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Abstract: Candida Antarctica lipase B (CALB) is a well-known enzyme, especially because 

of its promiscuous activity. Due to its properties, CALB was widely used as a benchmark for 

designing new catalysts for important organic reactions. The active site of CALB is very 

similar to that of soluble epoxide hydrolase (sEH) formed by a nucleophile-histidine-acid 

catalytic triad and an oxyanion hole typical for molecular structures derived from processes of 

α/β hydrolases. In this work we are exploring these similarities and proposing a Ser105Asp 

variant of CALB as a new catalyst for epoxide hydrolysis. In particular, the hydrolysis of 

the trans-diphenylpropene oxide (t-DPPO) is studied by means of quantum cluster models 

mimicking the active site of both enzymes. Our results, based on semi-empirical and DFT 

calculations, suggest that mutant Ser105Asp CALB is a good protein scaffold to be used 

for the bio-synthesis of chiral compounds. 

Keywords: Candida antarctica lipase B; CALB; epoxide hydrolase; sEH; reaction mechanism; 
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1. Introduction 

Epoxides are important molecules for producing chiral compounds. Because of their chemical 

versatility and ability to react readily with halides, carbon, nitrogen, oxygen, or sulfur nucleophiles, 

epoxides became crucial intermediate products in organic synthesis [1]. Epoxides are three-membered 

cyclic ethers that have specific reactivity patterns characterized by their highly polarized oxygen–carbon 

bonds in addition to a highly strained ring [2]. In recent years enormous efforts have been done into 

developing methodologies for preparing enantio-pure forms of epoxides. This purpose has been achieved 

by applying new chemical [3] and biocatalytic [4] procedures. Biocatalytic conversion of epoxides can 

proceed by, for instance, conjugation of thiol cofactors, nucleophilic ring opening, or hydrolysis. The 

last process is, in fact, the subject of the present work. 

Herein we focus on the epoxide hydrolases (EHs, E.C.3.3.2.3) that serve as a catalyst to transform 

epoxide into the corresponding 1,2-diol by addition of a water molecule. In fact, mammalian EHs were 

widely studied mostly because of their biological functions. The main roles of EHs in mammalian 

organisms are detoxification, catabolism, and regulation of signaling molecules. However, EHs have 

mainly garnered interest because of their potential applications in chiral chemistry [1,5]. 

Soluble epoxide hydrolase (sEH) hydrolyses a broad range of substrates such as gem-di-, trans-di-,  

cis-di, tri-, and tetra-substituted epoxides [6]. However, for the typical in vitro purposes, the substrate  

is trans-diphenylpropene oxide (t-DPPO), and thus it will be used as a substrate in the present study. 

Recently, it was found that sEH plays an important role in the regulation of blood pressure and 

inflammation [7–13], which also makes it a good target for designing drugs to be used in the treatment 

of several diseases, including several aspects of cardiovascular diseases such as inflammation, 

hypertension, cardiac hypertrophy, and atherosclerosis, or kidney failure [9,13–16]. 

sEH belongs to the α/β hydrolase fold family of proteins, which are characterized by a  

Nucleophile-His-Acid catalytic triad evolved to efficiently operate on substrates with different chemical 

composition or physicochemical properties and in various biological contexts [17]. In the case of human 

sEH, this triad is formed by Asp333, His523, and Asp495, as presented in Scheme 1a. Moreover, an 

“oxyanion hole” is formed in the active sites by two tyrosine residues, Tyr-381 and Tyr-465, which are 

assumed to stabilize the tetrahedral intermediate by protonation or hydrogen bonding interaction of the 

oxygen atom of the epoxide [18]. The importance of these two residues for the catalytic process was 

proven experimentally when a 90% decrease in sEH activity was observed when one of the tyrosine 

residues was mutated to phenylalanine [19]. 

The structure of the sEH active site is very similar to other enzyme from the α/β hydrolases family 

named Candida antarctica lipase B (CALB), widely studied because of its high catalytic promiscuity [20]. 

The mechanism of primary reaction of CALB, which is the hydrolysis of ester bonds, was recently 

studied experimentally [21] and theoretically described [22], providing interesting insights into the 

functions of residues in the active site. It has been suggested that CALB can be used as an efficient catalyst 

of biotransformation typical for a carboxylic acid like esterase, thioesterase, peptidase, dehalogenase, 

epoxide hydrolase, or halo peroxidase, or having the ability to cleave and form C–C bonds [17,23,24]. 

Moreover, CALB has been also used as a catalyst in ring-opening polymerization reactions [25]. 

Interestingly, it was shown that both wild-type and Ser105Ala-mutated variants of CALB are able to 

catalyze direct epoxidation of an α,β-unsaturated aldehyde with hydrogen peroxide [26]. In the present 
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work, we want to find out if CALB could be used as a scaffold for new catalysts to serve as an  

epoxide hydrolase. 

 

Scheme 1. Active site of (a) sEH and (b) CALB enzymes together with bound (R,R)-trans-

diphenylpropene oxide (t-DPPO). 

The active site of CALB contains a Nucleophile-His-Acid catalytic triad formed by Ser105, His224, 

and Asp187. As in sEH, there is an oxyanion hole in the active site of CALB formed by Thr40 and 

Gln106 residues. The similarities between the sEH and CALB active sites are indicated on Scheme 1. 

