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Abstract

To facilitate preclinical testing of T-cell receptors (TCRs) derived from tumor-reactive T-cell

clones it is necessary to develop convenient and rapid cloning strategies for the generation

of TCR expression constructs. Herein, we describe a pDONR™221 vector backbone allow-

ing to generate Gateway™ compatible entry clones encoding optimized bicistronic αβTCR

constructs. It harbors P2A-linked TCR constant regions and head-to-head-oriented recogni-

tion sites of the Type IIS restriction enzymes BsmBI and BsaI for seamless cloning of the

TCRα and TCRβ V(D)J regions, respectively. Additional well-established TCR optimizations

were incorporated to enhance TCR functionality. This included replacing of the human

αβTCR constant regions with their codon-optimized murine counterparts for chimerization,

addition of a second interchain disulfide bond and arrangement of the TCR chains in the

order β-P2A-α. We exemplified the utility of our vector backbone by cloning and functional

testing of three melanoma-reactive TCRs in primary human T cells.

Introduction

Adoptive transfer of in vitro expanded tumor infiltrating lymphocytes (TIL) naturally express-

ing cancer-reactive T-cell receptors (TCR) has yielded promising results in metastatic mela-

noma [1] and in epithelial cancers [2]. However, this treatment option is confined only to

patients, in whom the expansion of functional TIL is successful [3]. This limitation can be

overcome by identification and cloning of the αβTCR of tumor-reactive T-cell clones to gener-

ate αβTCR-transduced blood-derived T cells for adoptive therapy [4]. αβTCR expression con-

structs often share optimizations that favor expression of transgenic TCRs and reduce putative

mispairing with endogenous α and β TCR chains. These, amongst others, comprise expression

of the α and β TCR chains from the same promoter by linking the individual genes with a 2A
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element [5], arrangement in the order β-2A-α [5, 6], replacement of the human constant

domains with their murine counterparts (chimerization) [7] and introduction of a second

disulfide bond into the αβTCR constant domain [8, 9].

As of yet, we employed the MultiSite Gateway™ cloning system [10] to assemble bicistronic

αβTCR constructs and integrate the optimizations described above. This strategy required

about three weeks of hands-on time, mainly due to the need to remove cloning scars between

the joined DNA fragments. Here we suggest a TCR-cloning strategy relying on a single univer-

sal vector backbone designed to incorporate TCR-specific V(D)J sequences and to generate

chimerized and optimized αβTCR chains preferentially pairing with each other. The method

described herein follows the Golden Gate cloning approach that capitalizes on the unique fea-

ture of Type IIS restriction enzymes [11]. These restriction enzymes cut outside of their recog-

nition site which allows to freely choose the resulting overhangs for seamless and directional

cloning. Using this approach, we could assemble chimerized and optimized αβTCR constructs

in two to four days and generate TCR expression vectors in four to six days. We validated our

approach with three melanoma-reactive αβTCRs retrovirally transduced into primary human

T cells. Compared to our previous TCR cloning strategy, we could greatly reduce hands-on

time while retaining high cloning efficiency.

Material and methods

Cell lines

293FT cells (kindly provided by Thomas Kindler, University Cancer Center Mainz, Germany)

and Phoenix amphotropic packaging cells were cultivated in DMEM. COS-7 cells and the pre-

viously described human melanoma cell lines SK29-MEL.1 [12] and D05 [13] were cultured in

RPMI 1640. Cell-culture media were supplemented with 10% heat-inactivated FCS (Sigma

Aldrich, St. Louis, MO, USA) and 1% Penicillin/Streptomycin (Sigma Aldrich) unless stated

otherwise.

T-cell culture

Transgenic T cells were freshly generated by retroviral transduction. T cells were cultured in

Panserin (PAN-Biotech, Aidenbach, Germany) supplemented with 10% heat-inactivated

human serum (kindly provided by the blood bank of the University Medical Center Mainz),

1% Penicillin/Streptomycin (Sigma Aldrich), rhIL-2 (250 U/mL—600 U/mL; Novartis, Basel,

Switzerland). Transgenic T cells were once stimulated with anti-CD3/CD28 beads (Thermo

Fisher Scientific, Waltham, MA, USA) on the day after transduction and were then weekly

restimulated with irradiated (10,000 Gy) antigen-expressing tumor cells at a stimulator-to-T

cell ratio of 1:5. Transgenic T cells were additionally selected with puromycin (1 μg/mL; Sigma

Aldrich).

