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Abstract 

Purpose: Intravenous fluids are mainstay of management of acute kidney injury (AKI) after sepsis but can cause 

fluid overload. Recent literature shows that restrictive fluid strategy may be beneficial in some patients with AKI, 

however, identifying these patients is challenging. We aimed to develop and validate a machine learning algorithm 

to identify patients who would benefit from a restrictive fluid strategy.  

Methods: We included patients with sepsis who developed AKI within 48 hours of ICU admission and defined 

restrictive fluid strategy as receiving <500mL fluids within 24 hours after AKI. Our primary outcome was early AKI 

reversal within 48 hours of AKI onset, and secondary outcomes included sustained AKI reversal and major adverse 

kidney events (MAKE) at discharge. We used a causal forest, a machine learning algorithm to estimate individual 

treatment effects and policy tree algorithm to identify patients who would benefit by restrictive fluid strategy. We 

developed the algorithm in MIMIC-IV and validated it in eICU database. 

Results: Among 2,091 patients in the external validation cohort, policy tree recommended restrictive fluids for 

88.2%. Among these, patients who received restrictive fluids demonstrated significantly higher rate of early AKI 

reversal (48.2% vs 39.6%, p<0.001), sustained AKI reversal (36.7% vs 27.4%, p<0.001) and lower rates of MAKE 

by discharge (29.3% vs 35.1%, p=0.019). These results were consistent in adjusted analysis.  

Conclusion: Policy tree based on causal machine learning can identify septic patients with AKI who benefit from a 

restrictive fluid strategy. This approach needs to be validated in prospective trials. 

 

Keywords 

Acute Kidney Injury; Restrictive Fluids; Causal Machine Learning; Policy Tree; Individual Treatment Effect 

 

Take-home message 

Intravenous fluids are the mainstay of management of acute kidney injury (AKI) after sepsis but can cause fluid 

overload. In this study using two large, distinct critical care databases, we developed and validated a causal machine 

learning based Policy Tree approach to identify septic patients with AKI who benefit from a restrictive fluid strategy, 

enhancing early and sustained AKI reversal, and reducing major adverse kidney events at discharge. 
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INTRODUCTION: 

Acute kidney injury (AKI) is seen in over one-third of critically ill patients with sepsis and is associated 

with worse outcomes[1]. Oliguria, a frequent clinical indicator of AKI, is common in critically ill patients with 

sepsis who develop AKI[2]. It is also the second most common reason for the administration of intravenous (IV) 

fluids in critically ill patients[3]. Since the primary emphasis is on volume optimization, IV fluids are a cornerstone 

in AKI care. Nonetheless, this approach might not be optimal in all patients. Firstly, administration of fluids does not 

consistently translate into a corresponding increase in urine output[4]. Secondly, reliance on fluid therapy increases 

the risk of fluid accumulation, frequently resulting in fluid overload. This phenomenon is itself associated with 

development and exacerbation of AKI[5-7], and increased mortality rates[7].  

 

Thus, a more personalized approach to IV fluid administration in critically ill patients is warranted. A 

restrictive approach to administration of IV fluids in patients with acute lung injury has shown to be associated with 

a shorter duration of mechanical ventilation[8]. Similarly, a restrictive fluid approach to resuscitation for septic 

shock is safe and associated with less fluid overload[9]. More recently, a restrictive approach to use of IV fluids in 

critically ill patients with AKI has been shown to be associated with lower cumulative fluid balance and lower rates 

of initiation of dialysis[10].  

  

However, it remains challenging to identify specific patients with AKI who would benefit from a restrictive 

fluid strategy. We, therefore, conducted this study to identify septic patients with AKI who would benefit from 

restrictive fluid therapy.  

 

 

METHODS: 

Study Design and Data Sources 

We conducted a retrospective study using data from two critical care databases: the Medical Information 

Mart for Intensive Care IV (MIMIC-IV)[11] and the eICU Collaborative Research Database (eICU)[12]. MIMIC-IV 

encompasses de-identified electronic health records of intensive care unit (ICU) patients at Beth Israel Deaconess 

Medical Center (2008-2019). eICU includes de-identified electronic health records from 208 US ICUs (2014-2015), 
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representing a diverse ICU patient population. We used MIMIC-IV for development and eICU for external 

validation. We followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines for reporting observational studies[13]. 

