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Abstract: Despite the fact that Alzheimer’s disease (AD) is the most common cause of dementia,
after many years of research regarding this disease, there is no casual treatment. Regardless of the
serious public health threat it poses, only five medical treatments for Alzheimer’s disease have
been authorized, and they only control symptoms rather than changing the course of the disease.
Numerous clinical trials of single-agent therapy did not slow the development of disease or improve
symptoms when compared to placebo. Evidence indicates that the pathological alterations linked
to AD start many years earlier than a manifestation of the disease. In this pre-clinical period
before the neurodegenerative process is established, pharmaceutical therapy might prove invaluable.
Although recent findings from the testing of drugs such as aducanumab are encouraging, they should
nevertheless be interpreted cautiously. Such medications may be able to delay the onset of dementia,
significantly lowering the prevalence of the disease, but are still a long way from having a clinically
effective disease-modifying therapy.
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent cause of dementia in the world and a
significant burden to the whole healthcare system. It generally develops in patients above
the age of 65. Due to an aging society, every year, we observe an increasing number of
affected patients. It is predicted that over 50 million people suffer from AD dementia, and
this number will triple by 2050. Pathological processes in AD start at least 20 years before
the onset of the disease, making it a chronic disorder. The causes of AD are varied and
not entirely understood, and they are not properly placed within the aging process. It is
believed that both hereditary and environmental factors may contribute to the disease’s
etiology. Less than 5% of all cases of AD are genetic, despite the fact that many gene
mutations are linked to the condition. While sporadic, late-onset AD (LOAD) is linked to the
APOE 4 gene, early-onset AD (EOAD) is caused by mutations in presenilin 1, presenilin 2,
and amyloid precursor protein (APP). The slow development of extracellular plaques made
of amyloid β and neurofibrillary tangles (NFTs) made of hyperphosphorylated tau are two
histological indicators of AD. Therefore, they result in the loss of synapses and neurons.

There is currently no known treatment for AD, and prevention measures are actively
being discussed. Presently, the rates for clinical development in AD medication are low and
medical research is mostly directed at slowing the progression, not curing the patients. It is
related to still not fully known pathophysiology, underlying hallmarks, and heterogeneity
of the disease. In this review, we will describe some new and alternative approaches to the
treatment of AD, which are demonstrated in Figure 1.
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Figure 1. Types of diverse treatment and their results on AD patients. 
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clude neurodegeneration with synaptic and neuronal loss that causes macroscopic atro-
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mon occurrence, especially in elderly people [1]. Multiple cell types express the type 1 
transmembrane protein known as the amyloid precursor protein (APP). APP can sequen-
tially cleave through two distinct mechanisms in the central nervous system through 
gamma and beta-secretases [2]. Aβ40 and Aβ42—two by-products of APP metabolism—
are the main components of improperly folded amyloid plaques, which are extracellular 
accumulations. Due to its increased rate of fibrillization and insolubility, Aβ42 is more 
common than Aβ40 inside plaques [3]. Aβ may then initiate a chain of events, including 
neuroinflammation, that cause synapse loss and neuronal death [4]. 

Tau is a protein that is produced in neurons and which, in healthy cells, has a role in 
maintaining microtubule stability in the cytoskeleton [5]. It builds up inside nerve cell 
bodies as these NFTs tangle as a result of hyperphosphorylation. The cellular proteins that 
are then abnormally interacted with by these tangles are unable to perform their normal 
activities. The dysfunction of synapses is caused by a decrease in tau binding to microtu-
bules. NFTs are produced in AD patients as a result of increased tau phosphorylation and 
intracellular tau aggregation caused by an imbalance between tau kinase and phosphatase 
activity. Finally, the development of NFTs impairs synaptic plasticity [6,7], which dam-
ages neuronal cells. Research indicates that Aβ buildup may serve as the catalyst for the 
downstream process of hyperphosphorylation [8]. There is also proof that toxic tau can 
increase Aβ production through a feedback loop mechanism [9]. 