Cloning and vectors

PCR reactions were set up using the Q5 High-fidelity DNA Polymerase or the Taq DNA Poly-

merase (both NEB, Ipswich, MA, USA). Restriction enzymes (BsmBI, BsaI) and the T4 ligase

with appropriate buffers were from NEB and Thermo Fisher Scientific. Where indicated, vec-

tors and PCR products were purified with the Monarch Gel Extraction kit (NEB) or with PCR

Clean-up columns (Macherey Nagel, Dueren, Germany). Plasmid preparations were done

with the Plasmid kits from Qiagen (Hilden, Germany). 10-beta competent E. coli (NEB) were

used for plasmid transformation.
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The Gateway™ compatible entry vector pDONR™221 (Thermo Fisher Scientific) was modi-

fied by standard molecular cloning techniques as described in the results section. The pMXs-

IRES-Puro retroviral expression vector (Cell Biolabs, San Diego, CA, USA) served as destination

vector. Following the Gateway™ converter system (Thermo Fisher Scientific) the pMXs-IRE-

S-Puro vector was converted to a Gateway™ compatible destination vector by insertion of the

chloramphenicol resistance gene and the ccdB gene flanked by attR recognition sites at the mul-

tiple cloning site using the XhoI restriction site. In the final destination vector (pMXs-IRES-

puro-DEST) the transgene is connected to the puromycin resistance gene by an IRES sequence

which allows expression from the same retroviral promotor. Entry vectors were recombined

into the final destination vector performing the LR clonase (Thermo Fisher Scientific) reaction.

The retroviral pMP71-PRE plasmid harboring the codon optimized (GeneArt) and chimer-

ized (codon optimized murine constant regions) anti-CDK4R24C TCR derived from the

HLA-A�02 restricted T-cell clone 14/35 has previously been described by others [14].

The Firefly luciferase (Fluc) expression plasmid pLenti-EF1a-Pac-T2A-Fluc was generated

by replacing the Gaussia luciferase (Gluc) of the pLenti-EF1a-Pac-T2A-Gluc plasmid [15]

(kindly provided by Preet Chaudhary, University of Southern California, CA, USA) with the

Firefly Luciferase hluc+ (Promega, Waltham, MA, USA) via Gibson Assembly (NEB).

Sequencing was performed using the services of Eurofins (Luxembourg, Luxembourg).

Sequence analyses were made using Geneious software (Biomatters, Auckland, New Zealand,

Version 8.1.9).

Production of retroviral particles

Retroviral particles were generated as previously described [16]. In brief, Phoenix amphotropic

retroviral packaging cells were cotransfected with the helper plasmids pCOLT-GALV and

pHIT60 (both 5 μg per culture dish) as well as the respective pMXs expression vector (10 μg per

culture dish) using FuGENE6 Transfection Reagent (Promega, Madison, WI, USA) according to

the manufacturer´s instructions. The next day, medium was replaced with T-cell culture medium

and supernatant was harvested after additional incubation for 16 h by pelleting cellular debris.

Retroviral transduction of CD4+ and CD8+ T cells

CD3+ T cells were purified from PBMC using the CD3+ selection kit (Miltenyi Biotec, Bergisch

Gladbach, Germany). PBMC from healthy donors were provided by the blood bank of our

institution according to the guidelines of the local ethics committee (Ethics committee of the

Medical Association of Rhineland-Palatinate, Mainz, Germany). All donors gave written

informed consent. Transduction of PBMC with retroviral vectors was exclusively performed

within a genetic engineering facility (registration number: B 11.110) in accordance with the

German Genetic Engineering Act. For retroviral transduction freshly prepared CD3+ T cells

were activated for 2 days with an anti-CD3 antibody (30 ng/mL; clone: OKT3; hybridoma

obtained from ATCC, Manassas, VA, USA) and rhIL-2 (600 U/mL). Subsequently, CD3+ T

cells were spinofected with virus particles (90 min at 2000 rpm) in the presence of Polybrene

(4 μg/mL; Sigma Aldrich) and rhIL-2 (600 U/mL), and were further cultivated for 22 h or were

left untreated. Thereafter, transgenic T cells were cultured as described above. Where indicated

CD4+ and CD8+ T cells were isolated from transgenic CD3+ T cells using the CD4+ and CD8+

selection kit (Miltenyi Biotec), respectively.

Flow cytometry

Cells were surface-stained with the following fluorescent-conjugated antibodies: Anti-Vβ1-PE

(clone BL37.2, 5 μl), anti-Vβ4-PE (clone WJF24, 5 μl), anti-CD8-FITC (clone B9.11, 2 μl), anti-
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CD8-PE (clone B9.11, 2 μl) and IgG-PE/IgG-FITC (clone 679.1Mc7, 4 μl) was from Beckman

Coulter (Brea, CA, USA) and anti-murine TCR-FITC (clone CL075F, 1 μl) from OriGene

(Rockville, MD, USA). Flow cytometry was performed on a FACS Canto II (BD Bioscience,

San José, CA, USA) and data was analyzed using FlowJo (BD Bioscience, Version 8.0).

