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Abstract: This paper examines the health risks of exposure to methylmercury (MeHg) through the
consumption of mercury-contaminated seafood in Taiwan, based on the total diet study (TDS) method.
Samples of seafood (n = 140) were purchased at fishing harbors or supermarkets and classified into
seven categories (pelagic fish, inshore fish, farmed fish, shellfish, cephalopods, crustaceans, and
algae). For each sample, we analyzed raw and cooked versions and compared the concentration
difference. Total mercury (THg) was detected at the highest rate and in the highest concentrations in
pelagic fish, followed by inshore fish and other farmed fish. The average concentration of THg was
higher after cooking. In a 75th percentile scenario, the hazard indices for children aged 1 to 3 years
and children aged 4 to 6 years were higher than 100% of the provisional tolerable weekly intake.
Taking into consideration the risk assessment results, MeHg concentrations, and the nutritional
composition of fish, we have provided weekly consumption advisories for children aged 1 to 3 years,
children aged 4 to 6 years, and childbearing women aged 19 to 49 years. The weekly consumption
advisories for childbearing women are 35 g/week of pelagic fish and 245 g/week of inshore fish
based on the risk results from MeHg and the potential benefits from eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) intake.

Keywords: methylmercury; pelagic fish; farmed fish; health risk assessment; total diet study

1. Introduction

Mercury (Hg) is a metal that is released into the environment from both natural and
anthropogenic sources. Human activities are the main source of Hg released into the
environment, particularly coal-fired power stations, residential coal burning, industrial
processes, waste incinerators, and as a result of mining for Hg, gold, and other metals.
Once released, Hg undergoes a series of complex transformations, and Hg cycles between
the atmosphere, oceans, and land. Eventually, most of these contaminants enter water
bodies, then into aquatic organisms through bioaccumulation, and build up at higher
concentrations in animals near the top of the food chain. The three chemical forms of total
mercury (THg) are elemental or metallic Hg, inorganic Hg, and organic Hg. Methylmercury
(MeHg) is by far the most common form of organic Hg in the food chain. The MeHg
concentration is highest in irrigation canal sediments; rivers are second, followed by
wetlands [1]. MeHg is of particular concern as MeHg can build up in certain edible
freshwater and saltwater fish and marine mammals to levels that are many times greater
than levels in the surrounding water [2,3].

MeHg is extremely harmful to humans. Excessive MeHg intake damages the human
nervous system [1,4–6]. In particular, MeHg consumed by pregnant women negatively
affects the growth of the fetus and delivery [5,7]; in children, MeHg intake may lead

Int. J. Environ. Res. Public Health 2021, 18, 12227. https://doi.org/10.3390/ijerph182212227 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-5459-907X
https://orcid.org/0000-0002-4127-2753
https://doi.org/10.3390/ijerph182212227
https://doi.org/10.3390/ijerph182212227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182212227
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182212227?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 12227 2 of 17

to impaired development, including development of the nervous system and compro-
mised cognition [1,8,9]. Maternal fish intake was determined to be a possible cofactor
during an investigation of the association between prenatal MeHg exposure and child
development [10].

There have been a great number of environmental studies concerning Hg contamina-
tion in Taiwan and in countries overseas, with many results showing that high concentra-
tions of Hg can accumulate in aquatic organisms [11–14]. Taiwan is surrounded by seas that
offer a rich range of seafood. Taiwanese people are able to easily acquire seafood as a source
of dietary protein [15]. While this seafood contains nutrients of excellent quality, such as
proteins, ω-3 polyunsaturated fatty acids (ω-3 PUFAs), vitamins, and minerals [4,5,8,16],
excessive consumption may result in excessive MeHg intake, which can cause potential
health safety risks. Therefore, we conducted a large-scale total diet study (TDS) on seafood.

TDSs have been used to measure the dietary intake of specific analytes by population
groups in countries or defined regions and to assess associated public health risks due
to chronic exposure. The TDS, also known as a “market basket study”, has been used
as a national monitoring research tool for food contamination and dietary exposure. It
is based on a national representative of food consumption for different subgroups of the
general population. TDS representative foods are designed to measure the average intake
of chemicals found in cooked or processed foods. In a TDS, food samples are prepared prior
to analysis as they would be consumed (table-ready) so that the analytical results provide
the basis for a realistic estimation of the dietary intake of these analytes and provide a
reasonable assessment of the health risks [17,18].

Many studies [19–21] have indicated large amounts of THg or MeHg accumulate in
aquatic organisms. The European Food Safety Authority (EFSA) conducted a study in
2012 analyzing the THg levels present in 20 different food categories [22], including grains
and grain-based products, vegetables and vegetable products, starchy roots and tubers,
legumes, nuts and oilseeds, fruit and fruit products, meat and meat products, fish and
other seafood, milk and dairy products, eggs and egg products, sugar and confectioneries,
animal and vegetable fats and oils, fruit and vegetable juices, non-alcoholic beverages,
alcoholic beverages, drinking water, herbs, spices and condiments, foods for infants and
small children, products for special nutritional use, composite foods, snacks, desserts, and
other foods. According to the average THg levels measured in that study, fish and other
seafood had an average THg concentration of 133 µg/kg, which was the highest among all
20 food categories. Most of the remaining food categories were below 5 µg/kg. The three
food categories with the lowest THg levels were drinking water (0.1 µg/kg), starchy roots
and tubers (0.8 µg/kg), and eggs and egg products (1.2 µg/kg).