 

Study Population 

We included adult, critically ill patients with sepsis who developed AKI. Following Kidney Disease 

Improving Global Outcomes (KDIGO) guidelines[14], we defined AKI as either a rise in serum creatinine of 0.3 

mg/dL or more within 48 hours or an increase of at least 1.5 times the reference serum creatinine within 7 days, or a 

urine output of less than 0.5 ml/kg/h for at least a 6-hour time-period.  

 

To determine reference creatinine, we first identified the baseline creatinine by calculating the median 

serum creatinine from measurements within 12 months before hospital admission[15, 16]. If unavailable, we 

followed the KDIGO guidelines to estimate baseline serum creatinine by back-calculating using the Modification of 

Diet in Renal Disease equation[17], while assuming an estimated glomerular filtration rate 75 ml/min per 1.73 m². 

[14]. We then chose the lower of baseline or admission creatinine as the reference creatinine[18]. Our specific 

criteria for inclusion were adults aged 18 years or older upon admission, who developed sepsis according to third 

international consensus definition[19, 20] within 24 hours of admission to intensive care unit (ICU)[21], and 

developed AKI within 48 hours after admission to ICU. We considered only the first ICU admission for those 

patients with multiple admissions.  
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We excluded patients with a history of end stage kidney disease or kidney transplant, lack of serum 

creatinine measurements within 48 hours after AKI onset, death or transfer out of the ICU within 48 hours of AKI 

onset, or those with missing fluid administration values from ICU admission to 24 hours after AKI onset. Details 

regarding the selection process employed in this study are given in Fig. 1.  

 

 

Outcomes 

The primary outcome of our study was early AKI reversal defined as the patient no longer meeting KDIGO 

criteria for AKI within 48 hours of AKI onset[14]. The secondary outcomes included sustained AKI reversal, 

defined as maintaining AKI reversal for 48 hours or longer [22], and MAKE at discharge defined as a composite of 

in-hospital death, new dialysis or persistent kidney dysfunction[23]. In consistence with previous literature, 

persistent kidney dysfunction was defined as the final inpatient serum creatinine value as ≥200% of reference 

creatinine[23].  

 

Treatment  

 
 
Fig. 1 Cohort Inclusion and Exclusion Criteria 
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The treatment of interest in this study was the amount of IV fluids administered, including both crystalloids 

and colloids, from the onset of AKI to either early AKI reversal or up to 24 hours after AKI onset, whichever is 

sooner. We defined ‘restrictive fluid strategy’ as administrating less than 500mL of IV fluids within this specified 

time frame (Fig. 2).  

 

 

Features 

We extracted data on patient demographics, such as age, sex, and race/ethnicity, and for vital signs, SOFA 

scores, vasopressor administration, use of mechanical ventilation, net fluid balance from ICU admission to onset of 

AKI. We also extracted data for laboratory values and administration of nephrotoxic medications[24] within the last 

48 hours prior to AKI onset. Additionally, we collected data on treatment - the amount of IV fluids administered 

from the onset of AKI to either early reversal or up to 24 hours after AKI onset, whichever is sooner. Physiologically 

 
Fig. 2 Overview of Study Design. Patient "a" has early AKI recovery within 48 hours (h) after AKI but after first 24 
h, so intravenous (IV) fluids given within first 24h were included, Patient "b" has early AKI recovery within 24 
hours (h) after AKI, so IV fluids given till early AKI recovery were included; Patient "c" did not have early AKI 
recovery, so IV fluids given within first 24h were included; MAKE - Major Adverse Kidney Event 
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improbable values were removed based on inputs from content experts. For vital signs, laboratory values and SOFA 

scores, we collected the highest, lowest and latest values when multiple values were present. We only included 

features that were present in over 70% of the cohort. Missing data were imputed using the multivariate imputation 

by chained equations (MICE) method [25]. 