IFNγ-ELISpot assay

IFNγ-ELISpot-assays were performed as described previously [17]. In brief, 293T or COS-7

cells (20,000 cells/well) were transfected with cDNA encoding HLA-A�02:01. Where indicated,

cells were cotransfected with cDNA encoding full length CDK4 harboring the R24C mutation

or encoding full-length NY-ESO-1. Transfection was performed directly on ELISpot plates

(Millipore, Burlington, MA, USA) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer´s recommendations. Twenty-four hours thereafter transfec-

tants were additionally pulsed with the peptide ACDPHSGHFV (CDK4R24C) or SLLMWITQC

(NY-ESO-1), where indicated (both synthesized by Dr. Jan-Wouter Drijfhout, University

Medical Center Leiden, The Netherlands). Transgenic T cells (5,000–10,000 TCR+ cells/well)

were then added to (peptide pulsed) transfectants or to freshly seeded melanoma cells (50,000

cells/well). Where indicated, cells were cultured in the presence of the HLA-A�02 blocking

antibody MA2.1 at a concentration of 200 μg/mL (clone: MA2.1; hybridoma obtained from

ATCC). After 20–24 h incubation ELISpot plates were developed and IFNγ spots were visual-

ized with an ImmunoSpot analyzer (Cellular Technology Limited, Cleveland, OH, USA).

Cytotoxicity assay

Cytotoxicity of effector T-cells was evaluated performing a bioluminescence-based lysis assay

as recently described [18, 19]. To this end SK29-MEL.1 or D05 melanoma cells stably express-

ing Firefly luciferase (Fluc) were generated by lentiviral transduction. Melanoma cells (10,000

cells/well) were cocultured with effector cells at the indicated effector-to-target ratio in the

presence of 0.15 mg/mL D-Luciferin (Biosynth, St. Gallen, Switzerland). Eighteen hours later,

relative luminescence units (RLU) were determined using a FluoStar Omega plate reader

(BMG Labtech, Ortenberg, Germany) and a 10 s integration time. Spontaneous cell death was

measured in wells containing target cells only, maximum cell death was induced by exposure

of target cells to Digitonin (Sigma) at a concentration of 30 μg/mL. Lysis was calculated using

the following equation: lysis [%] = 100�((spontaneous RLU—test unit RLU) / (spontaneous

RLU—maximum RLU)).

Results

Structure of the seamless-cloning vector backbone

In order to accelerate generation of αβTCR expression constructs, we designed a Gateway™
compatible pDONR™221 entry vector backbone (VBB) for seamless cloning and chimerization

of variable αβTCR sequences (summarized in Fig 1). The VBB harbors a bicistronic TCR-

expression cassette lacking the TCRα- and TCRβ-variable sequences. The TCR-expression cas-

sette comprises the murine TCRα- and TCRβ-chain constant regions (mTRAC and mTRBC)

separated by the ribosomal skipping element P2A and arranged in the order β-P2A-α.

mTRAC and mTRBC are codon-optimized and harbor the previously described T48C and

S57C mutations, respectively, resulting in an additional interchain disulfide bond [9]. Follow-

ing the Golden Gate cloning strategy [11], two different Type IIS restriction enzyme recogni-

tion sites were placed each in head-to-head orientation at the 5’ end of the mTRBC region

(BsaI) and at the P2A-mTRAC junction (BsmBI). Upon plasmid cleavage with BsaI or BsmBI
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non-compatible overhangs are generated (Fig 1A). These unique overhangs were then used to

directionally and scarlessly insert PCR-amplified TCRα- and TCRβ-variable sequences to

assemble full length chimerized TCR (cTCR) constructs. To this end the antigen-specific VJα
and VDJβ regions are flanked during PCR amplification with BsmBI and BsaI restriction sites,

respectively (Fig 1B). Overhangs are designed to allow precise and seamless ligation of the VJα
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e.g. RT-cDNA
derived from clonal T cells

PCR amplification

β-chain
amplicon

α-chain
amplicon

S57C
C

T48C
C

attL2attL1
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X
ΔBsmBI

pDONR™221 vector backbone

BsaI BsmBI

P2AmTRBC mTRAC

B

A
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Fig 1. Schematic depiction of the vector backbone for generation of chimerized αβTCR constructs by BsmBI and BsaI restriction. (A) The VBB represents a

pDONR™221 vector harboring the invariable elements of a chimerized bicistronic αβTCR construct comprising the murine TCR beta and alpha chain constant

regions (mTRBC and mTRAC) separated by a P2A element. In addition, two BsaI and BsmBI restriction sites each, are placed in head-to-head orientation at the

vector/mTRBC and the P2A/mTRAC junctions, respectively, leading to unique overhangs upon cleavage. A naturally occurring BsmBI-restriction site in the