Humans are exposed to MeHg through fish intake as Hg can transform into MeHg in
aquatic environments. According to recent studies, fish intake is considered a major path-
way for exposure to MeHg [23–25]. MeHg has a high affinity for sulfhydryl protein groups.
When humans ingest MeHg, it interacts with glutathione to form a MeHg-glutathione
compound, which is distributed to various tissues and organs through the blood [4].

Taiwan has rich and abundant aquatic resources as it is surrounded by the ocean. Most
fish, shellfish, cephalopods, and crustaceans are at the top of aquatic food chains [26]. In
addition to the accumulation of MeHg through the water and sediment, the accumulation
of hazardous metals may occur through the biomagnification effect of the food chain.
Hazardous metals accumulate readily in sediment; benthic shellfish, crustaceans, and
cephalopods, which are in contact with the sediment for long periods, subsequently
accumulate hazardous metals. In order to ensure food safety for the public, different
types of fresh seafood should be tested, and a database on background concentrations of
MeHg in seafood should be established in order to understand the current exposure of the
public [27,28].

The purposes of this study were: (1) to develop a representative list of seafood using
the TDS method and analyze the THg levels in different seafood purchased from various
representative fishing ports of Taiwan, (2) to estimate the human health risk from MeHg
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in different types of cooked seafood, and (3) to evaluate the consumption advisories on
large-sized fish for the Taiwanese population based on the MeHg risk assessment results.

2. Materials and Methods
2.1. Constructing a Representative Diet List

Classification principles for seafood: On the basis of the Sanitation Standards for
Aquatic Animals and the Sanitation Standards for Algae Foods issued by the Ministry of
Health and Welfare in Taiwan, we divided aquatic organisms into “pelagic fish”, “inshore
fish”, “other farmed fish”, “shellfish”, “cephalopods”, “crustaceans”, and “algae”. These
seven categories can be subdivided into 82 seafood species, which were represented by
140 samples (Table 1).

Table 1. Classification of the analyzed seafood samples.

Seafood Category Common Name (Sample Size)

Pelagic Fish
(n = 17)

Bastard Albacore (1), Bigeye Tunny (1), Blue Marlin (2), Marlin (1), Pacific Sailfish (1), Pointed Nose Shark (1),
Requiem Shark (1), Snake Mackerel (2), Swordfish (4), Tribon Blou (2), and Yellow-Fin Tuna (1).

Inshore Fish
(n = 35)

Anglerfish (2), Barracuda (3), Bullet Mackerel (1), Catfish (2), Cod (1), Cutlassfish (1), Eel (1), Freshwater Eel (2),
Halibut (3), Pike Congers (2), Pompano (1), Red Seabream (2), Righteye Flounder (2), Scat (2), Silverfish (3), Skipjack

(2), Stingray (3), Sturgeon (1), and Yellow Seabream (1).

Other Farmed Fish
(n = 47)

Barramundi (3), Blue Mackerel (3), Butterfish (2), Cobia (1), Common Dolphinfish (1), Giant Grouper (2), Golden
Threadfin Bream (2), Greater Amberjack (1), Japanese Butterfish (3), Japanese Horse Mackerel (1), Lizardfish (1),

Milkfish (4), Moonfish (1), Oceanic Anchovy (1), Orange-Spotted Grouper (4), Round Scad (1), Salmon Trout (1), Saury
(2), Sea Cucumber (1), Shishamo (2), Shrimp Scad (2), Silver-Stripe Round Herring (1), Sweet Fish (1), Tilapia (4), and

Tilefish (1).

Shellfish
(n = 9) Babylonia (3), Clam (1), Freshwater Clam (1), Locos (1), Mussel (1), Oyster (1), and Variegate Venus (1).

Cephalopods
(n = 10) Argentine Shortfin Squid (2), Cuttlefish (1), Jumbo Flying Squid (1), Loligo Squid (1), Octopus (2), and Squid (3).

Crustaceans
(n = 16)

Big Head Shrimp (3), Blue Crab (1), Crayfish (1), Giant River Prawn (1), Grass Shrimp (1), Lobster (2), Pelagic Crab (3),
Sakura Shrimp (2), Serrated Crab (1), and Whiteleg Shrimp (1).

Algae
(n = 6) Eucheuma (1), Gracilaria Seaweed (1), Purple Laver (2), and Sea Tangle (2).

Representative list of seafood: The establishment of the representative list of seafood
was mainly based on four principles. The first principle was that the aquatic animal
category in the Sanitation Standards for Aquatic Animals had to be a major item. The
second principle was that on the basis of the Sanitation Standards for Algae Foods, the
algae had to be a major item. The third principle was the domestic sales volume, based on
domestic production and imports minus exports in the 2015 Fisheries Industry Statistics.
Products were ranked from high to low by domestic sales volume (tons). The fourth
principle was that on the basis of the Nutrition and Health Survey in Taiwan (NASHIT),
only seafood with relatively high consumption rates were included in our list.