Another recently described hallmark gaining a lot of attention is neuroinflammation. 
Although the mechanisms promoting AD neuroinflammation have been studied for more 
than 20 years, they are still not entirely understood. In the inflammatory response in the 
brain, microglia and astroglia are the crucial members. Microglia can be activated, and act 
in two types: M1 and M2. M1 phenotype is considered as ‘proinflammatory’ and classical 
while M2 as ‘anti-inflammatory’ and alternative [10]. Lipopolysaccharide (LPS), IFN, or 
TNF cause classical activation, which is implicated in pathogen defense mechanisms by 
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2. Pathology of AD

The cardinal pathological hallmarks of the disease cover the accumulation of amyloid
β and hyperphosphorylation of tau protein. These pathogenic processes’ aftereffects in-
clude neurodegeneration with synaptic and neuronal loss that causes macroscopic atrophy.
Mixed pathology—which comprises vascular disease and Lewy bodies—is a common
occurrence, especially in elderly people [1]. Multiple cell types express the type 1 trans-
membrane protein known as the amyloid precursor protein (APP). APP can sequentially
cleave through two distinct mechanisms in the central nervous system through gamma and
beta-secretases [2]. Aβ40 and Aβ42—two by-products of APP metabolism—are the main
components of improperly folded amyloid plaques, which are extracellular accumulations.
Due to its increased rate of fibrillization and insolubility, Aβ42 is more common than Aβ40
inside plaques [3]. Aβ may then initiate a chain of events, including neuroinflammation,
that cause synapse loss and neuronal death [4].

Tau is a protein that is produced in neurons and which, in healthy cells, has a role
in maintaining microtubule stability in the cytoskeleton [5]. It builds up inside nerve cell
bodies as these NFTs tangle as a result of hyperphosphorylation. The cellular proteins that
are then abnormally interacted with by these tangles are unable to perform their normal
activities. The dysfunction of synapses is caused by a decrease in tau binding to micro-
tubules. NFTs are produced in AD patients as a result of increased tau phosphorylation
and intracellular tau aggregation caused by an imbalance between tau kinase and phos-
phatase activity. Finally, the development of NFTs impairs synaptic plasticity [6,7], which
damages neuronal cells. Research indicates that Aβ buildup may serve as the catalyst for
the downstream process of hyperphosphorylation [8]. There is also proof that toxic tau can
increase Aβ production through a feedback loop mechanism [9].

Another recently described hallmark gaining a lot of attention is neuroinflammation.
Although the mechanisms promoting AD neuroinflammation have been studied for more
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than 20 years, they are still not entirely understood. In the inflammatory response in the
brain, microglia and astroglia are the crucial members. Microglia can be activated, and act
in two types: M1 and M2. M1 phenotype is considered as ‘proinflammatory’ and classical
while M2 as ‘anti-inflammatory’ and alternative [10]. Lipopolysaccharide (LPS), IFN, or
TNF cause classical activation, which is implicated in pathogen defense mechanisms by
the secretion of proinflammatory substances—such as IL-1, TNF, and IL-6—and reactive
oxygen species [11]. Conversely, IL-4 and IL-13 cause the M2 phenotype, which releases
neuroprotective substances such as TGF, IL-10, and IGF-1 [11]. M2 microglia are able to
enhance brain tissue remodeling and repair by regulating inflammation. Interestingly, the
M1-to-M2 conversion can happen very quickly [12,13]. Additionally, the proinflammatory
milieu created by active microglia around senile plaques encourages the development of
the plaques [14,15].

What is more, not only microglia can be activated and influence the course of the
disease. Interestingly, activated microglia is capable of inducing A1 astrocytes through
secreting Il-1α, TNF, and C1q [16]. According to one hypothesis, astrocytes may gather
around plaques and amyloid β, which would encourage their activation. Studies have
demonstrated that AD patients’ and animal models’ brains contain active astrocytes [17,18].
Activated astrocytes abandon their neuroprotective functions, simultaneously inducing the
death of neurons and oligodendrocytes by releasing proinflammatory cytokines such as
TNF-α, IL-6, or IL-12 [16,17,19]. According to Liddelow et al. study, A1 astrocytes secrete a
neurotoxin that induces rapid death of neurons and oligodendrocytes [16].

An interesting aspect is connected to iron dyshomeostasis. Many physiological pro-
cesses in the human body depend on iron, yet as we age, iron is continuously stored in
the brain. Early research discovered that Alzheimer’s disease’s cognitive deterioration is
directly correlated with iron excess. What is more, both APP and tau protein are connected
with iron metabolism [20]. Iron participates in the creation of neurotransmitters, myelina-
tion, and antioxidant enzyme activity in the brain [21]. It has been shown that having an
excessive amount of iron speeds up the development of neurofibrillary tangles and senile
plaques [22]. What is more, a heavy iron diet can cause cognitive deterioration in mice,
an increase in aberrant tau phosphorylation in neurons, and inappropriate production of
proteins associated with the insulin system. Supplemental insulin can lessen tau phos-
phorylation brought on by iron [23], proving that iron buildup may interfere with insulin
signaling and cause tau hyperphosphorylation.