Kanamycin resistance gene has been removed by site-directed mutation. (B) The TCRα chain VJ (VJα) and the TCRß chain VDJ (VDJβ) regions of the TCR of

choice are flanked during PCR amplification with BsmBI- or BsaI-restriction sites, respectively, to generate appropriate overhangs. PCR fragments are then restricted

and ligated into the vector backbone yielding the full-length chimerized αβTCR construct. Spikes indicate cleavage sites of the Type IIS restriction enzymes required

for generation of homologous overhangs and removal of non-coding or redundant sequences.

https://doi.org/10.1371/journal.pone.0238875.g001
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fragment at the P2A/mTRAC junction and of the VDJβ fragment at the 5’ end of the mTRBC

region of the VBB. Of note, it is crucial to reconstruct the P2A element via primer design since

the 3’ end of P2A is excised upon BsmBI restriction of the VBB due to a naturally occurring

BsmBI restriction site within the P2A element. Core primer sequences used to amplify VJα
and VDJβ fragments are given in Table 1.

The resulting bicistronic chimerized αβTCR construct can then be subcloned into any

Gateway™ compatible expression vector performing the Gateway™ LR clonase reaction for fur-

ther testing.

Assembly of bicistronic chimerized αβTCR constructs

We employed our VBB to either assemble αβTCR expression constructs de novo using as start-

ing material RT-cDNA transcribed from clonal T cells—the respective TCR sequence had

been identified following the methods described by Boria et al. [20] and Birkholz et al. [21]—

or we re-constructed αβTCRs that had been previously cloned but e.g. had not been chimer-

ized. Specific primer used to assemble all cTCR expression constructs in this study along with

specification of the starting material (RT-cDNA or plasmid DNA) are given in S1 Table.

In initial experiments, αβTCR constructs were generated in a two-step process summarized

in Fig 2. In the first step the cTCRα chain was assembled (Fig 2A). VJα fragments were flanked

with BsmBI recognition sites by PCR, column purified, digested by BsmBI and were again col-

umn purified. We then ligated the VJα fragments into BsmBI restricted and gel eluted VBB,

transformed the recombined plasmid and verified successful assembly of the cTCRα chain by

colony PCR and Sanger sequencing of positive clones. S2 Table summarizes primer used to

identify positive transformants via colony PCR and primer used for sequencing. In the second

step we assembled the cTCRβ chain following a similar procedure (Fig 2B). After successful

assembly, the full-length cTCR construct was then subcloned into the Gateway™ compatible

expression vector pMX-IRES-puro-DEST that had been generated as described in the Material

and Methods section (Fig 2C). Using this approach cloning of the final cTCR expression vector

was usually achieved within only six days. An exemplary result is shown in Fig 3 showing

assembly of a cTCR expression vector using as template plasmid DNA harboring a non-opti-

mized αβTCR derived from the tumor-reactive T-cell clone 55/74. Assembly of both the

cTCRα and cTCRβ chain was highly efficient with 6/6 and 5/5 positive clones, respectively, as

determined by colony PCR (Fig 3A and 3B). As expected subcloning of the full-length cTCR

construct into the Gateway™ compatible pMXs-IRES-puro-DEST expression vector was also

highly efficient (Fig 3C). Using this two-step approach, we successfully constructed eight dif-

ferent cTCRs using as starting material either RT-cDNA (n = 2) or plasmid DNA (n = 6). The

average efficiency (n = 8) for assembly of the cTCRα chain and cTCRβ chain as determined by

colony PCR was 98% and 84%, respectively (S3 Table).

Table 1. Primer used to generate TCRα and TCRβ V(D)J fragments.

V(DJ) Primer Sequence 5’-3’

TCRα BsmBI.alpha.for GGTGGTGGCTGGAGACGTGGAGGAGAACCCTGGACCT NNNNNN. . .

. . .CTCTGC. . .

BsmBI.alpha.rev GGTGGTCGTCTCTGGAT NNNNNN. . .

TCRβ BsaI.beta.for GGTGGTGGTCTCCCATG NNNNNN. . .

BsaI.beta.rev GGTGGTGGTCTCGTCCTC NNNNNN. . .

Type IIS restriction enzyme recognition sites are underlined, unique overhangs generated upon cleavage are shown in boldface type and TCR-specific sequences are

indicated by N.

https://doi.org/10.1371/journal.pone.0238875.t001
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In an effort to further reduce hands-on time and material usage we combined BsaI and

BsmBI restriction of both the VBB and the column-purified V(D)J-encoding PCR products as

well as ligation into the vector backbone in a one-step, one-vessel restriction/ligation reaction.