2.2. Planning the Sampling Strategy

Selection of sampling sites: First, the country’s administrative districts were divided
into four regions (northern, western, southern, and eastern), which covered 16 cities
and counties. The chosen locations were divided according to the products purchased.
Seafood was divided into imported and non-imported products. Non-imported seafood
was purchased in the cities and counties with the three highest rankings for sales volume
according to the 2015 Fisheries Industry Statistics. For imported seafood and processed
seafood, we took the city or county with the highest population in northern, western,
southern, and eastern Taiwan, respectively. The counties and cities where this study
purchased samples were: (1) in the northern region: Keelung City, Taipei City, New Taipei
City, Taoyuan County, and Hsinchu County; (2) in the western region: Miaoli County,
Taichung City, Changhua County, Yunlin County, and Chiayi County; (3) in the southern
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region: Tainan City, Kaohsiung City, and Pingtung County; and (4) in the eastern region:
Yilan County, Taitung County, and Hualien County.

The sampling sites were selected based on places where people regularly shop, major
fishing ports in each of the cities and counties, traditional wet markets or afternoon markets,
and supermarkets or discount stores. We selected well-known places with relatively high
numbers of consumers.

2.3. Analysis of THg Concentrations in Seafood

For the samples of seafood, the scales, viscera, skin, and bones of the fish were
removed, and the edible parts were homogenized. All stainless-steel laboratory equipment
was soaked the night before in a 32% nitric acid solution to remove impurities and metal
ions. The 140 seafood samples were each separated into two testing conditions, raw or
steam-cooked, to compare the differences in THg concentration before and after cooking.
For steam-cooking, samples were placed in a pot and steamed for 10 min. The THg
concentration was analyzed with inductively coupled plasma mass spectrometry (ICP-MS).
The mean recovery of THg in the certified reference material was 94.85%. The detection
limit for THg analysis was 0.02 mg/kg.

2.4. Seafood Safety Risk Assessment

The hazard quotient (HQ) values in this study were the ratio between the estimated
daily intake (EDI) and the provisional tolerable weekly intake (PTWI), expressed as
100%PTWI. HQs are used to assess the non-carcinogenic human health risks associated
with MeHg in seafood, as described in the following equation:

HQ (%PTWI) =
EDI

PTWI
=

C × CR × Fc

BW × PTWI
×100% (1)

where C is the MeHg concentration in the samples of the seven categories of seafood
(mg/kg), CR represents the consumption rate of the seven categories of seafood among
the different age groups (g/day) (Table 2, Fc represents the conversion factor of period
which is equal to 7 (week/day), and BW is body weight of the different age groups (kg).
PTWI is the MeHg reference dose of 1.6 µg/kg BW/week [29]. The daily seafood CR of
all exposure groups was based on values taken from the Nutrition and Health Survey in
Taiwan (NAHSIT). The THg concentration in steam-cooked seafood was used to calculate
the MeHg concentration based on the ratio of MeHg in THg (%MeHg/THg) which were
referred to in the previous studies [30–38] collated in Table 3.

The hazard index (HI) for MeHg in seafood was calculated by the sum of the individual
HQ values for pelagic fish, inshore fish, other fish, shellfish, cephalopods, crustaceans,
and algae.

HI =∑ HQ (2)

where HI is the total of the HQs of the seven classifications of seafood among the different
age groups.

Table 2. Consumption rates for the seven seafood categories among different exposure populations.

Seafood Category
Consumption Rates (g/Week) for Various Age Groups

1–3 Years Old 4–6 Years Old 7–18 Years Old ≥19 Years Old 19–49-Year-Old
Women

Pelagic Fish LN(9.24, 16.73) a LN(14.28, 15.68) LN(19.32, 16.10) LN(19.95, 16.87) LN(20.86, 18.34)
Inshore Fish LN(31.29, 16.73) LN(48.30, 15.68) LN(65.66, 16.10) LN(67.55, 16.87) LN(70.84, 18.34)

Other Farmed Fish LN(123.90, 16.73) LN(191.24, 15.68) LN(259.70, 16.10) LN(267.40, 16.87) LN(280.42, 18.34)
Shellfish LN(67.13, 16.52) LN(102.06, 16.03) LN(83.16, 21.77) LN(107.45, 22.47) LN(104.86, 24.36)

Cephalopods LN(167.09, 21.14) LN(371.00, 11.13) LN(294.49, 16.24) LN(277.76, 15.82) LN(322.49, 14.14)
Crustaceans LN(149.45, 13.09) LN(102.83, 24.29) LN(136.43, 20.86) LN(107.45, 24.57) LN(139.23, 19.74)

Algae LN(64.05, 30.80) LN(94.57, 22.12) LN(90.30, 20.65) LN(155.82, 22.75) LN(147.00, 21.35)
a LN(gm, gsd) represents lognormal distribution with geometric mean (gm) and geometric standard deviation (gsd).
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Table 3. Percentages of methylmercury to total mercury (% MeHg/THg) in different seafood species
adopted from a previous study.