3. Existing Drug Therapies
3.1. Cholinesterase Inhibitors

Among established hallmarks of the disease, in the beginning, there were only the-
ories, and the first was the cholinergic one. Acetylcholine (ACh) is a neurotransmit-
ter that is secreted by cholinergic neurons and can be dissected by two cholinesterases
(ChEs)—acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) [24]. The main
role of the acetylcholinesterase is in cholinergic neurotransmission by the breakdown of
Ach. It is present in both the peripheral and central nervous systems and is associated with
learning abilities, cognitive functions, and memory [25]. These actions are conducted by
basal forebrain cholinergic neurons (BFCN), which are less present in AD patients because
of neuron degeneration [26]. It correlates with the cholinergic hypothesis in which impair-
ment of cognitive functions is obtained through cholinergic neurons degradation and, as
a result, disturbances in cholinergic neurotransmission in the disease-affected brain [27].
Brain tissue analysis of AD patients revealed that material obtained from AD patients
show neurodegeneration with visible deficits in cholinergic neurons and low levels of
acetylcholine. Moreover, the activity of acetylcholine transferase was diminished [28]. It
was proven in rodent models that injuring basal forebrain cholinergic neurons results in
deficits in maintaining attention [29]. Interestingly, cholinergic synapses were also de-
scribed as seriously impaired by Aβ molecules [30]. To confirm these revelations, usage of
the cholinesterase inhibitors was shown to be capable of improving attention in humans
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by supporting cholinergic transmission [31]. Moreover, studies show that the cholinergic
system is involved in learning processes and memory [32–34]. ChEIs work through encour-
aging the restoration of the cholinergic pathway by inhibiting AChE in the synaptic cleft
and, as a result, lowering the hydrolysis of ACh. However, these drugs are mostly used to
improve cognitive functions and they do not participate in ‘curing’ the disease.

Traditional ChE inhibitors include donepezil, galantamine, and rivastigmine. Donepezil
was the first approved drug in AD treatment and is the first step of the therapeutic ap-
proach [35]. However, recent data suggest that prescribing cholinesterase inhibitors to
mild cognitive impairment (MCI) patients has no result, or may even have negative conse-
quences on the disease course [36]. Moreover, it has different side effects such as insomnia,
gastrointestinal symptoms (nausea, loss of appetite, diarrhea), and those affecting muscles
such as cramping and weakness [37,38]. Furthermore, it is estimated that one-third of
patients will not show any noticeable results, and the same amount would suffer from side
effects, resulting in lowered toleration and disqualifying this drug [4]. Galantamine is the
next example of ChEI, which—similarly to donepezil—is prescribed to affect cognitive
impairments. It also has comparable side effects, such as gastrointestinal and muscle-
related effects [39]. Interestingly, studies showed that continuous rising administration of
galantamine might influence the tolerability of the drug [40]. Another substance used for
symptomatic treatment of mild to moderate and severe AD is rivastigmine. It is an inhibitor
of both AChE and BuChE [41]. It is the only ChEI that can be administered orally and trans-
dermally, with the second method having fewer gastrointestinal side effects [41]. However,
the progression of AD cannot be fully stopped or even altered with AChE inhibitors’ help.

3.2. Memantine

With the known low tolerability of ChEI, there was a need to find a better substance.
Memantine is an agonist to non-competitive N-methyl-D-aspartate (NMDA) receptor that
is responsible for transporting neurotransmitter glutamate, which participates in learning
and memory [42]. However, excessive amounts of glutamate are considered excitotoxic to
neurons; therefore, memantine allows the execution of positive functions of glutamate with
a simultaneous decrease in negative ones. Unfortunately, there are some side effects, but
they are not severe, such as confusion and anxiety [43].

Meta-analyses of clinical trials showed that using memantine in monotherapy signifi-
cantly improved cognitive function scores, behavior, and global function in comparison to
placebo in patients with AD regardless of the severity and lowering behavioral disturbances
in moderate-severe AD [44,45]. Additionally, combination therapies with ChEI altered
behavioral disturbances. However, only distributing memantine with donepezil showed
better results in combination therapy in comparison to ChEI’s monotherapy [44,46].