An example of successful de novo assembly of cTCR expression constructs from RT-cDNA
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VDJβ

A

B

C

Fig 2. Workflow for generation of cTCR expression constructs using the VBB. (A) Day 1–2: The VJα fragment was generated by PCR, column purified,

restricted by BsmBI and again column purified. VBB was restricted by BsmBI and gel eluted. Purified VBB and VJα fragments were ligated and the recombined

plasmid was transformed. Colony PCR was used to identify clones carrying the insert (VBB-VJα). (B) Days 3–4: VDJβ fragment was generated by PCR, column

purified, restricted by BsaI and again column purified. Plasmid from VBB-VJα was prepared, restricted by BsaI and gel eluted. Purified VBB-VJα and VDJβ
fragments were ligated and the recombined plasmid was transformed. Colony PCR was used to identify clones carrying the insert (VBB-VDJβ-VJα). Days 5–6:

Plasmid from VBB-VDJβ-VJα was prepared and recombined into a Gateway compatible expression vector e.g. pMXs-IRES-puro-DEST performing the LR-

clonase reaction. Positive clones (pMXs-VDJβ-VJα) were identified by colony PCR.

https://doi.org/10.1371/journal.pone.0238875.g002
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https://doi.org/10.1371/journal.pone.0238875.g003
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derived from the melanoma reactive T-cell clones 2C/406 and 5C/169 using the one-step

approach is shown in S1 Fig. From the respective 8 analyzed colonies 3 (5C/169) and 8 (2C/

406) colonies were screened positive for the full-length cTCR construct corresponding to a

cloning efficiency of 38% and 100% respectively. The average cloning efficiency of the one-

step approach (n = 6) was 46% as summarized in S3 Table. Of note, the lowest cloning effi-

ciency was observed in the presence of additional Type IIS restriction enzyme recognition sites

within the V(D)J-encoding PCR products resulting in only 9% (T-cell clone 4/134) and 15%

(T-cell clone 4/76) positive colonies when performing the one-step approach. Collectively

these results suggest that although the one-step approach allows to generate a full-length cTCR

construct within only 2 days (and the final expression vector within 4 days) the cloning effi-

ciency is drastically reduced as compared to the standard two-step approach as shown in Fig 2.

Generation of transgenic T cells expressing cTCRs using the seamless-

cloning vector backbone

To functionally validate our αβTCR cloning vector backbone we chose the well-characterized

CD8+ T-cell clone 14/35 directed against mutant CDK4 (R24C) that has originally been

established via an autologous mixed lymphocyte-tumor culture (MLTC) using the CDK4R24C-

positive melanoma-cell line SK29-MEL.1 as stimulator of blood-derived T cells [12]. Its

HLA-A�02-restricted αβTCR has been cloned by others into the retroviral expression vector

pMP71-PRE [14]. In addition, we cloned two αβTCR de novo using as starting material RT-

cDNA transcribed from RNA derived from two HLA-A�02 restricted NY-ESO-1 specific

CD8+ T cell clones. The respective T cell clones 4/76 and 4/134 had been established in our

group via MLTCs using the HLA-A�02+ NY-ESO-1+ melanoma cell line D05 as stimulator of

blood-derived T cells and recognized the same NY-ESO-1 peptide (SLLMWITQC). Using the

primer given in S1 Table and the pMP71-PRE plasmid harboring the anti-CDK4R24C/A2

αβTCR construct or RT-cDNA derived from the T cell clones 4/76 or 4/134 as template we

PCR-amplified the respective TCRα and TCRβ V(D)J regions and generated pDONR™221

entry clones as described above. Subsequently, the final bicistronic αβTCR constructs were

recombined into the retroviral expression vector pMXs-IRES-Puro-DEST by performing the

Gateway™ LR-clonase reaction.

After assembly of the respective retroviral expression constructs, we transduced the anti-

NY-ESO-1/A2 cTCRs 4/76 and 4/134 and the anti-CDK4R24C/A2 cTCR 14/35 into CD3+ T

cells. After short term expansion in the presence of puromycin, CD4+ and CD8+ populations

were enriched to high purity (above 95%) by MACS isolation. As shown in Fig 4A we observed

high expression levels of all three cTCRs in both CD4+ and CD8+ T cells. Expression of cTCRs

was verified with both a mAB specific for the Vβ chain of the respective cTCR and a mAB rec-

ognizing the murine TCR constant region, which gave similar results. As shown in Fig 4B

puromycin selection was crucial in order to obtain high expression levels of cTCRs. Of note,

additional cTCRs (n = 9) cloned in this study had been successfully expressed in primary T

cells with an average expression level of 80% on day 4–17 after transduction (S4 Table).

