.486 0.512 16.683 0.776 0.639 1.240

RMSE 28.011 3.342 21.092 1.126 1.354 2.385

% CP 96.5% 96.4% 95.9% 96.5%

Length 9.758 3.257 5.662 9.054

Scenario 4
(True MMT = −3.333)

Bias 4.359 0.099 4.340 -1.069 -2.201 -2.181

RMSE 8.686 3.592 6.259 1.504 2.815 2.835

% CP 95.4% 93.8% 85.9% 84.7%

Length 7.816 6.097 7.719 7.681
aPrior support: 70th -95th percentiles for scenarios 1 & 3, 40th – 65th percentiles for scenario 2, and 1st -10th percentiles for scenario 4
bPrior support: 50th -99th percentiles for scenarios 1 & 3, 30th -80th percentiles for scenario 2, and 1st -50th percentiles for scenario 4
cPrior support: 1st – 99th percentiles for all scenarios
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be shorter with Empirical2’s compared with Empirical1 still
achieving the similar level (near 95%) of coverage probability.
Table 2 reports the results in estimating the cold- and

heat-related RRs by six different methods. For cold-
related RR, both Bias and RMSE were small and the
%CP was near 95% in scenario 1 and 2. In scenario 3,
RMSE was relatively large and the %CP was low as
86.8% with Empirical1 but near 95% with other methods.
In scenario 4, both Bias and RMSE was small but the
%CP was low as 58.4%, 70.3%, 76.5%, and 75.6% with
Argmin2, Empirical1, Empirical2moderate and Empirical2-

minimal. For heat-related RR, both Bias and RMSE were
small and the %CP was near 95% in scenario 1 and 2. In
scenario 3, RMSE was relatively large and the %CP was
low as 85.8% and 89.2% with Argmin2 and Empirical1
but near 95% with Argmin1 and Empirical2. In scenario
4, RMSE was somewhat large and the %CP was low as

90% with Empirical1 but near 95% with other methods.
In summary, in estimating the RR, Argmin1 seems to re-
sult in an appropriate coverage but may lead to large
RMSE while Argmin2 may result in low coverage but
small RMSE in various scenarios. Empirical1 can result
in low coverage and large RMSE. However, Empirical2’s
were shown to perform well generally in various scenar-
ios in both aspects of RMSE and coverage even with
minimally informative priors.
Additional file 1 Figures S2-S7 report the results of the

sensitivity analysis. Additional file 1: Figures S2 & S3
show the RMSE and %CP in estimating the MMT with
varying sample size, Additional file 1: Figures S4 & S5
with different specifications of the splines, and
Additional file 1: Figures S6 & S7 with different specifi-
cations of the knots. Additional file 1: Figure S2 shows
that Empirical2minimal and Empirical2stong show lowest

Table 2 Mean Bias (Bias) and root mean squared error (RMSE) for the point estimate and the coverage probability (%CP) of the
interval estimate in estimating the cold- and heat-related relative risk (RR) by six different methods (Argmin1, Argmin2, Empirical1,
Empirical2strong, Empirical2moderate, and Empirical2minimal) for each of the 4 scenarios; U-shape (Scenario 1), reverse J-shape (Scenario 2),
rotated S-shape (Scenario 3) and sector shape (Scenario 4)

Methods

Argmin1 Argmin2 Empirical1 Empirical2strong
a Empirical2moderate

b Empirical2minimal
c

Cold-related RR Scenario 1
(True RR = 1.094)

Bias -0.0002 0.0001 -0.0009 -0.0008 -0.0003 -0.0006

RMSE 0.0093 0.0090 0.0094 0.0092 0.0090 0.0090

% CP 94.2% 95.6% 94.9% 96.7% 95.2% 95.0%

Scenario 2
(True RR = 1.023)

Bias -0.001 -0.0004 -0.004 -0.006 -0.0038 -0.0030

RMSE 0.0069 0.0067 0.0073 0.0069 0.0056 0.0061

% CP 95.4% 94.0% 95.7% 96.2% 96.7% 95.4%

Scenario 3
(True RR = 1.070)

Bias -0.030 -0.005 -0.046 -0.022 -0.280 -0.0221

RMSE 0.0548 0.0287 0.0548 0.0250 0.0325 0.0275

% CP 94.6% 93.5% 86.8% 99.7% 96.0% 98.0%

Scenario 4
(True RR = 1.000)