It is generally assumed that the mechanism of hydrolysis of epoxides catalyzed by sEH to the 

corresponding diols is known. It was demonstrated using experimental techniques that the epoxides 

can be opened by direct attack of a nucleophile on the epoxide ring or via an intermediate in which a 

covalent link between the enzyme and the substrate is formed. This variant of the mechanism, in which 

the nucleophile Asp333 was involved in the reaction, was recently confirmed by theoretical studies 

performed by Mulholland and co-workers [27]. However, an important question about the origin of the 

hydrogen that binds to the oxygen of the epoxide after formation of the oxyanion intermediate remains 

unanswered. Some possible mechanisms have already been proposed, including proton transfer from 

one of the tyrosine residues that forms the oxyanion hole [28], or direct transfer of a proton from 

His523 [29]. Nevertheless, these proposals were never explored by theoretical studies. Thus, one of the 

targets of this work is to dispel these doubts. Recently, a proposal of proton diffusion to the solvent was 

suggested from a computational, structural, and kinetic study on potato epoxide hydrolase [30]. 

In the case of hydrolysis of t-DPPO, attacks on both the C1 or C2 carbon atom of epoxide are 

possible, resulting in two different enantiomers, as presented in Scheme 2. 

 

Scheme 2. Possible products of hydrolysis of (R,R)-trans-diphenylpropene (t-DPPO). 
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However, sEH shows regioselectivity by preferentially attacking the reactive C1 carbon atom rather 

than C2 with a 97:3 selectivity ratio [31]. As was observed in previous theoretical studies [27], this 

tendency is observed in both possible orientations of substrate t-DPPO(1) and t-DPPO(2), which are 

related to the position of the substrate relative to the arrangement of residues in the active site of the 

enzyme, as presented in Figure 1. 

(a) (b)

Figure 1. Active site of sEH with bound substrate (a) t-DPPO(1) and (b) t-DPPO(2) orientation. 

In the present work we are proposing a new catalyst for epoxide hydrolysis reaction based on the 

structure of the active site of CALB. In order to examine our proposal, the mechanism of the hydrolysis  

of (R,R)-t-DPPO in active sites of sEH and a variant of CALB is described using quantum cluster 

theoretical models. 

2. Results and Discussion 

2.1. t-DPPO Hydrolysis Catalyzed by sEH 

The preparations of the theoretical models require knowledge about the protonation state of 

titratable residues. Nowadays, fast empirical prediction of pKa algorithm (PROPKA software) [32–35] 

makes the analysis of protonation states for these residues computationally available. The protonation 

state of some residues, especially those forming the catalytic triad, seems to be still an open question  

of debate [29,30,36,37]. In the case of sEH, it was previously observed that protonation of His523 

meaningfully influences the rate constant of nucleophilic attack, and it was assumed that this residue has 

to be protonated in order to reduce the barrier of this step [27]. However, our analysis of pKa results 

shows that, after substrate binding, the His523 is surely not protonated at pH for sEH activity, which is 

7.0–7.5 [6]. This result is in agreement with recent studies on potato sEH [30] and previous studies of 

Himo and co-workers on human sEH [36,37]. Moreover, it is observed that Asp333, which plays the 

role of the nucleophile in the studied reaction, has a high pKa value (over 10) (see Table S1 in the 

Supplementary Materials), which indicates that at the beginning of the hydrolysis it must be protonated, 

a proposal not suggested in previous studies. Our results indicate that Asp333 has to be activated by 

transferring the proton and thus acting as the nucleophile that attacks the carbon of epoxide. This step is 

then part of the full reaction path. Nevertheless, the lack of proton on His523 opens another possible 

mechanism of this reaction in which, as previously suggested [38], instead of Asp333 a water molecule 
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can be activated by His523 and subsequently it can attack one of the carbon atoms of the epoxide ring. 

Thus, both scenarios, (A) attack of water and (B) attack of Asp333, will be taken into consideration in 

the present study, as depicted in Scheme 3. 

 

Scheme 3. Possible mechanism of nucleophilic attack to the carbon C1 of t-DPPO(1) 

epoxide by (A) a water molecule and (B) Asp333. 

In the case of mechanism A, the nucleophilic attack can take place concurrently with the proton transfer 

from a water molecule to Nε-His523. This possibility was investigated by exploring the corresponding 

potential energy surface (PES), where the antisymmetric combination of distances defined between  

the oxygen of the water molecule and the carbon atom of epoxide, and between this carbon atom and 

the oxygen atom of epoxide (d(Owat–C1)-d(Oep°x–C1)) was used as one of the distinguished reaction 

coordinates. The other one was defined as the antisymmetric combination of distances defining the 

position of the transferred hydrogen atom between the oxygen atoms of the water molecule and the 

nitrogen atom in position ε of His523 (d(Owat–Hwat)-d(Nε–Hwat)). 