Next, we analyzed specificity and functionality of CD4+ and CD8+ T cells transduced with

the anti-NY-ESO-1/A2 cTCRs 4/76 and 4/134 or the anti-CDK4R24C/A2 cTCR 14/35 in 24 h

IFNγ-ELISpot assays. In a first step, redirected CD4+ and CD8+ T cells were incubated with

293T or COS-7 cells transfected with HLA-A�02 and loaded with titrated amounts of the

NY-ESO-1 peptide (SLLMWITQC) or the CDK4R24C peptide (ACDPHSGHFV), respectively

(Fig 5A). Analysis of the anti-NY-ESO-1 specific cTCRs and the anti-CDK4R24C cTCR

revealed a similar dose dependent functionality in both CD4+ and CD8+ T cells. To further

analyze recognition of endogenously processed antigen, 293T or COS-7 cells were transfected
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with HLA-A�02 and were cotransfected with titrated amounts of NY-ESO-1 or CDK4R24C

cDNA, respectively (Fig 5B). Interestingly, CD8+ 4/134 cTCR-transduced T cells recognized

NY-ESO-1 cDNA transfected targets while no response was observed with CD4+ T cells

expressing the same cTCR. In contrast, both CD4+ and CD8+ T cells transduced with the 14/

35-cTCR or with the 4/76-cTCR displayed similar responses against antigen-cDNA transfected

target cells. These results were also mirrored when using as targets HLA-A�02+ melanoma cell

lines that naturally expressed NY-ESO-1 (D05) or harbored the CDK4R24C mutation

(SK29-Mel.1). The response of 4/76 cTCR-transduced T cells against D05 cells and of 14/35

cTCR-transduced T cells against SK29-MEL.1 was similar for CD4+ and CD8+ T cells (Fig

5C). In contrast CD4+ 4/134 cTCR-transduced T cells did not recognize D05 cells despite clear
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https://doi.org/10.1371/journal.pone.0238875.g004
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Fig 5. cTCR+ CD4+ and CD8+ T cells specifically recognize antigen expressing target cells. IFNγ production of CD4+ and CD8+ T cell transduced with the indicated

cTCR as determined in 24 h ELISpot assays. cTCR expression was analyzed prior to testing and results were used to correct for the amount of cTCR+ cells within

different T cell populations applied to functional tests. (A-C) IFNγ production after incubation of T cells with HEK-293T or COS-7 cells transiently transfected with

HLA-A�02:01 and (A) loaded with titrated amounts of the indicated peptide or (B) cotransfected with titrated amounts of cDNA encoding the indicated antigen. (C)

IFNγ production after incubation of T cells with either no target cells or with NY-ESO-1+ HLA-A�02+ D05 cells or CDK4R24C+ HLA-A�02+ SK29-MEL.1 cells in the

presence or absence of the HLA-A�02 blocking antibody MA2.1. Data points represent mean values of doublets ± standard deviation.

https://doi.org/10.1371/journal.pone.0238875.g005
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recognition by the respective CD8+ population. Addition of an HLA-A�02 blocking antibody

(MA2.1) confirmed MHC I-restriction of target recognition.

Finally, we analyzed whether cTCR-transgenic T cells also elicit target cell lysis in a biolumi-

nescence-based cytotoxicity assay (Fig 6). D05 and SK29-MEL.1 cells stably expressing Firefly

Luciferase were cocultured with redirected CD4+ or CD8+ transgenic T cells. Analysis of the

bioluminescence signal after 18 h essentially mirrored the results shown before. Redirected

CD8+ T cells showed strong cytotoxicity against antigen positive target cells. CD4+ T cells

transduced with the same cTCRs were also able to eliminate target cells but to a much lower

extent. Of note, and as expected from the results shown before, cytotoxicity of CD4+ T cell

transduced with the 4/134 cTCR against NY-ESO-1+ HLA-A�02+ D05 melanoma cells was

considerably lower as compared to CD4+ T cell transduced with the 4/76 cTCR.

Collectively, we cloned seven αβTCR de novo using as starting material RT-cDNA tran-

scribed from as little as 30 ng of RNA derived from clonal T cells. The respective TCR variable

regions had been identified following the methods described by Boria et al. [20] and Birkholz

et al. [21] as already stated above. Furthermore, we re-constructed six αβTCRs that had been

previously cloned but had not been chimerized or had been cloned in the order α-P2A-β.

Compared to the parental T-cell clones or the non-optimized αβTCR we observed no loss of

function and specificity (not shown).