 

Development of Policy Tree Approach 

We used a novel, machine learning guided strategy (‘Policy Tree’) to identify critically ill septic patients 

with AKI who would benefit from a restrictive fluid strategy. The development of policy tree approach employed a 

dual machine learning methodology. In the first step, we estimated individual treatment effects (ITE) to ascertain the 

impact restrictive fluid strategy in the critical initial phase post-AKI onset at the individual patient level[26]. 

Subsequently, we applied the policy tree algorithm[27] to construct a decision tree[28] -  

  

Step 1 - Individual Treatment Effects Estimation: We utilized the causal forest[26] method to estimate ITE within 

our development cohort. This method is a widely recognized quasi-experimental approach for estimating treatment 

effects using observational data, as opposed to conducting actual experiments. The causal forest uniquely targets the 

prediction of unit-level conditional average treatment effects, focusing on maximizing the variance in treatment 

effects between nodes rather than minimizing prediction error. This process involves two critical steps to ensure 

accuracy and computational efficiency. Initially, it identifies optimal splits that maximize the expected difference in 

treatment effects. Following that, during the prediction phase, it estimates treatment effects by aggregating data from 

similar observations within the forest's leaves.  

 

Step 2 - Policy Tree Algorithm: We then used the policy tree algorithm[27] to identify patients who would benefit 

in terms of early AKI reversal by adhering to restrictive fluid strategy. This algorithm constructs a hierarchical 

model that categorizes patients based on similar ITE within the same action node and distinct ITE across different 

action nodes. It considers ITE, relevant features for policy tree construction, the depth of the tree, and the minimum 

number of observations per node. The algorithm iteratively refines the feature splits to maximize the variance in ITE. 

 

Statistical Analysis 
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We expressed continuous features as mean and standard deviation, while categorical features as proportions. 

We examined the differences across groups using bivariate analyses, including analysis of variance (ANOVA) for 

continuous variables and chi-square tests for categorical variables, with a P value of < .05 considered statistically 

significant across all statistical tests. 

 

We then used logistic and linear regression models to assess the impact of adhering to personalized 

recommendation for restrictive fluid strategy on early AKI reversal, sustained AKI reversal, and major adverse 

kidney events (MAKE) at discharge. We adjusted these regression models for age, sex, race, reference serum 

creatinine, SOFA score at the time of sepsis onset, AKI stage at the time of AKI onset, and net fluid balance between 

ICU admission and AKI onset for each outcome.  

 

All statistical analyses were performed using R software, version 4.3.0[29]. The study received approval 

from the Institutional Review Board at the Icahn School of Medicine at Mount Sinai (approval no. 19-00951). 

 

 

RESULTS: 

Study Population 

Our study included 6,935 patients in MIMIC-IV as the development cohort, and 2,091 patients in eICU as the 

external validation cohort. The average age in the development cohort was 66.8 ± 15.9 years, with 57.1% males and 

66.1% Whites. The average age in the external validation cohort was 66.5 ± 14.8 years with 57.0% males and 80.6% 

Whites. The baseline characteristics are shown in Table 1 and Supplementary Table S1.  

 

Policy Tree for Restrictive Fluid Strategy in Critically Ill Septic Patients with AKI 
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Our policy tree identifies patients with AKI and sepsis who are likely to benefit from a restrictive fluid 

strategy, defined as administering less than 500mL of IV fluids within 24 hours of AKI onset or until early reversal if 

it occurs within 24 hours (Fig. 2). The key determinants identified for early AKI reversal were age, systolic blood 

pressure (SBP), respiratory rate, pCO2, net fluid balance, elements of basic metabolic panel (blood urea nitrogen 

(BUN), creatinine, calcium) and elements of complete blood count (white blood cells, red blood cells, hemoglobin 

and hematocrit). The primary decision point in the policy tree was based on the maximum BUN within 48 hours 

before AKI onset (Fig. 3).  

 

The policy tree suggested benefit from restrictive fluid strategy after development of AKI among 6,223 

(89.7%) patients in the development cohort and 1,844 (88.2%) patients in the external validation cohort. The 

baseline characteristics of these patients are shown in Table 1 and Supplementary Table S1. Among the patients 

identified to benefit from restrictive fluid therapy, only 812 (13%) patients in development cohort and 542 (29.4%) 

patients in external validation cohort received restrictive fluid therapy. Among patients identified to benefit from 

restrictive fluid strategy, those that received restrictive fluids were older, with lower net fluid balance and higher 

urine output from ICU admission to AKI in both development and external validation cohort (Table 2 and 

Supplementary Table S2).  