3.3. Aducanumab

Over the past few decades, many treatments targeting the pathology of AD were
unsuccessful due to the complexity of the disease. However, in June 2021, the US Food and
Drug Administration (FDA) approved a new AD drug: aducanumab. It is a new-generation
monoclonal antibody that is selective to Aβ aggregates, which makes it the first drug rooted
in the pathophysiology of AD [47]. Moreover, it is only the fifth drug recommended for
AD patients [48]. Firstly, animal model studies revealed that this antibody can significantly
improve cognition and lower brain pathology by removing Aβ from the brain [49]. Research
shows that aducanumab activates microglial phagocytosis, which stimulates the removal
of Aβ plaques [49]. Furthermore, it is able to reduce the formation of the oligomers and, as
a result, disturbs the aggregation processes, which makes it the most promising treatment
for the disease [47,50].

Though aducanumab was approved by the FDA, it was granted with an accelerated
approval pathway, which raised many controversies. One such controversy was the in-
consistent results of Phase 3 trials [51,52]. Furthermore, the reduction in Aβ aggregates
does not correlate with better neuropsychological function [53]. In addition, new research
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revealed that tau accumulation, rather than Aβ, is a stronger predictor of cognitive de-
cline [54,55]. Another controversy is that, in the beginning, aducanumab was prescribed
to all AD patients, despite the fact that the trials only included MCI and mild AD pa-
tients [47,56]. Moreover, side effects of using the drug cover amyloid-related imaging
abnormalities (ARIA) which manifests as with micro-bleeds or swelling in the brain, but
also dizziness, headaches, and nausea [57].

In Europe, European Medicines Agency had advised against granting marketing
authorization for the drug in December 2021. The corporation that proposed aducanumab
had asked for the agency’s re-examination, but it withdrew the application before this
re-examination was complete [58]. Despite the debate, it is undeniable that aducanumab
greatly lowers brain levels of Aβ, a symptom of AD. This observation may mark a turning
point in the treatment of AD; however, more research and clinical trials are needed.

3.4. Antidepressants

Core characteristics of dementia include not only cognitive impairment but also
behavioral and psychological symptoms of dementia (BPSD), commonly referred to as
neuropsychiatric symptoms of dementia. Up to 90% of individuals who are given a
dementia diagnosis are also diagnosed with BPSD over the course of their illness [59].
The main characteristics of BPSD are apathy, depression, anxiety, sleep disturbances, and
even psychosis (such as delusions and hallucinations) [60]. These listed symptoms are
a real burden not only to the patients but also to their caregivers. While patients report
feeling depressed and having a decreased quality of life, caregivers are more likely to suffer
from stress, sadness, and possible financial repercussions—such as loss of employment
income [59,61].

When speaking of management, there is no one treatment strategy, due to the com-
plexity and variety of causes of BPSD. However, the first step should always be non-
pharmacological interventions both for patients and caregivers. They include psychoeduca-
tional interventions, offering dementia patients a variety of meaningful activities, frequently
depending on patient preferences and functional capacities such as exercises and psy-
chotherapy [59]. Pharmacological intervention may be introduced if non-pharmacological
approaches have failed, a patient’s behavior might be a threat to themselves or others, or if
the patient is in substantial distress. Firstly, due to its low side effect burden in comparison
to other pharmacological therapies, antidepressants are frequently utilized in the treatment
of BPSD. Citalopram and escitalopram are the most common, with the second one having
fewer side effects such as the risk of QT prolongation [62,63]. Additionally, sertraline might
be considered due to it not resulting in cardiac problems [62]. However, the use of typical
antipsychotics and benzodiazepines is controversial and not recommended [59,64,65].

4. Alternative Approach
4.1. Vitamin E

Vitamin E is a part of the group of fat-soluble vitamins with tocopherols and tocotrienols
which have antioxidant abilities, and this vitamin has documented anti-inflammatory abil-
ities [66,67]. Therefore, many years ago, vitamin E started to be recommended as an
Alzheimer’s disease treatment. Because of its properties, vitamin E is crucial for main-
taining brain health. Meta-analyses of vitamin E concentrations in plasma, serum, and
CSF show lowered levels of this vitamin in AD patients [68,69]. However, a more recent
case-control study depicted that there is no correlation between AD severity and plasma
vitamin E levels, which might indicate that decreased vitamin E consumption may not be
the cause of decreased plasma antioxidant status; it may be caused by early disease pathol-
ogy instead [70]. There are studies confirming that consuming food with vitamin E might
reduce the risk of developing AD, but this is not the case in APOE E4 allele carriers [71].
Furthermore, another study showed the connection between supplementing vitamin E
and reducing the risk of cognitive decline [72]. Although existing studies show benefi-
cial results of vitamin E, there are some depicting no correlation in AD patients [73,74].
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Nonetheless, clinical trials were conducted with inconsistent results [75,76]. What is im-
portant to remember is that the trials were conducted on low doses of vitamin E because
high ones are considered toxic and have been described to have side effects such as fatigue,
gastrointestinal cramps, and diarrhea [77]. So far, clinical investigations have obtained
unreliable results regarding the impact of vitamin E on the likelihood of developing AD,
and more research should be conducted.