Bias -0.008 -0.002 -0.013 -0.005 -0.0059 -0.0061

RMSE 0.0126 0.0036 0.0155 0.0055 0.0061 0.0063

% CP 95.8% 58.4% 70.3% 93.2% 76.5% 75.6%

Heat-related RR Scenario 1
(True RR = 1.079)

Bias -0.0005 -0.0005 -0.0006 -0.001 -0.0007 -0.0011

RMSE 0.0062 0.0064 0.0062 0.0062 0.0063 0.0061

% CP 96.0% 95.4% 95.5% 93.5% 93.9% 95.8%

Scenario 2
(True RR = 1.118)

Bias -0.002 0.0001 -0.004 0.0005 0.0003 -0.0005

RMSE 0.0100 0.0084 0.0114 0.0050 0.0068 0.0075

% CP 95.6% 95.0% 94.3% 99.9% 99.5% 98.8%

Scenario 3
(True RR = 1.015)

Bias -0.027 -0.003 -0.044 -0.019 -0.0122 -0.121

RMSE 0.0548 0.0144 0.0632 0.0192 0.0145 0.0144

% CP 95.6% 85.8% 89.2% 98.1% 99.0% 98.8%

Scenario 4
(True RR = 1.185)

Bias -0.010 -0.0016 -0.016 -0.006 -0.0023 -0.0019

RMSE 0.0205 0.0111 0.0232 0.0085 0.0079 0.0073

% CP 96.2% 95.1% 90.0% 99.4% 99.6% 100%
aPrior support: 70th -95th percentiles for scenarios 1 & 3, 40th – 65th percentiles for scenario 2, and 1st -10th percentiles for scenario 4
bPrior support: 50th -99th percentiles for scenarios 1 & 3, 30th -80th percentiles for scenario 2, and 1st -50th percentiles for scenario 4
cPrior support: 1st – 99th percentiles for all scenarios
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RMSE among other methods and stable RMSE over
different sample sizes in all scenarios. Additional file 1:
Figure S3 shows the %CP was comparable among Em-
pirical1, Empirical2minimal, and Empirical2strong in all sce-
narios with an exception of scenario 4 where
Empirical2minimal shows slightly lower coverage for all
sample sizes. As mentioned earlier, the coverage was re-
covered with an adjustment to the percentiles to obtain
the CI. Additional file 1: Figure S4 indicates that the
RMSE with Empirical2’s was lowest and stable over dif-
ferent choices of splines in the true and fitted models.
Additional file 1: Figure S5 shows that the %CP was gen-
erally comparable although the coverage reduced signifi-
cantly with Empirical2’s when the splines are miss-
specified (case 3 in scenario 1 and case 2 in scenario 3).
In those cases, the CIs tended to miss the true MMT
right above the upper bound due to the very short
length. Finally, Additional file 1: Figure S6 displays that
the RMSE was lowest and stable over different specifi-
cations of the knots in the true and fitted models.
However, Additional file 1: Figure S7 shows that the
miss-specifications of the knots resulted in reducing
the coverage in case 2 for scenario 1 and 3. Similarly,
the CIs tended to miss the true MMT right above the
lower bound

Application
Figure 1 displays the point estimates for the MMT ob-
tained by Argmin2, Empirical1, and Empirical2minimal

and the interval estimates by the two empirical methods.
The cities are ordered based on the length of the interval
estimate calculated by Empirical1. Based on the MMT
uncertainty patterns, it seems reasonable that we divide
135 cities into four categories; category 1 (from New
York to Knoxville), category 2 (from Oakland to San
Jose), category 3 (from Austin to Milwaukee), and cat-
egory 4 (from Western Palm Beach-Boca Raton to Se-
attle). Such categorization also consists with the shapes
of the RR curve for each city presented in Additional file
1: Figure S8 (The cities are in the same order as in
Fig. 1). In category 1, cities show clear U-shape RR curve
and small uncertainty in the MMT. Accordingly, the
point estimates were close among the three methods
and the interval estimates were similar between the two
empirical methods. In category 2, cities show U-shape
RR curve with a short right arm and a short bottom and
small uncertainty in the MMT. Argmin2 tends to sug-
gest a smaller value for the MMT estimate, Empirical1
suggests larger point estimate, and Empirical2minimal

compromises between the Argmin2 and Empirical1 esti-
mates. In category 3, the RR curve is mostly reverse
J-shape or U-shape with a wide bottom and the MMT
uncertainty become large. For the reverse J-shape curve,
Empirical1 suggests the largest value for the MMT while
Argmin2 and Empirical2minimal suggests somewhat
smaller values. In category 4, cities show rotated S-shape
or widely opened U-shape with large uncertainty on
both arms. Empirical1 suggests extremely large