Discussion

We report on a vector backbone for the generation of αβTCR constructs. It harbors the uni-

form components of a bicistronic chimerized αβTCR construct. TCR-specific V(D)J-regions

are ligated into this backbone using Type IIS restriction enzymes to assemble full length

αβTCR chains. This approach is based on the Golden Gate cloning method [11]. A similar

strategy has been applied by others for the same purpose [22, 23], but the vector backbone pre-

sented herein displays several unique and distinct features of additional value.

Hu et al. generated full-length TCR constructs by Golden Gate cloning, but ligated only the

hypervariable CDR3 region into components of an extensive vector backbone library,
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members of which each encode one of the different TCR α and β variable sequences [22]. In

contrast, our TCR cloning approach is based on a single, uniform vector backbone, which har-

bors only the TCR constant domains. Although this requires to ligate the complete, and com-

pared to the sole CDR3 region, considerably longer TCR V(D)J sequences into the vector

backbone, there is no need to generate and maintain a plasmid library covering all TCR α and

β variable sequences. More similar to our approach, Coren et al. generated vector backbones

encoding either human or macaque TCR constant regions with head-to-head oriented recog-

nition sites for the Type IIS restriction enzyme BbsI at the vector/TRAC and the P2A/TRBC

junctions [23]. TCR α and β variable sequences were flanked with BbsI recognition sites and

appropriate overhangs during PCR amplification, and were seamlessly ligated into the vector

backbone for assembly of human/macaque αβTCR constructs [23]. While the vector back-

bones of both groups represent final expression vectors, we first assembled pDONR™221 entry

vectors and, in a second step, recombined the final αβTCR construct into a Gateway™ compati-

ble expression vector. Although this adds an additional cloning step, our approach integrates

the convenient Gateway™ cloning system therefore allowing to use different (Gateway™ com-

patible) expression vectors. Of note, several different expression vectors used to study TCR-

based therapy have already been converted to Gateway™ compatibility [24, 25].

Another distinctive feature of our backbone plasmid is the usage of two different Type IIS

restriction enzymes, BsmBI and BsaI, for the assembly of the TCRα and β chain, respectively.

This offers advantages when variable TCR regions of interest harbor a BsmBI or BsaI restric-

tion site. E.g, if a naturally occurring BsaI restriction site would be present in the TCRα VJ-

sequence of interest, the two-step cloning procedure would be chosen to start with BsaI-medi-

ated assembly of the TCRβ chain (and vice versa). This is particularly important considering

gel-purification of the premature construct after assembly of the first TCR chain and subse-

quent restriction to circumvent purification of two fragments. When the same Type IIS restric-

tion site (BsmBI or BsaI) is present in both subcloned TCRα and β fragments we would

suggest to remove at least one restriction sites e.g. by site-directed mutation or in fact purify

two vector backbone fragments.

When performing our standard cTCR assembly approach (summarized in Fig 2) we did

observe a very high cloning efficiency that was considerably lower when combining both

restriction/ligation of both TCR α and β chains as shown in S1 Fig. This difference might be a

result of either the purification steps implemented in our standard protocol or could be due to

more efficient ligation of only two fragments when assembling the TCR α and β chains sepa-

rately. Interestingly, in the presence of internal Type IIS restriction sites in the subcloned frag-

ments, we observed a drastically reduced cloning efficiency when performing restriction/

ligation in the same vessel. This is presumably due to continuous restriction and relegation of

the assembled vector as also observed by others [11, 23]. A strategy to circumvent this problem

is performing restriction and ligation steps sequentially in the same vessel, e.g., by heat inacti-

vation of the restriction enzyme [11].

Our vector backbone integrates many of the optimizations known to enhance transgenic

TCR expression and functionality, i.e. (i) codon optimization, (ii) β-P2A-α order, (iii) an addi-

tional interchain disulfide bond and (iv) chimerization. Codon optimization is known to posi-

tively regulate transcription [26], while the β-P2A-α order is considered to avoid premature

degradation of the TCR α chain [5]. Chimerization of TCRs [7] and addition of an interchain

disulfide bond [8, 9] have been shown to greatly enhance T-cell reactivity, which was mainly

attributed to enhanced TCR expression as a result of preferential pairing of modified TCRs in

the presence of endogenous human TCRs. Moreover, it has been shown that chimerization

(alike minimal murinization) of TCRs not only increases transgenic TCR expression with

regard to percentage and mean fluorescence intensity (MFI) but also leads to enhanced TCR/
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CD3 stability [7, 27]. It was suggested that this, independently from TCR expression, enhances

transgenic TCR functionality although the underlying mechanisms are not yet fully under-

stood [27]. The TCR modifications provided by our backbone vector are especially useful to

prevent mispairing with endogenous TCR chains. Autoreactivity of mispaired TCR is a major

safety concern in current clinical trials on TCR transfer [28]. Chimerization of transgenic

TCRs is one of the safety measures applied, although induction of xenogenic immune reac-

tions is a concern when using murine sequences. However, in a pivotal human trial conducted

with fully murine TCRs, cancer regression was observed and no adverse events were attributed

to the murine sequences [29]. Although immune responses against murine TCR components

have been detected, no impact on clinical outcome has been described [30]. Nevertheless, it

has been suggested that a minimal murinization may reduce the risk of immunogenicity [27,

31].