In order to explore the second possibility of nucleophilic addition, the nucleophilic attack to C1 of  

t-DPPO(1) by Asp333, a similar PES was explored. In this case, the antisymmetric combination of 

distances between oxygen from Asp333 and the carbon of epoxide and between this carbon atom  

and the oxygen of epoxide (d(OAsp333–C1)-d(Oep°x–C1)) was used as one of the coordinates, while the 

antisymmetric combination of distances describing the transfer of hydrogen atom from oxygen of 

Asp333 to the nitrogen in position ε of His523 (d(OAsp333–HAsp333)-d(Nε–HAsp333)) were controlled as the 

second reaction coordinate. The resulting PESs are shown in Figure 2. In mechanism A, the nucleophile 

attack of water occurs simultaneously with proton transfer to Nε-His523. The estimated potential 



Molecules 2015, 20 17794 

 

 

energy barrier for this step is 38.1 kcal·mol−1 at AM1 level and 28.5 kcal·mol−1 after correction at 

M06-2X level. On the other side, mechanism B takes place through a step-wise process whose  

rate-determining step, the attack of the deprotonated oxygen atom of Asp333 to the carbon atom of the 

epoxide ring, presents an energy barrier of 39.5 kcal·mol−1 at AM1 level but is dramatically reduced to 

20.3 kcal·mol−1 when recomputed at M06-2X/6-31+G(d,p) level. Thus, our simulations predict mechanism 

B as the kinetically favorable mechanism and thus we will focus on the next steps of this mechanism. 

This conclusion is in agreement with experimental studies based on solvent KIEs that confirmed the 

role of Asp333 residue as the attacking nucleophile since the heavy 18O oxygen was incorporated into 

the Asp333 of sEH [36]. Moreover, kinetic measurements done for Asp333Ser mutated sEH resulted in a 

total loss of activity, again indicating the participation of this residue in the hydrolysis of epoxides [39]. 

Moreover, the obtained value for the energy barrier is in good agreement with the free energy barriers 

deduced from experimental kinetic measurements at 300 K using the transition state theory (rate constant 

between 0.09 and 0.75 s−1) [40] for the nucleophilic addition step of hydrolysis of chalconeoxide  

by sEH. This species can be considered very closely related to the herein-studied t-DPPO substrates. 

Interestingly, previous theoretical studies for this step resulted in underestimated values of energy barriers 

equal to 7.8 kcal·mol−1 for β-methyl-styrene oxide [32–35] or 9.7 kcal·mol−1 for t-DPPO epoxide [27]. 

In our opinion, this difference comes from the assumption that the reaction pathway begins with 

negatively charged Asp333, and thus the first step of proton transfer from Asp333 to Nε-His523 was 

excluded from proposed mechanisms. Keeping in mind these promising results, the study was repeated 

for the nucleophilic attack of Asp333 to epoxide carbon C1 with the (2)-DPPO orientation, and on the 

C2 carbon atom of epoxide in the two different orientations of substrate. The results are summarized in 

Table 1. 

 

Figure 2. AM1 PES of nucleophilic attack to C1 of t-DPPO(1) by (a) a water molecule; 

and (b) Asp333. Distances are in Å and values on iso-energetic lines in kcal·mol−1. 
  



Molecules 2015, 20 17795 

 

 

Table 1. Relative potential energies obtained at AM1 level related to reactant complex (RC) 

for nucleophilic attack of Asp333 to epoxide carbons C1 or C2 in two different orientations 

of substrate in the active site of sEH. Values in parentheses correspond to relative energies 

of TS2 to I1. Results are given in kcal·mol−1. 

 

(1)-DPPO (2)-DPPO 

C1 C2 C1 C2 

Cluster QM/MM a Cluster QM/MM a Cluster QM/MM a Cluster QM/MM a

TS1 14.0 - 14.0 - 16.3 - 16.3 - 
I1 11.4(0.0) 0.0 11.4 0.0 12.7 0.0 12.7 0.0 

TS2 39.9(28.5) 23.5 41.5(30.1) 24.5 42.5(29.8) 18.4 40.2(27.5) 27.6 
a: theoretical values obtained at AM1/MM level by Mulholland and co-workers [27]. 

Based on the obtained energy barriers for the nucleophilic attack of Asp333 on either the C1 or C2 

of epoxide based on our cluster models of the sEH active site, it is difficult to reach conclusions about its 

enantioselectivity. Comparing our energy barriers presented in Table 1 with the QM/MM theoretical 

data previously published by Mulholland and co-workers [27], it seems that in the case of t-DPPO(1),  

some agreement can be found showing that an attack on the C1 carbon of epoxide is more favorable. 

However, in case of the second orientation t-DPPO(2) we observe opposite tendency. Nevertheless, the 

differences of energy barriers are too small and thus it is impossible to obtain clear conclusions. It 

seems that the selectivity of sEH is influenced not only by the shape of the active site itself but by the 

relation to the global influence of the rest of the protein, probably including the binding effect. Thus, to 

explore this feature of sEH, QM/MM studies are required. Similar conclusions can be derived from 

comparison between both orientations of the substrate. 

After the first step of the reaction was studied, in which transformation of epoxide to oxyanion 

tetrahedral intermediate occurs, we focused on the second part of the mechanism, which is still an unsolved 

problem. The relevance of this step is evident since it was shown by experimental measurements that  

this step of the reaction, in which the oxyanion intermediate is transformed into a diol, seems to be the 

rate-limiting step. 