Fig. 1 Estimated minimum mortality temperature (MMT) percentile for 135 cities in the US by three different methods; Argmin2 (red), Empirical1 (blue),
Empirical2minimal (orange). Points indicate the point estimate and vertical solid/dashed bars indicate 95% empirical interval estimates. Cities are ordered
according to the MMT uncertainty (the length of the interval estimates obtained by Empirical1). The cities are divided into 4 categories (indicated by
black dashed vertical lines) with respect to the MMT uncertainty and temperature-mortality association types (refer to Fig. S8)
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uncertainty in the MMT covering almost the whole
range of the temperature distribution. However, the un-
certainty reduced largely by Empirical2minimal with the
prior restriction, within the 1st – 99th percentiles.
Figure 2 shows the point and interval estimates for the

cold-related and heat-related RRs calculated by the three
methods. Differently from the MMT estimates, the point
estimates were mostly consistent among the three
methods. However, the intervals estimates calculated by
Argmin2 and Empirical1 tend to stretch to the right
while those computed by Empirical2minimal tend to do to
the left. Such result is consistent with simulation results
in that the coverage for the RR were low with Argmin2
and Empirical1 as those intervals tend to exclude the
true RR because of the right-skewness of the empirical
distribution.

Discussion
In this research, we assessed the statistical properties of
the previously proposed statistical approach [6] to esti-
mate the MMT in various types of association via a
simulation study and an application. The method of
using the solution of argmin function with some ad hoc
restriction (i.e., within the 1st – 99th percentiles of the
observed temperature distribution) (Argmin2) turns out
to be a reasonable point estimator for the MMT, though
Bias or RMSE may be large in some scenarios. Also, the
approximate bootstrap method to calculate the

confidence interval (Empirical1) performs properly
achieving near 95% coverage, though the length can be
extremely large depending on the scenarios.
To improve upon the previous method, we suggested

an alternative approach (Empirical2), which can be
applied if some prior knowledge is available on the
MMT. We suggested to combine a prior knowledge with
the procedure of deriving the empirical distribution of
the MMT and to use the empirical mean and percentiles
(e.g., 2.5th - 97.5th in general and 0th – 95th for highly
right-skewed case) as a point and an interval estimates
for the MMT. Simulation study showed that our pro-
posed method performs better even with a minimal level
of prior knowledge reducing the Bias and RMSE in point
estimation and achieving near 95% coverage while short-
ening the length in interval estimation.
We also examined how the uncertainty in the MMT

would affect the RR estimation using the MMT as a ref-
erence temperature. We derived the empirical distribu-
tion of the MMT-referenced RR through a sampling
procedure similar to deriving the MMT distribution.
Then, the empirical mean and percentiles were used as
alternative point and interval estimates for the RR with
the uncertainty in the MMT accounted for. Compared
with the current approach (using only a single point esti-
mate for the MMT as a reference value in quantifying
the RR and calculating the confidence interval based on
the normal approximation), the empirical RR estimates,

Fig. 2 Estimated cold- and heat- related relative risk (RR) for 135 cities in the US by three different methods; Argmin2 (red), Empirical1 (blue),
Empirical2minimal (orange). Points indicate the point estimate and vertical solid/dashed bars indicate 95% empirical interval estimates. Cities are
ordered according to the MMT uncertainty (the length of the interval estimates obtained by Empirical1) as in Fig. 1
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when prior knowledge is combined, were less biased
with reduced RMSE and achieves appropriate level of
coverage probability in most of the scenarios.
Our proposed approach conceptually relies on a