Species Scientific Name % MeHg/THg Reference

Anglerfish Anglerfish Lophiomus setigerus 92.5 [31]

Cephalopods

Argentine Shortfin Squid Illex argentinus
81.3 [32]

Jumbo Flying Squid Dosidicus gigas

Cuttlefish Sepia Esculenta 72.8 [32]

Octopus Octopus vulgare 92 [37]

Cod Cod Coelorinchus kamoharai 97.4 [31]

Crustaceans

Big Head Shrimp Macrobrachium
rosenbergii

93 [33]Grass Shrimp Penaeus monodon

Whiteleg Shrimp Sergia lucens

Eel
Freshwater Eel Anguilla luzonensis 100 [36]

Eel Muraenesox cinereus 83.6 [32]

Flatfish Sole Cynoglossus arel 77.3 [32]

Hairtail
Cutlassfish Trichiurus nanhaiensis

99 [38]
Silverfish Trichiurus lepturus

Herring Silver-Stripe Round Herring Spratelloides
gracilis 100 [38]

Lizardfish Lizardfish Saurida tumbil 100 [30]

Marlin

Blue Marlin Makaira nigricans
84 [34]

Pacific Sailfish Istiophorus platypterus

Swordfish Xiphias gladius 99 [36]

Oilfish Snake Mackerel Gempylus serpens 92 [36]

Pomfret Butterfish Pampus echinogaster 75.4 [32]

Pompano Pompano Parastromateus niger 94 [38]

Salmon Salmon Trout Oncorhynchus mykiss 93 [37]

Saury Saury Saurida undosquamis 75 [36]

Shark
Requiem Shark Carcharhinus

melanopterus 73 [34]
Tribon Blou Prionace glauca

Shellfish
Oyster Crassostrea gigas 82 [33]

Mussel Perna viridis 35 [36]

Snapper

Black Sea Bream Acanthopagrus schlegelii

100 [38]Red Seabream Pagrus major

Yellow Seabream Dentex hypselosomus

Tilapia Tilapia Oreochromis niloticus 95 [35]

Tuna

Bastard Albacore Thunnus alalunga

93 [37]Bigeye Tunny Thunnus obesus

Yellow-Fin Tuna Thunnus albacares

2.5. Risk-Based Consumption Advisories

We proposed the consumption advice for MeHg based on estimates of mean HQ
risks and on an assumption of the acceptable risk being equal to 100%PTWI. This study
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calculated the weekly consumption rates and resulting MeHg exposure of various pop-
ulation groups, including children aged 1 to 3 years and 4 to 6 years, and childbearing
women aged 19 to 49 years. Swordfish and tuna were characterized by a higher MeHg
concentration and lower eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
levels, whereas salmon, mackerel, and greater amberjack had lower levels of MeHg and
higher levels of EPA and DHA [5,39,40]. Here, we set up hypothetical scenarios where
pelagic fish were not consumed or were consumed at one (35 g per serving) or two servings
per week, and inshore fish were consumed at 0.5 or one serving (35 g per serving) and
provide recommendations for weekly consumption advisories for other farmed fish for
different exposed population groups.

2.6. Uncertainty Analyses

In exposure and risk assessment, there are several sources of uncertainty. Due to
inherent natural variability, model variables can be defined in terms of a probability density
function that is derived from a limited set of observations. The data, however, may not
be representative of the entire population, and sample statistics may not be accurate
estimates of the true values of the population parameters, i.e., C, CR, and BW. This leads
to uncertainty in the parameter estimation procedures. To explicitly account for this
uncertainty/variability and its impact on the estimation of expected risk, a Monte Carlo
(MC) simulation was adopted. To test the convergence and the stability of the numerical
output, we performed independent runs at 1000, 4000, 5000, and 10,000 iterations, with
each parameter sampled independently from the appropriate distribution at the start of
each replicate. Largely due to limitations in the data used to derive model parameters,
inputs were assumed to be independent. The result showed that 10,000 iterations were
sufficient to ensure the stability of results. The MC simulation and sensitivity analysis
were implemented using Crystal Ball® (Version 11.1; Oracle Corporation, Redwood Shores,
CO, USA). We incorporated probability distributions into the MC simulation to obtain
5–95th percentiles for all uncertainty analyses.

3. Results and Discussion
3.1. THg and MeHg Concentration in Seafood

On the basis of the list of representative seafood, we divided the seafood into seven
categories subdivided into 82 species, including 140 raw and 140 cooked (steamed) samples
(Table 4). To conservatively estimate the concentrations of THg and MeHg, according to
the assumptions applied by the World Health Organization (WHO) European Programme
for Monitoring and Assessment of Dietary Exposure to Potentially Hazardous Substances
(GEMS/Food-EURO), if the proportion of analytical results that are non-detectable (ND)
is less than 60%, the ND results should be replaced with LOD/2 [41]. For this study,
the proportion of ND analytical results was less than 60%, so we calculated the average
concentration by replacing the ND results with LOD/2. In addition, we also investigated
the ratio of MeHg to THg in different seafood in the literature to estimate the MeHg con-
centrations in the different seafood used in the subsequent risk assessment calculations. In
the literature, nine articles related to the conversion rate of THg to MeHg and 27 families
of seafood were previously sampled [30–38]. If the literature provided a conversion rate
for a particular family, then that 100%MeHg/THg was used. If there was no recommen-
dation in the literature, then we used the recommendations from the EFSA report [22]: a
100%MeHg/THg of 100% for fish and 80% for crustaceans. The 100%MeHg/THg used
here were 73–100% for pelagic fish, 83.6–100% for inshore fish, 75–100% for other farmed
fish, 35–82% for shellfish, 72.8–92% for cephalopods, and 80% for crustaceans and algae,
respectively (Table 3). The THg and MeHg concentrations in the seven seafood categories
are described below.