According to the obtained results after the nucleophilic addition, the oxyanion intermediate is 

formed and the protonation state of His523 is changed (from neutral in reactants to positively charged 

form in the intermediate). The presence of a hydrogen atom in Nε-position does not allow His523 to 

activate a water molecule in order to attack the carbon of Asp333 and thus alternative scenarios, depicted 

in Scheme 4, must be considered. In the first one, mechanism B1, we assumed that water directly 

attacks the carbon atom of Asp333 with a simultaneous proton transfer to the oxygen of the new ether 

bridge formed between Asp333 and the C1 carbon atom of the epoxide. After this attack, a final proton 

transfers from Nε-histidine to the oxygen of epoxide occurs and hydroxyl is formed. In the second 

possibility, mechanism B2 and B3, the reverse order is explored. In mechanism B2, it is assumed that 

the proton from Nε-His523 is transferred to the oxygen of epoxide, resulting in neutral histidine, which 

will then be prepared for the last step of the di-hydroxyl formation process. During the second step, a 

water molecule is activated by transferring its proton to His523 concomitantly with the attack on the 

carbon of Asp333. Subsequently, the last proton transfers from Nε-His523 to oxygen bound to the C1 

carbon of epoxide, resulting in the expected product. As observed, the difference between mechanism 
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B2 and B3 is the result of different proposals of the origin of hydrogen that is transferred to the 

negatively charged oxygen atom of epoxide formed in the first step of the process. Thus, in mechanism 

B3 the proton is transferred from His523 through a water molecule and Tyr381. 

 

Scheme 4. Possible scenarios of hydroxyl formation from oxyanion tetrahedral intermediate 

of t-DPPO(1) in active site of sEH. 

The results obtained for mechanism B1 show that the nucleophilic attack of the water molecule on 

the carbonyl carbon atom of Asp333 takes place through a TS with an energy, related to the reactant 

complex, of 64.8 kcal·mol−1 at AM1 level and 57.3 kcal·mol−1 when corrected at M06-2X/6-31G+(d,p) 

level (see Figure 3a). In the case of the other two mechanisms, the proton transfer from His523 to the 

negatively charged oxygen atom of epoxide, either directly (mechanism B2) or through a water molecule 

and Tyr381 (mechanism B3), takes place with lower potential energy barriers: 4 kcal·mol−1 in the case 

of mechanism B2 (see Figure 3b), and through a stepwise mechanism of 2 and 4 kcal·mol−1 in the case 

of mechanism B3 (see Figure 3c). Afterwards, the nucleophilic attack of the water molecule and the 

proton transfer to His523 takes place. The corresponding PES, presented in Figure 3d, indicates that, as 

in mechanism B1, water attack occurs simultaneously with the proton transfer to Nε-His523 (Figure 3a) 

with a TS that would be 17.2 kcal·mol−1 over RC. Interestingly, it seems that the origin of the difference 

in energy barriers between mechanism B1 and B2 & B3 for this step lies not necessarily in the difference 

between the proton acceptors, but rather in the geometry of the transition states (TSs). Finally, the 

hydroxyl formation takes place in a single step in both mechanisms B1 or mechanism B2 & B3, with a 

potential energy barrier of 2.2 kcal·mol−1. All in all, the presented results allow us to conclude that 

hydroxyl formation from an oxyanion intermediate would preferentially occur through mechanism B2 

or B3. The amount of tyrosinate formed during the nucleophilic attack was experimentally estimated to 
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be 0.4 per enzyme molecule [41], indicating only partial ionization of the residues of the oxyanion hole 

and, implicitly, the relative relevance of mechanism B2 in the reaction mechanism. 

 

Figure 3. AM1 PESs for hydroxyl formation from oxyanion tetrahedral intermediate of  

t-DPPO(1) through different possible mechanisms: (a) nucleophilic attack of a water 

molecule on the carbonyl carbon atom of Asp333; (b) direct proton transfer from His523 to 

the negatively charged oxygen atom of epoxide; and (c) proton transfer from His523 to the 

negatively charged oxygen atom of epoxide through a water molecule and Tyr381; (d) AM1 

PES corresponding to the nucleophilic attack of a water molecule and the proton transfer to 

His523 from hydroxyl intermediate. All distances are in Å and energies in kcal·mol−1. 

2.2. t-DPPO Hydrolysis Catalyzed by CALB 

As mentioned in the Introduction, the active site of CALB presents noticeable similarities with the 

active site of sEH. However, in the wild-type CALB the role of the nucleophile in its catalytic triad is 

played by a serine (Ser105) instead of an aspartate (Asp333) residue. In fact, as experimentally shown, 

the Asp333Ser variant of sEH loses its capability to catalyze the epoxide hydrolysis. Thus, it can be 

concluded that Ser105Asp CALB should perfectly mimic the active site of wild-type sEH. Apart from 

differences in the rest of the proteins’ scaffolds, the main difference between the active sites of sEH 

and Ser105Asp CALB is the residues involved in the formation of the oxyanion hole. Then, we can 

predict that the reaction in the latter should proceed through a path similar to mechanism B2 described 
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for sEH. As we have already demonstrated, the role of the oxyanion hole in sEH is to stabilize the 

negatively charged oxygen of the intermediate, because the other possible role being a proton donor 

has already been excluded or does not present any energetic advantage (mechanism B3). Thus, the 

epoxide hydrolysis in the active site of wild-type CALB and Ser105Asp variant is studied assuming a 

reaction path similar to the most favorable one observed in sEH, mechanism B2. 