 

 
 
Fig. 3 Policy Tree for Restrictive Fluid Strategy in Septic Patients with Acute Kidney Injury 
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Outcomes 

Primary Outcome: In both development and external validation cohorts, patients suggested by policy tree to 

benefit from a restrictive fluid strategy who received restrictive fluids had significantly higher rates of early AKI 

reversal in comparison to those that were suggested to have a benefit from restrictive fluids but did not receive them 

– 79.9% vs. 43.0%; p<0.001 in development cohort; 48.2% vs. 39.6%; 0.001 in external validation cohort (Fig. 4a). 

On unadjusted analysis, restrictive fluid strategy among the patients identified to benefit from restrictive fluids, was 

associated with significantly greater odds of early AKI reversal in both development (OR 5.27; 95% CI: 4.40 – 6.31) 

and external validation (OR 1.41; 95% CI: 1.16 – 1.73) cohorts (Fig. 4b). This effect was consistent in adjusted 

analysis where restrictive fluid strategy among patients suggested to benefit from restrictive fluids was associated 

with greater odds of early AKI reversal in both development (OR 5.12; 95% CI: 4.26 – 6.17) and external validation 

cohorts (OR 1.41; 95% CI: 1.14 – 1.73) (Fig. 4b). In comparison, in both development and external validation 

cohorts, patients identified to have no benefit from a restrictive fluid strategy did not show any improvement in 

outcomes when they received restrictive fluids (Fig. 4a and 4b). 

 

 

 
Fig. 4 Impact of restrictive fluid strategy among patients stratified by predicted benefit from receipt of restrictive 
fluid strategy: a) Proportion, b) Odds ratio, i) In MIMIC-IV (Development Cohort), ii) in eICU (External Validation 
Cohort) 
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Secondary Outcomes: Among patients identified by the policy tree to benefit from a restrictive fluid strategy, both 

the development and external validation cohorts showed that those who received restrictive fluids had higher rates of 

sustained AKI reversal and lower rates of major acute kidney events (MAKE) at discharge compared to those who 

did not receive restrictive fluids (Fig. 4a). In the external validation cohort, among patients identified to benefit from 

restrictive fluids, 36.7% of those who received restrictive fluids achieved sustained AKI reversal, compared to only 

27.4% of those who did not receive them (p<0.001). Additionally, only 29.3% of patients who received restrictive 

fluids developed major acute kidney events (MAKE) by discharge, compared to 35.1% of those who did not receive 

them (p=0.019). In the unadjusted analysis of the external validation cohort, use of restrictive fluids among patients 

identified to benefit from a restrictive fluid strategy was associated with a significantly higher odds sustained AKI 

reversal (OR 1.54; 95% CI: 1.24 – 1.90) and lower odds of developing MAKE at discharge (OR 0.77; 95% CI: 0.62 

– 0.95). This effect remained consistent in the adjusted analysis, where a restrictive fluid strategy among patients 

identified to benefit from it was associated with significantly higher odds of sustained AKI reversal (OR 1.54; 95% 

CI: 1.24 – 1.91) and lower odds of MAKE at discharge (OR 0.78; 95% CI: 0.62 – 0.99). Patients identified as not 

deriving any benefit from restrictive fluid strategy showed no benefit from receiving restrictive fluids in both 

adjusted and unadjusted analyses (Fig. 4a and 4b).  

 

 

DISCUSSION: 

In this study we have developed and validated a novel, data-driven, causal machine learning strategy to 

identify critically ill patients with sepsis who develop AKI and would benefit from a restrictive fluid strategy. We 

show that among patients predicted to benefit from and administered restrictive fluids, there were increased odds of 

early AKI reversal and sustained AKI reversal, alongside lower odds of MAKE, even after adjusting for confounders.  