The concentrations of THg in raw samples ranged from 0.03–3.16 mg/kg in pelagic
fish; not detected (ND)–0.78 mg/kg in inshore fish; ND–0.35 mg/kg in other farmed
fish; ND–0.06 mg/kg in shellfish; ND–0.05 mg/kg in cephalopods; ND–0.14 mg/kg in
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crustaceans; and ND in algae. The MeHg concentrations in raw samples ranged from
0.025–2.307 mg/kg in pelagic fish; ND–0.760 mg/kg in inshore fish; ND–0.329 mg/kg
in other farmed fish; ND–0.048 mg/kg in shellfish; ND–0.036 mg/kg in cephalopods;
ND–0.112 mg/kg in crustaceans; and ND–0.024 mg/kg in algae. The concentrations of
THg were higher in pelagic fish, followed by inshore fish. The detection rates in different
categories were pelagic fish (100%), inshore fish (91%), other farmed fish (62%), shellfish
(33%), cephalopods (50%), crustaceans (69%), and algae (17%). Pelagic fish and inshore fish
had higher THg detection rates, while algae had less, but all the seafood categories were
detected THg in this study.

Table 4. Total mercury (THg) concentrations in raw (uncooked) and cooked seafood.

Seafood
Categories

Number
of

Species

Uncooked (Raw) Cooked (Steam)

Number
of

Samples

≥LOQ
THg Concentration

(mg/kg)
Number

of
Samples

≥LOQ
THg Concentration

(mg/kg)

Mean ± SD Range Mean ± SD Range

Pelagic Fish 11 17 17 0.61 ± 0.82 0.03–3.16 17 17 0.97 ± 1.30 0.05–4.59
Inshore Fish 19 35 32 0.11 ± 0.14 ND a–0.78 35 34 0.15 ± 0.24 ND b–1.39

Other Farmed
Fish 25 47 29 0.05 ± 0.07 ND a–0.35 47 42 0.07 ± 0.11 ND b–0.47

Shellfish 7 9 3 0.02 ± 0.02 ND a–0.06 9 6 0.02 ± 0.02 ND b–0.05
Cephalopods 6 10 5 0.02 ± 0.01 ND a–0.05 10 10 0.04 ± 0.03 0.02–0.11
Crustaceans 10 16 11 0.04 ± 0.04 ND a–0.14 16 14 0.05 ± 0.06 ND b–0.23

Algae 4 6 1 0.01 ± 0.00 ND a 6 1 0.01 ± 0.00 ND b–0.01
a ND: 0.02 mg/kg for uncooked (raw) seafood b ND: 0.01 mg/kg for cooked (steamed) seafood.

In cooked samples, the concentrations of THg ranged from 0.05–4.59 mg/kg in pelagic
fish; ND–1.39 mg/kg in inshore fish; ND–0.47 mg/kg in other farmed fish;
ND–0.05 mg/kg in shellfish; 0.02–0.11 mg/kg in cephalopods; ND–0.23 mg/kg in crus-
taceans; and ND–0.01 mg/kg in algae. The MeHg concentrations in cooked samples ranged
from 0.042–3.351 mg/kg in pelagic fish; ND–1.354 mg/kg in inshore fish; ND–0.442 mg/kg
in other farmed fish; ND–0.0400 mg/kg in shellfish; 0.016–0.080 mg/kg in cephalopods;
ND–0.184 mg/kg in crustaceans; and ND–0.008 mg/kg in algae. The THg detection rates
had increased after cooking, which were inshore fish (97%), other farmed fish (89%), shell-
fish (67%), cephalopods (100%), and crustaceans (88%). The mean THg concentrations
were also increased.

Figure 1 summarizes the THg concentrations in the seven categories of raw and
steam-cooked seafood. Samples were collected from fishing ports in the north, west, and
south of Taiwan and from imported seafood. According to our results, among all pelagic
fish samples, those collected from the fishing ports of southern Taiwan featured a higher
THg concentration (Figure 1c); while imported inshore fish had higher levels of THg
compared to other inshore fish samples (Figure 1e). Among the other farmed fish samples,
those collected from fishing ports of northern Taiwan showed higher THg concentrations
(Figure 1a). Taken together, the order of THg concentration from high to low is pelagic fish,
inshore fish, and other farmed fish, while the THg concentrations in shellfish, cephalopods,
crustaceans, and algae are much lower. The detected THg concentrations in the northern
and eastern Taiwan were higher than that in other regions, it is possible related to the
source of seafood in the area.