4.2. Melatonin

The pineal gland is the primary source of the hormone melatonin. It is a multi-
functional, circadian-rhythm-regulated substance that has a neuroprotective role in the
development of AD because of its anti-inflammatory and antioxidative effects [78,79]. Lev-
els of melatonin decrease with age, after a constant rise from birth until puberty [79,80].
This is considered an important factor in AD development because of the oxidative damage
caused in AD brains due to its decrease in cerebrospinal fluid [81]. Sleep disturbances
are closely associated with AD progression. It was revealed that healthy subjects have
higher levels of melatonin compared to AD patients [79,82]. Moreover, research shows that
melatonin significantly reduced the proinflammatory response caused by Aβ plaques [81].
Interestingly, it was proven that the hormone can prevent Aβ accumulation by directly
interacting with Aβ [83]. Additionally, melatonin is able to inhibit NF-κB DNA binding
activity [84]. Therefore, melatonin’s anti-amyloidogenic and antioxidant characteristics
make this molecule a possible AD therapeutic candidate [84]. Some clinical trials were suc-
cessful considering the prognosis of developing AD. Lower levels of melatonin correlated
with the disease [85]. Furthermore, the administration of melatonin to MCI patients was
beneficial and significantly slowed the progression to fully visible AD [85,86]. However,
these revelations are not yet sufficient to consider melatonin as a drug for the disease.

4.3. Curcumin

Curcumin is an herb worth mentioning regarding AD treatment. Turmeric, a spice
with a distinctive yellow color that is frequently used in cooking, contains this polyphe-
nol [87]. The anti-inflammatory, anti-tumor, and antioxidant effects of curcumin are well
established [88]. The capacity of curcumin to prevent Aβ and tau aggregation in vivo has
been shown by studies on the drug in AD [89]. According to a study by Khanna et al.
curcumin may also have anti-inflammatory and neuroprotective benefits [90]. The primary
mechanism by which curcumin exerts its effects is thought to be through NFkB inhibition,
which is achieved by blocking IkB phosphorylation and subsequent NFkB activation [91].
Moreover, curcumin has the ability to block APP-cleaving enzymes such as β-secretase
(BACE-1) [92,93].

Overall, studies on animals have shown highly encouraging findings on the physio-
logical and behavioral potentiation of cognition [94,95]. Human research is more scarce,
and the results are less reliable, which makes them harder to understand [96,97]. These dis-
crepancies could be caused by variations in the methodology and the population that was
studied. The knowledge of curcumin’s promising effects on cognition might be improved
by taking into account assessments of significant inflammatory and antioxidant biomarkers,
optimal curcumin doses, dietary interactions, and treatment duration. Future research
may also benefit from improving curcumin’s bioavailability due to its poor solubility in
water [98].

4.4. Other Herbs
4.4.1. Ginkgo Biloba

Ginkgo biloba (Gb) extract is a natural medicine, obtained from the oldest living tree
species, which is known as helpful in cognition management. Gb is well known for
centuries in natural treatment, especially in traditional Chinese medicine [99,100]. It
has established properties such as amelioration of blood perfusion [101]. In AD, it is
described as having neuroprotective abilities covering antioxidative, antiapoptotic, and
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anti-inflammatory properties, influencing amyloidogenesis and amyloid β aggregation but
also modulating phosphorylation of tau protein [102]. Despite the fact that the extracts are
frequently advertised as cognitive enhancers, there is no proof that Ginkgo biloba leaf extracts
improve memory or attention in healthy individuals [103]. Numerous controlled clinical
studies have examined the effects of Ginkgo biloba extract on dementia. Meta-analysis
shows that there are known valuable effects of GB on people with dementia; however,
the results are slightly contradictory due to different dosages, trial durations, and patient
characteristics among the trials and should be treated with caution [104].