The resulting PESs of the nucleophilic attack to C1 carbon atom of t-DPPO(1) in wild-type and 

Ser105Asp CALB are shown in Figure 4. The corresponding PESs for the attack on the C2 carbon atom, 

as well as the PESs for the attack to C1 and C2 with the t-DPPO(2) orientation, are reported in Figures 

S1 and S2 of the Supplementary Materials, showing the same trend as that observed in Figure 4a,b.  

The analysis of PESs presented in Figure 4 shows a meaningful difference between the wild-type and 

Ser105Asp variants of CALB. First of all, in the case of wild-type CALB, the Ser105 attack to epoxide 

and the proton transfer to Nε-His523 take place in a concerted way while, in mutated CALB, attack of 

Asp105 occurs after proton transfer in a step-wise manner. Moreover, as presented in Table 2, the results 

show how, in agreement with the results obtained for the epoxide hydrolysis in the active site of sEH, 

the small differences in the energy barriers between different orientations of the substrate and the two 

possible nucleophilic attacks to C1 or C2 do not allow us to pinpoint any preference for the formation  

of one conformer. Consequently, it appears that quantum cluster models present limitations for subtle 

differences between the energy of conformers in this system. It is important to point out that, considering 

the good agreement between the trends obtained at the AM1 and M06-2X level of theory for the reaction 

studied in the sEH, and taking into account the high computational cost of repeating the calculations for 

this system at a higher level of theory, we report values obtained at the semi-empirical level. It is, then, 

reasonable to predict that barriers would decrease dramatically if computed at the DFT level of theory. 

 

Figure 4. PES of the nucleophilic attack to C1 carbon atom of t-DPPO(1) by (a) Ser105 in 

wild-type CALB and (b) Asp105 in Ser105Asp CALB. 
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Table 2. Relative potential energies obtained at AM1 level related to reactant complex 

(RC) for the nucleophilic attack of Asp105 in Ser105Asp CALB on epoxide carbons C1 or 

C2 in two different orientations of substrate. Values are given in kcal·mol−1. 

 
(1)-DPPO (2)-DPPO 

C1 C2 C1 C2 
RC 0.0 0.0 0.0 0.0 
TS1 9.8 9.8 7.0 7.0 
I1 2.6 2.6 −0.5 −0.5 
I1 −0.8 0.3 2.0 −1.8 

TS2 39.5 43.0 44.8 42.1 

In order to compare the pathway of the reaction catalyzed by she or by the Ser105Asp variant of 

CALB, the rest of the steps from INT3 to PC were explored following the same strategy as the one 

employed in the study of mechanism B2 & B3 of the reaction catalyzed by sEH. The full energy profiles 

are summarized in Figure 5, while a ball and stick representation of the stationary point structures is 

shown in Figures 6 and 7, where key inter-atomic distances and angles are reported. The first conclusion 

that can be derived from an analysis of Figure 5 is that both reaction paths are quite similar, regarding 

the number of steps and the kind of transformations taking place in each step. Nevertheless, while the  

rate-limiting step for hydrolysis of t-DPPO(1) catalyzed by sEH corresponds to the fourth step, the 

proton transfer from the water molecule to His523 with concomitant attacking of the oxygen water 

molecule to Asp333 and breaking the bond established with the epoxide (TS4(B2 & B3) in Scheme 4), 

in the case of the reaction catalyzed by Ser105Asp CALB, the barrier of this step is dramatically 

reduced (see the corresponding PES in Figure S3 of the Supplementary Materials) and the rate-limiting 

step is then associated with the nucleophilic attack of the aspartate residue on the carbon atom of the 

epoxide ring, the breaking of the epoxide three-membered ring, and the stabilization of the negative 

charge developed in the oxygen atom by the oxyanion hole. 

 

Figure 5. Potential energy profiles computed at the AM1 level for t-DPPO(1) hydrolysis 

catalyzed by sEH (grey line) and by Ser105Asp CALB (green line). The reaction corresponds 

to the catalytic attack on the C1 carbon of epoxide. 
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Figure 6. Localized structures for hydrolysis reaction of t-DPPO(1) catalyzed by sEH. Key 

inter-atomic distances are reported in Å. Tyr381 and Tyr465, forming the oxyanion hole, 

are not displayed for the purposes of clarity. 
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Figure 7. Localized structures for hydrolysis reaction of t-DPPO(1) catalyzed by Ser105Asp 

CALB. Key inter-atomic distances are reported in Å. Thr40 and Gln106, forming the 

oxyanion hole, are not displayed for the purposes of clarity. 

3. Computational Methods 

The theoretical study of possible t-DPPO epoxide hydrolysis mechanisms has been performed within 

two different active sites models, as presented in Scheme 1. Models were prepared based on available 
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Protein Data Bank crystal structures of sEH (PDB ID 1EK1) [28] and CALB (PDB ID 1TCA) [42] 

enzymes. Mutation of Ser105 to Asp in the CALB active site was achieved by using Discovery Studio 

3.5 [43]. The cluster models, depicted in Scheme 1, have been selected to mimic the conserved catalytic 

triad and oxyanion hole found in the active site of these two α/β hydrolases, which have shown significant 

activity for epoxide hydrolysis reactions. Thus, in the model of the active site of sEH, the substrate is 

surrounded by Asp333, His523, Asp495, Tyr381, and Tyr465. All residues are saturated in Cα positions. 