 

Administration of IV fluids to improve cardiac output and consequently kidney blood flow, has been a 

cornerstone of therapy for AKI. This is based on the assumption that decrease in kidney blood flow is a major driver 

of AKI [30], However, there are 3 major observations which contradict this hypothesis.  
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First, even though fluid administration may increase cardiac output and renal blood flow, it does not lead to 

improvement in renal oxygen delivery or renal microvascular oxygenation[31, 32]. Second, fluid bolus does not 

always increase urine output. In a prospective, multicenter, observational study including 5 ICUs where patients 

with oliguria received IV fluids, improvement in urine output was seen in only half of the patients[4]. Third, kidney 

blood flow is not decreased in sepsis[33]. Instead, the pathogenesis of AKI in critically ill patients includes a 

complex interplay of inflammatory mediators[34-36], microcirculatory dysfunction[37] and metabolic 

reprogramming[38, 39]. These result in direct tubular injury, which is not reversible with administration of IV fluids.  

 

IV fluid administration can lead to volume overload, often seen in AKI patients, and is associated with 

higher morbidity and mortality especially in AKI patients [40, 41]. This excess fluid can cause interstitial edema[42, 

43], impaired blood flow and organ dysfunctions. Fluid overload also damages the endothelial glycocalyx layer 

which is crucial for vascular homeostasis and permeability. Inflammatory mediators in sepsis themselves lead to 

glycocalyx degradation, a process which is exacerbated by IV fluid resuscitation[44]. This glycocalyx damage 

increases local inflammation, tissue edema and further end organ injury including acute respiratory distress 

syndrome (ARDS) and AKI[45]. Fluid overload is also a known risk-factor for development of intra-abdominal 

hypertension[46], which further contributes to worsening AKI [47]. 

 

Thus, there is an increasing focus on minimizing the use of IV fluids in critically ill patients. A randomized 

study comparing conservative and usual fluid therapy in patients with ARDS found no difference in 60-day 

mortality[8]. However, the conservative group had improved oxygenation index, lung injury score, lower plateau 

pressures, increased number of ventilator free days and ICU free days. Studies in patients with sepsis have also 

found a shorter duration of mechanical ventilation and a trend towards lower mortality for patients managed with 

conservative fluid strategy [48].  

 

The REVERSE-AKI trial directly evaluated the role of restrictive fluid therapy for management of AKI[10]. 

This multicenter, randomized, controlled study enrolled adult, critically ill patients with AKI not requiring dialysis. 

The trial aimed to attain a negative fluid balance in the intervention arm following randomization. By 24 hours, the 

restrictive fluid group had a cumulative fluid balance of -416mL vs 409mL in the usual care group (p<0.001). At 72 
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hours, this balance was -1080mL vs 61mL (p=0.03). The trial found that the restrictive fluid group had lower 

dialysis rates (13% vs 30%; p=0.04) and a trend towards lower duration of AKI (median 2 days vs 3 days; p=0.07). 

This trial demonstrated that restrictive fluid management in AKI is feasible and may improve outcomes. Building on 

this, our study identifies critically ill septic patients with AKI who would benefit from restrictive fluid therapy. We 

have used Policy Tree Algorithm[27], a cutting-edge causal machine learning technique to develop a data driven 

approach to identify these patients. We show that when identified using this approach, patients who do get restrictive 

fluids have much higher rates of both early AKI and sustained AKI reversal, and lower rates of MAKE at discharge. 

Validation of this approach in an external database is a significant strength of this study.  

 

It is important to acknowledge the limitations of our study. First, this is a retrospective study and validation 

of this approach in prospective, randomized studies is important. Second, we chose the cut-off of 500mL for 

restrictive fluids based prior literature suggesting 500mL is the typical amount of fluid given during a fluid 

challenge[3], and was also the amount given in restrictive fluid groups in prior studies[9, 49]. However, future work 

could focus on different fluid cutoffs. Third, while we adjusted for potential confounders, unmeasured and residual 

confounding cannot be eliminated.  

 

In conclusion, in this study using a causal learning approach we developed and validated a strategy to 

identify critically ill patients with AKI who would benefit from a restrictive fluid strategy. This approach should be 

considered in future prospective, pragmatic trials to improve outcomes of septic patients with AKI.  
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Table 1. Baseline Characteristics of Patients in Development (MIMIC-IV) and External Validation (eICU) Cohorts.  