3.2. Human Health Risk Assessment

A MC simulation was employed to determine C, CR, and BW due to the sparse data.
The exposure groups were classified according to different age groups as follows: 1–3, 4–6,
7–18, ≥19 years old, and women of childbearing age (19–49 years old). Figure 2 lists the
risks of consuming the seven seafood categories for different population groups. According
to the most conservative 100%PTWI results at the 95th percentile, the 1–3 and 4–6 age
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groups were at higher risk than the age groups of 7–18 and ≥19, as well as women of
childbearing age (19–49 years old). However, the long tail suggested that a relatively high
level of uncertainty was present. If the results at the 75th percentile were considered, all
age groups were below 100%PTWI, meaning the risks were all acceptable.
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Figure 1. Concentrations of total mercury (THg) in seafood from different sources in (a) northern Taiwan, (b) western
Taiwan, (c) southern Taiwan, (d) eastern Taiwan, (e) imported seafood, and (f) all purchased seafood. P: Pelagic fish;
I: Inshore fish; O: Other farmed fish; S: Shellfish; Ce: Cephalopods; Cr: Crustaceans; and A: Algae.
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Figure 2. Hazard quotient for the seven categories of seafood among different age groups. P: Pelagic fish; I: Inshore fish; O:
Other farmed fish; S: Shellfish; Ce: Cephalopods; Cr: Crustaceans; and A: Algae.

Figure 3 shows the sum of the risks at the 50th and 75th percentiles in different seafood
categories for the different population groups. Figure 3a shows the results of the summed
total risk at the 50th percentile (the general situation) of the seven seafood categories, and
all the risks for population groups were within 100%PTWI, suggesting that the risks were
acceptable. Figure 3b shows the summed total risks at the 75th percentile, and under
this conservative scenario, the risk levels for population groups of children 1–3 years and
4–6 years were both higher than 100%PTWI, suggesting that follow-up studies are needed,
and extremely high consumers should pay attention to the MeHg hazard-related risks and
moderately change their habits of consuming seafood.

3.3. Risk and Nutrition-Based Recommended Weekly Consumption Advisory

Chen et al. [39], Hsi et al. [5], and Mahaffey et al. [40] indicated that some pelagic
and inshore fish feature higher levels of MeHg, but lower levels of EPA and DHA. Del
Gobbo et al. [42] also suggested that some pelagic fish should be avoided or consumed
less often, and that the recommended amount for children and childbearing women
should be < 75 g/month. Therefore, we fixed the recommended intake of pelagic and
inshore fish to determine the recommended weekly consumption advisory for other farmed
fish. This study established fish consumption advisories for sensitive population groups,
including 1–3-year-old children, 4–6-year-old children, and 19–49-year-old childbearing
women. This study set up hypothetical scenarios for the different population groups where
the consumption of pelagic fish and inshore fish were set to a fixed number of servings
(e.g., in Scenario 3 for 1–3-year-old children, pelagic fish were not consumed and one
serving (35 g per serving) of inshore fish was consumed; in Scenario 3 for 19–49-year-old
childbearing women, two servings (70 g) of pelagic fish and seven servings of inshore fish
were consumed.
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Figure 3. Hazard index of dietary exposure to MeHg in seafood for different age groups. (a) Sum of all median 100%PTWI,
(b) Sum of all 100%PTWI at 75th percentile.

By removing the risks from pelagic fish and inshore fish based on the 100%PTWI
at the 75th percentile, the remaining risk could be used to make inferences, and weekly
consumption advisories could be made about the maximum recommended consumption
of other farmed fish for the different population groups (Table 5). If, in Scenario 3, the
group aged 1–3 years consumed no pelagic fish and one serving (35 g) of inshore fish, the
maximum recommended consumption advisory for other farmed fish would be 197.3 g. If
the group aged 4–6 years in Scenario 2 consumed no pelagic fish and one serving (35 g)
of inshore fish, the maximum recommended consumption advisory for other farmed fish
would be 653.3 g. If the group of 19−49-year-old women in Scenario 3 consumed two
servings of pelagic fish and seven servings of inshore fish, the maximum recommended
consumption advisory for other farmed fish would be 189.4 g.

Table 5. Consumption advisories for fish intake (g/week).

Seafood
Category

Weekly Consumption Advisory (g/Week)

1–3 Years Old 4–6 Years Old 19–49-Year-Old Women

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 3

Pelagic Fish 0.0 0.0 0.0 0.0 0.0 70.0 70.0 70.0
Inshore

Fish 8.8 17.5 35.0 17.5 35.0 175.0 210.0 245.0

Other
Farmed

Fish
129.2–453.0 125.9–366.1 119.3–197.3 170.1–788.5 163.5–653.3 120.5–855.5 107.3–527.8 94.1–189.4