The PESs for the different mechanism have been obtained at the AM1 semi-empirical level [44]. The 

highly parametrized M06-2X [45,46] hybrid functional was selected in order to improve the limitation 

of the AM1 method. The 6-31+G** basis set was used for the DFT calculations. After localizing the 

stationary points, frequency calculations were carried out to verify that the structures represent true 

minima or first-order saddle points on the gas phase PESs. Once first-order saddle points were located 

and characterized, the Intrinsic Reaction Coordinate (IRC) path was traced down from the saddle 

points to the corresponding minima using the full gradient vector. The global r.m.s. residual gradient in the 

optimized structures was always less than 0.04 kcal·mol−1·Å−1. It is important to note that no constraints 

were applied to any of the geometry optimizations. Although allowing more reliable energetics, this 

implies that possible artifacts, such as odd interaction complexes, can be obtained. Thus, proper orientation 

of the different structures in the starting point structures is a crucial step in the computational protocol. 

Also, keeping in mind that the reaction under study is a multi-step process, IRC calculations traced 

forward from a TS structure do not necessarily converge in the end of the backwards path traced from 

the following IRC. In this sense, efforts have been made to get a converged result; otherwise, the 

minimum energy structure, belonging to the reaction path, was selected. All AM1 calculations were 

performed with MOPAC2007 [47], while DFT calculations were with Gaussian 09 [48]. 

4. Conclusions 

The primary reaction of the sEH, the hydrolysis of epoxides, has been studied by means of the AM1 

semi-empirical method and the M06-2X hybrid functional, using a cluster model to mimic its active 

site. Using this reaction as a template, the secondary activity of wild-type CALB as an epoxidase has been 

studied and the comparison with the reaction on sEH has suggested a mutation of one residue of the 

active site that could improve the catalytic activity of CALB. Indeed, our results carried out with t-DPPO 

as a substrate suggest that the multi-step mechanism that Ser105Asp employs to hydrolyze t-DPPO is 

similar to the one used by sEH. Our predicted rate limiting step of sEH is in agreement with the  

pre-steady-state kinetic analysis of epoxide hydration catalyzed by mEH performed by Tseng et al. [49], 

who concluded that the rate of hydrolysis of the hydroxyl alkyl-enzyme intermediate was far slower 

than the rate of its formation. When the reaction is studied in the active site of the Ser105Asp CALB, 

our calculations show that the barrier of this step is dramatically reduced and the step associated to the 

nucleophilic attack of the aspartate residue to the carbon atom of the epoxide ring becomes the rate-limiting 

step. The barrier of this step is almost equivalent in both sEH and Ser105Asp CALB. Finally, any attempt 

to perform the nucleophilic attack by a possible water molecule in the active site of the sEH results  

in higher energy barriers, thus discarding this alternative mechanism. At this point, we must keep in 

mind that the values of the relative energies of the stationary points can be shifted when including the 
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effect of the full protein. Nevertheless, since a comparative study has been carried out, in general the 

consequences should not be too dramatic. 

From the computational point of view, our results, obtained at the AM1 level, follow the same trend 

as the ones recomputed at a higher level of theory, M06-2X with the 6-31+G** basis set. These latter 

values are, in fact, quite close to the barriers that can be deduced from experimentally measured rate 

constant in related enzymatic processes. Nevertheless, it appears that the stereo-selectivity of the enzyme, 

as a result of the nucleophilic attack taking place on one or the other carbon atom of the epoxide, 

cannot be predicted from simulations based on reduced models. Thus, further studies should be carried 

out in the future with more complex and realistic models such as the ones based on the use of hybrid 

QM/MM models. Information derived from the present study will be of great help in setting up the 

model, in determining the size and level of theory to be employed in the QM region, and in the analysis 

of the role of the key residues of the active site. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/10/17789/s1. 

Acknowledgments 

This work was supported by the Spanish Ministerio de Economía y Competitividad for  

project CTQ2012-36253-C03, Universitat Jaume I (project P1•1B2014-26), Generalitat Valenciana 

(PROMETEOII/2014/022 and ACOMP/2014/277 projects), the Polish National Center for Science 

(NCN) (grant 2011/02/A/ ST4/00246, 2012–2017), the Polish Ministry of Science and Higher Education 

(“Iuventus Plus” program project no. 0478/IP3/2015/73, 2015-2016), and the USA’s National 

Institutes of Health (ref. NIH R01 GM065368). The authors acknowledge computational resources 

from the Servei d’Informàtica of Universitat Jaume I and from the Technical University of Lodz. 

Author Contributions 

I.B.—calculation for sEH model and figures preparation; J.R.G.—calculations for CALB model; 

K.Ś.—design of research, setting up of molecular models, results analysis, figures preparation, and 

writing manuscript; V.M.—design of research, results analysis, and writing manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Devries, E.J.; Janssen, D.B. Biocatalytic conversion of epoxides. Curr. Opin. Biotechnol. 2003, 14,  

414–420. 

2. Parker, R.E.; Isaacs, N.S. Mechanism of epoxide reactions. Chem. Rev. 1959, 264, 9310–9313. 

3. Jacobsen, E.N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 2000, 

33, 421–431. 



Molecules 2015, 20 17804 

 

 

4. Archelas, A.; Furstoss, R. Synthesis of enantiopure epoxides through biocatalytic approaches.  

Annu. Rev. Microbiol. 1997, 51, 491–525. 