 Development cohort (MIMIC-IV) External validation cohort (eICU) 
 Identified 

to have no 
benefit 
from 
restrictive 
fluid 
strategy 
(N= 712) 

Identified 
to benefit 
from 
restrictive 
fluid 
strategy 
(N= 
6,223) 

Total 
(N= 
6,935) 

p value Identified 
to have no 
benefit 
from 
restrictive 
fluid 
strategy 
(N= 247) 

Identified 
to benefit 
from 
restrictive 
fluid 
strategy 
(N= 1844) 

Total 
(N= 
2,091) 

p value 

Age, year, 
(mean±SD) 

67.49 ± 
15.19 

66.77 ± 
15.98 

66.84 ± 
15.91 

0.248 
69.50 ± 
14.08 

66.09 ± 
14.88 

66.49 ± 
14.83 

< 
0.001 

Race, n (%) 
   

< 
0.001    0.375 

   White 437 
(61.4%) 

4150 
(66.7%) 

4587 
(66.1%) 

 
193 
(78.1%) 

1492 
(80.9%) 

1685 
(80.6%) 

 

   Black 100 
(14.0%) 

533 
(8.6%) 

633 
(9.1%) 

 
25 
(10.1%) 

186 
(10.1%) 

211 
(10.1%) 

 

   Hispanic 
20 (2.8%) 

182 
(2.9%) 

202 
(2.9%) 

 4 (1.6%) 36 (2.0%) 
40 
(1.9%) 

 

   Others 155 
(21.8%) 

1358 
(21.8%) 

1513 
(21.8%) 

 
25 
(10.1%) 

130 
(7.0%) 

155 
(7.4%) 

 

Gender - Male, 
n (%) 

412 
(57.9%) 

3548 
(57.0%) 

3960 
(57.1%) 

0.664 
137 
(55.5%) 

1054 
(57.2%) 

1191 
(57.0%) 

0.614 

Baseline 
creatinine, 
mg/dL, 
(mean±SD) 

2.16 ± 
2.30 

1.15 ± 
0.93 

1.25 ± 
1.19 

< 
0.001 

0.92 ± 
0.15 

0.89 ± 
0.17 

0.90 ± 
0.17 

0.028 

AKI stage, n 
(%)    

< 
0.001    

< 
0.001 

   1 473 
(66.4%) 

5593 
(89.9%) 

6066 
(87.5%) 

 
100 
(40.5%) 

1234 
(66.9%) 

1334 
(63.8%) 

 

   2 
35 (4.9%) 

409 
(6.6%) 

444 
(6.4%) 

 
51 
(20.6%) 

384 
(20.8%) 

435 
(20.8%) 

 

   3 204 
(28.7%) 

221 
(3.6%) 

425 
(6.1%) 

 
96 
(38.9%) 

226 
(12.3%) 

322 
(15.4%) 

 

SOFA at the 
time of sepsis 
onset, 
(mean±SD) 

5.08 ± 
2.82 

4.45 ± 
2.36 

4.52 ± 
2.42 

< 
0.001 

4.82 ± 
2.44 

4.71 ± 
2.45 

4.73 ± 
2.44 

0.534 

VasopressorsB, n 
(%) 

250 
(35.1%) 

3111 
(50.0%) 

3361 
(48.5%) 

< 
0.001 

35 
(14.2%) 

305 
(16.5%) 

340 
(16.3%) 

0.343 

Mechanical 
ventilationB, n 
(%) 

2796 
(51.7%) 

315 
(38.8%) 

3111 
(50.0%) 

< 
0.001 

197 
(15.1%) 

108 
(19.9%) 

305 
(16.5%) 

0.012 

Nephrotoxic 
drugs 
administrationA, 
n (%) 

149 
(20.9%) 

1402 
(22.5%) 

1551 
(22.4%) 

0.331 169 
(68.4%) 

1282 
(69.5%) 

1451 
(69.4%) 

0.724 

 

Abbreviation: AKI (acute kidney injury), SOFA (sequential organ failure assessment) 

A: Measurements from the last 48 hours prior to AKI onset 
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B: Measurements from ICU admission to AKI onset 
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Table 2. Baseline Characteristics of Patients Identified to Benefit from Restrictive Fluids: Development (MIMIC-IV) 

and External Validation (eICU) cohorts. 