Our functional data confirmed that the vector backbone can be reliably used to express

cTCRs in primary T cells and that redirected T cells are functional in a clear HLA-restricted

and antigen-specific manner. Functionality of the MHC I-dependent cTCRs analyzed in this

study was not restricted to transgenic CD8+ T cells but was also observed upon expression in

CD4+ T cells. This is in line with several other reports showing that CD4+ T cells transduced

with MHC I-restricted TCRs recognize the respective peptide/MHC I complex and display

cytotoxic activity both in vitro [32] as well as in vivo [33]. The ability of CD4+ T cells trans-

duced with an MHC I-restricted TCR to circumvent the CD8-coreceptor may resemble a mea-

sure of TCR avidity [32]. Along this line another study described CD8-independent function

only upon transfer of a highly peptide/MHC I-avid TCR while low avidity MHC-I restricted

TCRs did not function in CD4+ T cells [34]. Our functional data on the A�02/NY-ESO-1-spe-

cific cTCRs derived from T cell clone 4/76 and 4/134 thus suggest a higher avidity of the TCR

derived from clone 4/76. In addition, these results implicate the CD8 molecule as an enhancer

of functional avidity of MHC I-restricted TCRs as also suggested by others [35].

In conclusion, the TCR-cloning strategy described herein allows to rapidly generate opti-

mized αβTCR expression constructs. The TCR optimizations integrated in the vector back-

bone are known to enhance transgenic TCR expression and functionality in part by

preventing formation of mispaired TCRs. The vector backbone presented herein might there-

fore represent a useful tool for the preclinical investigation of human αβTCRs in particular

when using primary T cells expressing endogenous TCRs as effector cells. Collectively our

results demonstrate the utility and versatility of our vector backbone for rapid cloning and

simultaneous optimization of functional αβTCR.

Supporting information

S1 Table. Primer used to amplify VJα and VDJβ fragments of all cTCR constructs gener-

ated in this study. Antigen specificity and HLA-restriction of the respective TCR is given

where known. aT cell clones 5C/169 and 2C/406 express an identical TCR and are derived

from the same MLTC. bThe sequence 5’ of the BsaI restriction site of primer

BsaI_BC44.22_VDJβ.rev has been modified to prevent hairpin formation. Template during

PCR was either plasmid DNA or RT-cDNA derived from clonal T cells. nd = not determined.

(XLSX)

S2 Table. Primer sequences for colony PCR and Sanger sequencing.

(XLSX)

S3 Table. Cloning efficiencies using the standard two-step and the one-step cloning

approach. Number of positive clones were determined by colony PCR. SD = Standard
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deviation.

(XLSX)

S4 Table. Transduction efficiencies. Summary of all transgenic T cells that were generated by

retroviral transduction of TCRs assembled using the seamless-cloning approach. Shown are

the percentage of mTCR+ clones among the indicated transduced T-cell population as deter-

mined by FACS analysis. SD = Standard deviation.

(XLSX)

S1 Fig. Assembly of cTCR expression constructs using the one-step cloning approach. (A)

Workflow of the one-step cTCR assembly approach. Unrestricted, column purified VJα and

VDJβ PCR fragments, the unrestricted vector backbone, BsaI and BsmBI, T4 ligase and T4

ligase buffer were mixed and 30 cycles of restriction/ligation were performed (5 min at 37˚C, 5

min at 16˚C). (B) VJα and VDJβ fragments were amplified from RT-cDNA derived from the

indicated T cell clones using the primer given in S1 Table, loaded on a gel to verify correct

amplification and were column purified. Then one-step assembly was performed and recom-

bined plasmids were transformed. (C) Colony PCR was used to identify VBB-VDJβ-VJα posi-

tive clones using primer pairs a (M13.for, mTRAC.p670.rev) and b (M13.for, mTRBC.p618.

rev). (C) LR-clonase reaction was performed to recombine the cTCR construct into our

pMXs-IRES-puro-DEST expression vector. Colony PCR screen was used to identify pMXs-

VDJβ-VJα clones using primer pairs c (pMXs.for, mTRAC.p670.rev) and d (pMXs.for,

mTRBC.p618.rev).

(EPS)

S1 Raw images.

(PDF)
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