5. Archelas, A.; Furstoss, R. Synthetic applications of epoxide hydrolases. Curr. Opin. Chem. Biol. 

2001, 5, 112–119. 

6. Wixtrom, R.N.; Hammock, B.D. Membrane-bound and soluble-fraction epoxide hydrolases: 

Methodological aspects. In Biochemical Pharmacology and Toxicology: Methodological Aspects 

of Drug Metabolizing Enzymes; Akim, D.Z., Vessey, D.A., Eds.; Wiley: New York, NY, USA, 

1985; Volume 1, pp. 1–93. 

7. Moghaddam, M.F.; Grant, D.F.; Cheek, J.M.; Greene, J.F.; Williamson, K.C.; Hammock, B.D. 

Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat. Med. 1997, 3, 562–566. 

8. Yu, Z.; Xu, F.; Huse, L.M.; Morisseau, C.; Draper, A.J.; Newman, J.W.; Parker, C.;  

Graham, L.; Engler, M.M.; Hammock, B.D.; et al. Soluble epoxide hydrolase regulates hydrolysis 

of vasoactiveepoxyeicosatrienoic acids. Circ. Res. 2000, 87, 992–998. 

9. Sinal, C.J.; Miyata, M.; Tohkin, M.; Nagata, K.; Bend, J.R.; Gonzalez, F.J. Targeted disruption of 

soluble epoxide hydrolase reveals a role in blood pressure regulation. J. Biol. Chem. 2000, 275, 

40504–40510. 

10. Campbell, W.B. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators.  

Trends Pharmacol. Sci. 2000, 21, 125–127. 

11. Davis, B.B.; Thompson, D.A.; Howard, L.L.; Morisseau, C.; Hammock, B.D.; Weiss, R.H. 

Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation.  

Proc. Natl. Acad. Sci USA 2002, 99, 2222–2227. 

12. Imig, J.D.; Zhao, X.; Capdevila, J.H.; Morisseau, C.; Hammock, B.D. Soluble epoxide hydrolase 

inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 2002, 39,  

690–694. 

13. Yu, Z.; Davis, B.B.; Morisseau, C.; Hammock, B.D.; Olson, J.L.; Kroetz, D.L.; Weiss, R.H. 

Vascular localization of soluble epoxide hydrolase in humankidney. Am. J. Physiol. Renal Physiol. 

2003, 286, F720–F726. 

14. Zhao, X.; Yamamoto, T.; Newman, J.W.; Kim, I.H.; Watanabe, T.; Hammock, B.D.; Stewart, J.; 

Pollock, J.S.; Pollock, D.M.; Imig, J.D. Soluble epoxide hydrolase inhibition protects the kidney 

from hypertension-induced damage. J. Am. Soc. Nephrol. 2004, 15, 1244–1253. 

15. Imig, J.D.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular 

diseases. Nat. Rev. Drug Discov. 2009, 8, 794–805. 

16. Wang, Z.H.; Davis, B.B.; Jiang, D.Q.; Zhao, T.T.; Xu, D.Y. Soluble epoxide hydrolase inhibitors 

and cardiovascular diseases. Curr. Vasc. Pharmacol. 2013, 11, 105–111. 

17. Holmquist, M. α/β-Hydrolase fold enzymes: Structures, functions and mechanisms. Curr. Protein 

Pept. Sci. 2000, 1, 209–235.  

18. Beetham, J.K.; Grant, D.; Arand, M.; Garbarino, J.; Kiyosue, T.; Pinot, F.; Oesch, F.; Belknap, W.R.; 

Shinozaki, K.; Hammock, B.D. Gene evolution of epoxide hydrolases and recommended 

nomenclature. DNA Cell Biol. 1995, 14, 61–71. 

19. Yamada, T.; Morisseau, C.; Maxwell, J.E.; Argiriadi, M.A.; Christianson, D.W.; Hammock, B.D. 

Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic 

cycle of epoxide hydrolase. J. Biol. Chem. 2000, 275, 23082–23088. 



Molecules 2015, 20 17805 

 

 

20. Busto, E.; Gotor-Fernández, V.; Gotor, V. Hydrolases: Catalytically promiscuous enzymes for  

non-conventional reactions in organic synthesis. Chem. Soc. Rev. 2010, 39, 4504–4523. 

21. Svedendahl, M.; Jovanovic, B.; Fransson, L.; Berglund, P. Suppressed native hydrolytic activity 

of a lipase to reveal promiscuous Michael addition activity in water. ChemCatChem 2009, 1,  

252–258. 

22. Świderek, K.; Martí, S.; Moliner, V. Theoretical study of primary reaction of Pseudozymaantarctica 

lipase B as the starting point to understand its promiscuity. ACS Catal. 2014, 4, 426–434. 

23. Ollis, D.L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.; Franken, S.M.; Harel, M.;  

Remington, S.J.; Silman, I.; Schrag, J.; et al. The α/β hydrolase fold. Protein Eng. 1992, 5, 197–211. 

24. Świderek, K.; Pabis, A.; Moliner, V. A theoretical study of carbon-carbon bond formation by a 

Michael-type addition. Org. Biomol. Chem. 2012, 10, 5598–5605. 

25. Chen, B.; Hu, J.; Miller, E.; Xie, W.; Cai, M.; Gross, R. Candida antarctica Lipase B chemically 

immobilized on epoxy-activated micro- and nanobeads: Catalysts for Polyester Synthesis. 