According to the recommendation of the Food and Agriculture Organization (FAO)/
WHO [43], the recommended daily intake (RDI) for EPA and DHA in 1–3-year-olds is
150 mg/day, for 4–6-year-olds the RDI is 200 mg/day, and in 19–49-year-old women the
RDI is 250 mg/day; the mean concentration of EPA and DHA of pelagic fish, inshore
fish, and other farmed fish, which were collated from studies of Afonso et al. [44], Can-
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toral et al. [45], Chen et al. [39], Del Gobbo et al. [42], Hsi et al. [5], Mahaffey et al. [40],
Laird et al. [8], Rincón-Cervera et al. [46], were 3.892, 2.989, and 7.922 (mg/g). Collated
mercury concentrations and EPA+DHA concentrations in different fishes are presented in
Appendix A. This study assumed that 100% of the EPA and DHA consumed originate in
seafood and calculated the minimum recommended consumption of other farmed fish that
equaled the RDI of EPA and DHA. After removing the EPA and DHA intake from pelagic
fish and inshore fish from the RDI, then dividing by the EPA and DHA concentration found
in other farmed fish, we can obtain the minimum recommended consumption of other
farmed fish (Table 5). If the group aged 1–3 years in Scenario 3 consumed no servings of
pelagic fish and one serving of inshore fish, the minimum recommended consumption
advisory for other farmed fish would be 119.3 g. If the group aged 4–6 years in scenario
2 consumed no servings of pelagic fish and one serving of inshore fish, the minimum
recommended consumption advisory for other farmed fish would be 163.5 g. If the group
of women aged 19–49 years in Scenario 3 consumed two servings (70 g) of pelagic fish
and seven servings (210 g) of inshore fish, the minimum recommended consumption
advisory for other farmed fish would be 94.1 g. The German Federal Institute for Risk
Assessment (BfR) has established 1500 mg/day as the recommended upper intake level for
omega-3 polyunsaturated fatty acids [47], and the recommendation of the US Food and
Drug Administration (USFDA) is to not exceed an intake of 3000 mg/day omega-3 fatty
acids (EPA and DHA) [48]. Appendix B shows the daily intake of DHA and EPA based
on the maximum consumption advisory of fish intake (Table 5) multiplied by the mean
concentration of EPA and DHA, which exceeded the RDI suggested by the FAO/WHO [43],
but did not exceed the RDI suggested by the BfR [47] or the USFDA [48].

3.4. Comparison of Raw and Cooked Food

Overall, Hg concentrations were higher in cooked samples than in raw samples,
showing an increase of 50% to 80%. We speculate that the cooking process reduced the
weight of the seafood, resulting in an enrichment of THg and MeHg. Among the literature
concerning the heavy metal level changes before and after cooking seafood, one study
showed that the concentration of arsenic (As) in shellfish, crustaceans, and cephalopods
changed after cooking [49]; and another indicated an increase in As, cadmium (Cd), and
lead (Pb) levels in sardines, cod, and tuna after grilling, however, the changes were not
statistically significant [50]. Cooked seafood may undergo accelerated protein degradation
and water loss due to the effects the process of heat treatment has on organic material,
leading to elevated heavy metal levels [51]. In addition, Kalogeropoulos et al. found that
the increase of heavy metal levels in smaller fish was more obvious due to a greater loss
of water during cooking [52]. In contrast, Diaconescu et al. suggested that decreased
levels of heavy metals [53], including chromium (Cr), nickel (Ni), and Pb, after baking
and microwave cooking were probably the result of either a reduced binding of metal to
the proteins in the tissues after the cooking process (Howarth and Sprague 1978), or the
formation of free salt compounds after the heavy metals were partially removed along with
the water loss [54]. Ersoy (2011) found that Cd and cobalt (Co) were not detected in either
raw or cooked catfish, but the concentrations of As, Cr, and Ni significantly increased after
cooking [54]. Taken together, the above results suggest that, apart from the differences
between species, fish size, and cooking methods, water loss could be a major cause of THg
level changes between raw and cooked seafood. In addition, THg cannot be reduced or
completely removed from seafood by cooking, meaning that humans may still take in a
certain level of THg, even from the consumption of cooked seafood. In the cases where
the consumption risk of THg and MeHg need to be investigated in follow-up studies, one
should consider the concentration changes in THg and MeHg in seafood before and after
cooking, as well as the fact that different cooking methods may also cause differences in
THg and MeHg levels.
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3.5. Correlation between Seafood Weight and THg Concentration

Figure 4 shows the correlation between THg concentration and weight of inshore fish,
other farmed fish, shellfish, cephalopods, and crustaceans. Most values are expected in the
inter quartile range (IQR). Values outside the boundaries of 3(IQR) are termed “extreme
outliers”. In this figure, if any observation lies outside the range Q1 − (3 IQR) and Q3 +
(3 IQR), they are defined as problematic outliers and removed from calculation.
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According to the results, there was no significant correlation between the weight of an
aquatic product and THg concentration. This could have been caused by the differences in
aquatic food species and sampling locations. However, the correlation between the weight
of other farmed fish and THg concentration was higher than for other seafood, and the
changes in THg concentrations with the weight of other farmed fish and shellfish were
more obvious, but there was no significant correlation. There was a negative correlation
between the weight of shellfish and crustaceans and THg concentration, but there was no
significant correlation.

4. Conclusions

This study provides a database for THg and MeHg concentrations in raw and cooked
seafood, which includes pelagic fish, inshore fish, other farmed fish, crustaceans, shellfish,
cephalopods, and algae. Pelagic fish have the highest average THg concentration, followed
by inshore fish, other farmed fish, crustaceans, shellfish, cephalopods, and algae. The
THg concentrations in cooked seafood were always higher than those in raw seafood.
According to the results of the cumulative risk at the 50th percentile, the risk for all age
groups was below 100%PTWI and thus was an acceptable risk. However, the risks for
children 1–3 years and 4–6 years were above 100%PTWI at the 75th percentile, calling for
further investigation. This study also advised recommended weekly consumption rates
of seafood for the population groups of 1–3-year-olds, 4–6-year-olds, and 19–49-year-old
women based on different hypothetical scenarios.
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Appendix A

Table A1. Mercury and EPA+DHA concentrations in different fish.