Bayesian inferential framework but is not a fully Bayes-
ian hierarchical model, which one may consider as a
more natural way to incorporate a prior knowledge in
the inference for MMT. However, our approach has sev-
eral advantages compared with constructing a fully
Bayesian model. When modeling a nonlinear association
between temperature and mortality using splines, MMT
is not a specific parameter but a complex function of pa-
rameters (i.e., argmin xQxβð Þ where β is reduced coeffi-
cients from η, which is the original coefficients for the
cross-basis, and Qx is the vector of basis variables as in
formula (3)) and, thus a prior cannot be directly assigned
on the MMT in a fully Bayesian model. Although indir-
ect specification through a prior on η may be possible, a
common choice of prior on η (e.g., multivariate normal)
does not yield a known or closed form of prior on the
MMT, which makes it difficult to incorporate prior
knowledge on the MMT straightforwardly. In addition,
in a time-series analysis for the temperature-mortality
association, there are many other terms in the model to
adjust for long-term trend, seasonality, and potential
confounders. A fully Bayesian model would require a
prior assumption and a posterior sampling on the whole
parameter space including these parameters, which is
often high-dimensional. In contrast, our approach fo-
cuses only on the cross-basis terms for temperature,
which does not only facilitate the procedure of inserting
a prior knowledge on the MMT but also avoids such an
unnecessary high-dimensional posterior sampling for the
nuisance parameters.
While our proposed approach has several benefits,

some limitations should be acknowledged. First, if prior
distribution is incorrectly specified, the whole inference
can seriously be biased. To avoid such prior misspecifi-
cation, one may use a prior information minimally by
setting a potential range as the 1st – 99th percentiles.
Our simulation showed that even with the minimally in-
formative prior, the proposed method tends to perform
better than the previous approach. When analyzing the
US data, adding such minimal prior information reduced
the uncertainty in the MMT by large amount particu-
larly when the estimated association curves are unstable
in terms of suggesting an MMT (e.g., category 4). Sec-
ond, our approach limits the prior choice to be a Uni-
form distribution with different supports reflecting
different prior knowledge. Such prior cannot accommo-
date a case where a prior range is the whole temperature
range with different prior probabilities across the range,
which would be more plausible in practice. Although a
Uniform with a truncated support would be a reasonable

approximation, further research is merited to improve
the method to encompass a broader range of prior
knowledge.
Applying the methods to the US data, we found four

categories in terms of the MMT uncertainty. For cat-
egories 1 and 2, the estimated temperature-mortality asso-
ciation is mostly U-shape with short or long arms on
either side and with a short bottom. In these categories,
the MMT uncertainty is small and estimated between the
75th through the 95th percentiles of the observed
temperature distribution. For category 3, the association is
mostly reverse J-shape with relatively long bottom on the
right side and the MMT uncertainty was relatively large.
The large uncertainty is induced by the long bottom of
the association curve and it may be more appropriate to
describe the MMT as a range, not a single point. The pre-
vious study [6] also suggested to introduce this new con-
cept of the minimum mortality temperature range. In
category 4, the association is the rotated S-shape with the
left arm curving down at the lowest temperature, for
which the uncertainty is very large. Such uncertainty on
the left arm is induced by the sparse data and causes the
MMT uncertainty to unnecessarily cover the whole range
of the temperature. In this case, it is suggested that adding
restrictions on the range would lead to more reasonable
inference on the MMT.
Finally, an important note should be made about

the MMT estimation in a DLNM modeling frame-
work. When the temperature-mortality association is
incorrectly modeled (e.g., misspecifications of the
splines and knots), either the previous or alternative
approaches may provide interval estimates with sig-
nificantly low coverage as they can miss the true
MMT just below/above the lower/upper bounds. Since
the interval estimation for the MMT can be sensitive
to the modeling choices in DLNM depending on the
temperature-mortality association pattern, one should
carefully conduct a model selection procedure to
identify the correct association and, thus the true
MMT. Additionally, miss-specifying the outcome
distribution such as a simple adjustment for
overdispersion with Quasi-Poisson family may also
affect the inference, and more flexible statistical
methods may be considered to account for it in
further research [15].

Conclusions
In summary, Monte Carlo simulation-based approach to
estimate the MMT either as a point or as an interval
was shown to be a reasonable approach, particularly
when some prior restrictions are added to reduce the
uncertainty. The MMT uncertainty can affect the esti-
mation for the MMT-referenced RR and ignoring the
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MMT uncertainty in the RR estimation may lead to in-
valid results with respect to bias in point estimation and
the nominal coverage in interval estimation.

Additional file

Additional file 1: Supplemental Materials. (PDF 3700 kb)
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