Biomacromolecules 2008, 9, 463–471. 

26. Svedendahl, M.; Carlqvist, P.; Branneby, C.; Allnér, O.; Frise, A.; Hult, K.; Berglund, P.; Brinck, T. 

Direct epoxidation in Candida antarctica lipase B studied by experiment and theory. ChemBioChem 

2008, 9, 2443–2451. 

27. Lonsdale, R.; Hoyle, S.; Grey, D.T.; Ridder, L.; Mulholland, A.J. Determinants of reactivity and 

selectivity in soluble epoxide hydrolase from quantum mechanics/molecular Mechanics modeling. 

Biochemistry 2012, 51, 1774–1786. 

28. Argiriadi, M.A.; Morisseau, C.; Goodrow, M.H.; Dowdy, D.L.; Hammock, B.D.; Christianson, D.W. 

Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate 

activation. J. Biol. Chem. 2000, 275, 15265–15270. 

29. Schiøtt, B.; Bruice, T.C. Reaction mechanism of soluble epoxide hydrolase: Insights from molecular 

dynamics simulations. J. Am. Chem. Soc. 2002, 124, 14558–14570. 

30. Amrein, B.A.; Bauer, P.; Duarte, F.; Carlsson, Å.J.; Naworyta, A.; Mowbray, S.L.; Widersten, M.; 

Kamerlin, S.C.L. Expanding the catalytic triad in epoxide hydrolases and related enzymes. ACS Catal. 

2015, 5, 5702–5713. 

31. Borhan, B.; Jones, A.D.; Pinot, F.; Grant, D.F.; Kurth, M.J.; Hammock, B.D. Mechanism of 

soluble epoxide hydrolase: Formation of an α-hydroxy ester-enzyme intermediate through Asp-333. 

J. Biol. Chem. 1995, 270, 26923–26930. 

32. Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein 

pKa values. Proteins 2005, 61, 704–721.  

33. Bas, D.C.; Rogers, D.M.; Jensen, J.H. Very fast prediction and rationalization of pKa values for  

protein-ligand complexes. Proteins 2008, 73, 765–783. 

34. Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment 

of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 2011, 7, 

525–537. 

35. Søndergaard, C.R.; Olsson, M.H.M.; Rostkowski, M.; Jensen, J.H.J. Improved treatment of ligands 

and coupling effects in empirical calculation and rationalization of pka values. Chem. Theory Comput. 

2011, 7, 2284–2295.  



Molecules 2015, 20 17806 

 

 

36. Hopmann, K.H.; Himo, F. Theoretical study of the full reaction mechanism of human soluble 

epoxide hydrolase. Chem. Eur. J. 2006, 12, 6898–6909. 

37. Hopmann, K.H.; Himo, F. Insights into the reaction mechanism of soluble epoxide hydrolase from 

theoretical active site mutants. J. Phys. Chem. B 2006, 110, 21299–21310. 

38. Armstrong, R.N. Enzyme-catalyzed detoxification reactions: Mechanisms and stereochemistry.  

Crit. Rev. Biochem. Mol. Biol. 1987, 22, 39–88. 

39. Pinot, F.; Grant, D.F.; Beetham, J.K.; Parker, A.G.; Borhan, B.; Landt, S.; Jones, A.D.;  

Hammock, B.D. Molecular and biochemical evidence for the involvement of the Asp333-His523 

pair in the catalytic mechanism of soluble epoxide hydrolase. J. Biol. Chem. 1995, 270, 7968–7974. 

40. Morisseau, C.; Du, G.; Newman, J.W.; Hammock, B.D. Mechanism of mammalian soluble 

epoxide hydrolase inhibition by chalcone oxide derivatives. Arch. Biochem. Biophys. 1998, 356, 

214–228. 

41. Elfström, L.T.; Widersten, M. Implications for an ionized alkyl-enzyme intermediate during 

StEH1-catalyzed trans-stilbene oxide hydrolysis. Biochemistry 2006, 45, 205–212. 

42. Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T.A. The sequence, crystal structure determination 

and refinement of two crystal forms of lipase B from Candida antarctica. Structure 1994, 2, 293–308. 

43. Discovery Studio Modeling Environment, Release 3.5; Dassault Systèmes BIOVIA: San Diego, 

CA, USA, 2015.  

44. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. The development and use of quantum 

mechanical molecular models. 76. AMI: A new general purpose quantum mechanical molecular 

model. J. Am. Chem. Soc. 1985, 107, 3902–3909. 

45. Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, 

thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two  

new functionals and systematic testing of four M06-class functionals and 12 other functionals.  

Theor. Chem. Acc. 2008, 120, 215–241.  

46. Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 

2008, 41, 157–167. 

47. Stewart, J.J.P. MOPAC2007; Computational Chemistry: Colorado Springs, CO, USA, 2007. 

48. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; 

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09, Revision A.1; 

Gaussian, Inc.: Wallingford, CT, USA, 2009. 

49. Tzeng, H.F.; Laughlin, L.T.; Lin, S.; Armstrong, R.N. The catalytic mechanism of microsomal 

epoxide hydrolase involves reversible formation and rate limiting hydrolysis of the alkyl-enzyme 

intermediate. J. Am. Chem. Soc. 1996, 118, 9436–9437. 

Sample Availability: Not available. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