Category Common Name
Hg

Concentration
(mg/kg)

Converted
MeHg

Concentration
(mg/kg)

EPA+DHA
Concentration

(mg/g)

Pelagic Fish

Bastard Albacore 0.48 0.45 2.300 [39]

0.400 [5]
Bigeye Tuna 0.13 0.12 -
Blue Marlin 0.14 0.73 12.000 [42]

Pacific Sailfish 0.03 0.03 -
Pointed Nose

Shark 0.25 0.25 -

Requiem Shark 0.08 0.06 2.200 [40]
Snake Mackerel 0.32 0.29 -

Swordfish 0.71 0.70 5.800 [40]
3.200 [5]

6.930 [44]
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Table A1. Cont.

Category Common Name
Hg

Concentration
(mg/kg)

Converted
MeHg

Concentration
(mg/kg)

EPA+DHA
Concentration

(mg/g)

Tribon Blou 1.68 1.22 -
Yellow-fin Tuna 0.16 0.15 1.000–1.200 [40]

Inshore Fish

Anglerfish 0.11 0.10 0.700 [44]
Barracuda 0.05 0.05 -

Black Sea Bream 0.08 0.08 -
Bullet Tuna 0.10 0.09 -

Catfish 0.00 0.00 2.800 [40]
1.900 [44]

Cod 0.78 0.76 2.400 [40]
8.300 [5]

3.000 [45]
1.860 [44]
2.620 [8]

Cutlassfish 0.06 0.06 -
Eel 0.08 0.08 -

Freshwater Eel 0.06 0.06 -
Golden

Threadfin Bream 0.08 0.08 8.200 [39]

Haliubut 0.13 0.13 -
Pike Conger 0.14 0.11 -

Pompano 0.02 0.02 2.000 [42]
Red Seabream 0.17 0.17 -

Righteye
Flounder 0.03 0.03 1.500 [40]

Scat 0.04 0.04 -
Silverfish 0.16 0.16 4.100 [5]

Skipjack Tuna 0.13 0.12 2.560–3.280 [40]
Sole 0.00 0.00 1.920 [44]

Stingray 0.13 0.13 0.690 [44]
Sturgeon 0.00 0.00 -

Yellow Seabream 0.06 0.06 -

Other Fish

Barramundi 0.01 0.01 4.900 [40]
4.900 [45]

Blue Mackerel 0.08 0.07 2.752 [46]
Butterfish 0.01 0.01 -

Cobia 0.13 0.13 6.000 [42]
Common

Dolphinfish 0.02 0.02 -

Giant Grouper 0.07 0.07 -
Greater

Amberjack 0.00 0.00 13.200 [5]

Japanese
Butterfish 0.01 0.01 -

Lizardfish 0.10 0.10 -
Milkfish 0.00 0.00 3.867 [42]

2.000 [5]
Moonfish 0.06 0.06 -
Oceanic

Anchovy 0.00 0.00 -

Orange-Spotted
Grouper 0.06 0.06 3.500 [39]

4.000 [45]
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Table A1. Cont.

Category Common Name
Hg

Concentration
(mg/kg)

Converted
MeHg

Concentration
(mg/kg)

EPA+DHA
Concentration

(mg/g)

Round Scad 0.07 0.07 -
Salmon Trout 0.00 0.00 15.900 [40]

8.200 [39]
21.600 [5]
25.000 [45]
15.360 [44]

4.242 [8]
Saury 0.06 0.04 -

Sea Cucumber 0.02 0.02 -
Shishamo 0.00 0.00 -

Shrimp Scad 0.33 0.31
Silver Stripe

Round Herring 0.02 0.02 -

Sweet Fish 0.04 0.04 7.000 [42]
Tilapia 0 0 1.600 [42]

1.400 [5]
Tilefish 0.12 0.12 5.100 [39]

Appendix B

Table A2. Daily intake of DHA and EPA (mg/day) based on the maximum consumption advisory in this study.

Seafood Category

Daily Intake of DHA and EPA a,b,c,d (mg/day)

1–3 Years Old 4–6 Years Old 19–49-Year-Old Women

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 3

Pelagic Fish 0.0 0.0 0.0 0.0 0.0 38.9 38.9 38.9
Inshore Fish 3.7 7.5 15.0 7.5 15.0 74.7 89.7 104.6

Other Farmed Fish 512.7 414.3 223.2 892.3 739.4 968.2 597.3 214.4
a CEPA+DHA × CR. b According to Annex I, the mean concentrations of EPA and DHA in pelagic fish, inshore fish, and other farmed fish are
3.892 mg/g, 2.989 mg/g, and 7.922 mg/g, respectively. c RDI: according to the recommendation of FAO/WHO, the recommended daily
intake (RDI) for EPA and DHA in 1–3 year-olds is 150 mg/day, in 4–6 year-olds is 200 mg/day, in 19–49-year-old women is 250 mg/day [43];
the recommended daily intake of DHA and EPA for this study exceeds the RDI. d The recommendation of the German Federal Institute for
Risk Assessment (BfR) has established a level of 1500 mg/day as the recommended upper intake level for omega-3 polyunsaturated fatty
acids [47]; the recommendation of US Food and Drug Administration (USFDA) has recommended not to exceed an intake of 3000 mg/day
of omega-3 fatty acids (EPA and DHA) [48]; the recommended daily intake of DHA and EPA for this study does not exceed the FDA value.
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