 Development cohort (MIMIC-IV) External validation cohort (eICU) 
 Unrestricted 

fluid intake 
group 
(N=5,411) 

Restricted 
fluid 
intake 
group 
(N=812) 

Total 
(N=6,223) 

p 
value 

Unrestricted 
fluid intake 
group 
(N=1,302) 

Restricted 
fluid 
intake 
group 
(N=542) 

Total 
(N=1844) 

p 
value 

Age, year, 
(mean±SD) 

66.55 ± 
15.91 

68.19 ± 
16.44 

66.77 ± 
15.98 

0.007 
65.41 ± 
15.02 

67.72 ± 
14.44 

66.09 ± 
14.88 

0.002 

Race, n (%)    0.872    0.03 
   White 3601 

(66.5%) 
549 
(67.6%) 

4150 
(66.7%) 

 
1034 
(79.4%) 

458 
(84.5%) 

1492 
(80.9%) 

 

   Black 
462 (8.5%) 71 (8.7%) 

533 
(8.6%) 

 135 (10.4%) 51 (9.4%) 
186 
(10.1%) 

 

   Hispanic 
158 (2.9%) 24 (3.0%) 

182 
(2.9%) 

 28 (2.2%) 8 (1.5%) 36 (2.0%)  

   Others 1190 
(22.0%) 

168 
(20.7%) 

1358 
(21.8%) 

 105 (8.1%) 25 (4.6%) 
130 
(7.0%) 

 

Gender - Male, 
n (%) 

3098 
(57.3%) 

450 
(55.4%) 

3548 
(57.0%) 

0.325 755 (58.0%) 299 
(55.2%) 

1054 
(57.2%) 

0.265 

Baseline 
creatinine, 
mg/dL, 
(mean±SD) 

1.15 ± 0.92 
1.12 ± 
1.03 

1.15 ± 
0.93 

0.437 0.90 ± 0.17 
0.87 ± 
0.18 

0.89 ± 
0.17 

0.002 

AKI stage, n 
(%)    

0.019 
   

0.211 

   1 4841 
(89.5%) 

752 
(92.6%) 

5593 
(89.9%) 

 858 (65.9%) 
376 
(69.4%) 

1234 
(66.9%) 

 

   2 
368 (6.8%) 41 (5.0%) 

409 
(6.6%) 

 274 (21.0%) 
110 
(20.3%) 

384 
(20.8%) 

 

   3 
202 (3.7%) 19 (2.3%) 

221 
(3.6%) 

 170 (13.1%) 
56 
(10.3%) 

226 
(12.3%) 

 

SOFA at the 
time of sepsis 
onset, 
(mean±SD) 

4.56 ± 2.41 
3.76 ± 
1.85 

4.45 ± 
2.36 

< 
0.001 

4.66 ± 2.41 
4.85 ± 
2.53 

4.71 ± 
2.45 

0.119 

VasopressorsB, 
n (%) 

2796 
(51.7%) 

315 
(38.8%) 

3111 
(50.0%) 

< 
0.001 

197 (15.1%) 
108 
(19.9%) 

305 
(16.5%) 

0.012 

Mechanical 
ventilationB, n 
(%) 

2796 
(51.7%) 

315 
(38.8%) 

3111 
(50.0%) 

< 
0.001 

197 (15.1%) 
108 
(19.9%) 

305 
(16.5%) 

0.012 

Nephrotoxic 
drugs 
administrationA, 
n (%) 

149 (20.9%) 
1402 
(22.5%) 

1551 
(22.4%) 

0.331 169 (68.4%) 
1282 
(69.5%) 

1451 
(69.4%) 

0.724 

 

Abbreviation: AKI (acute kidney injury), SOFA (sequential organ failure assessment) 

A: Measurements from the last 48 hours prior to AKI onset 

B: Measurements from ICU admission to AKI onset 
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