4.4.2. Saffron

It has been discovered that the spice saffron (Crocus sativus) may also have many medic-
inal properties, also improving memory [105]. According to clinical investigations, saffron
has potent antioxidant, anti-inflammatory, and anti-amyloidogenic properties [106,107]. A
clinical trial carried out on mild-to-moderate AD patients, comparing saffron extract with
donepezil, showed comparable results in improving the cognitive functions [105]. Inter-
estingly, saffron showed fewer side effects from the digestive system than cholinesterase
inhibitor. Saffron is also said to be helpful in reducing acetylcholinesterase and acting as
a protective agent against toxins [108,109]. Another study found that rats given saffron
extract for 21 days had considerably increased levels of antioxidant enzymes and lipid
peroxidation products and lower plasma levels of corticosterone. According to the study’s
findings, saffron may be helpful in reversing oxidative stress damage to the hippocampus
brought on by long-term stress and improving learning and memory deficits [109,110].
A different animal model research covered learning, memory loss, and the induction of
oxidative stress, and researchers proved that saffron extract can reduce oxidative stress
and the deterioration of learning and memory [110]. Furthermore, clinical trials depicted
that saffron might have a positive impact on cognitive function and also obtained similar
results to donepezil and memantine [111–113].

4.4.3. Ashwagandha and Flavonoids

One of the most popular herbs recommended as a brain rejuvenator for AD is ash-
wagandha, often known as Indian ginseng or winter cherry, highly valued in Ayurvedic
medicine. It is recommended as a nerve tonic, energy booster, and general health and
longevity improvement [114,115]. Moreover, it has been demonstrated that ashwagandha
contains antioxidant and free radical scavenging properties as well as the capacity to main-
tain a robust immune system [116]. An APP/PS1 mouse model of AD was treated orally
with a semi-purified ashwagandha extract to correct behavioral impairments and prevent
the formation of Aβ peptides. The liver’s low-density lipoprotein receptor-related protein
was the mediator of this therapeutic effect of ashwagandha [117]. Researchers found that
therapy with ashwagandha reduced the toxicity of Aβ while also promoting longevity
in a Drosophila melanogaster AD model [118]. Although ashwagandha has a large body of
research on its therapeutic benefits, there is little information on how it might be used clini-
cally to treat cognitive impairment [115,119]. Importantly, there were no harmful effects of
Ashwagandha that stood out in the literature reviews. Additionally, numerous commercial-
ized products and patents acknowledged Ashwagandha’s therapeutic function in treating
a number of brain illnesses, including AD; nevertheless, there is a dearth of information on
the herb’s molecular pathway, and clinical trials for treating these disorders are unreliable
and unpromising [120]. Flavonoids are phytochemical substances with potential uses in
medicinal chemistry that are found in many plants, fruits, vegetables, and leaves. They
have many beneficial characteristics such as antioxidant, anti-inflammatory, and even neu-
roprotective functions [121]. Recently described, a natural antioxidant present in vegetables
and fruits called Kaempferol is believed to prevent the activation of complement C3 protein.
What is more, it is also described as able of stopping the generation of A1 astrocytes, which
as described earlier are neurotoxic. Interestingly, it prevents against this astrocytes and
3-nitropropionic acid (NPA) which are known proinflammatory factors [122].
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4.5. Non-Pharmacological Treatment
4.5.1. Physical Activities

Exercise has become a viable treatment option since it can be utilized as an adjuvant
therapy before new, potent medications are created. Practice guideline update summary
on MCI showed that physical training over a six-month period could help MCI patients’
cognitive function [123]. Numerous studies have shown that physical activity can halt
the process of cognitive deterioration [124,125]. What is more, studies show that physi-
cal activity offers significant benefits such as reducing and delaying the onset of severe
neuropsychiatric symptoms such as depression, confusion, and apathy [126]. In animal
studies, exercise has been shown to stimulate neurogenesis and neuronal plasticity, and
aerobic fitness also increases blood flow, glucose uptake, and oxygen extraction while
enhancing both structural and functional brain reserves [127–129]. Moreover, it was stated
that brain-derived neurotrophic factor (BDNF), which is linked to memory and learning,
can be secreted more rapidly after exercise [130]. Furthermore, studies have shown that
seniors with a normal cognitive function who exercise had a lower risk of developing
dementia [131]. Moreover, the beneficial effects of physical activity as an intervention
therapy are also supported by numerous systematic reviews and meta-analyses [132,133].
The majority of studies vary in terms of research kind, nonstandard interventions, and
research design, so these results are not always followed. The effects of exercise on cognitive
functions in Alzheimer’s patients are variable, despite studies emphasizing the necessity of
exercise, while some have found no favorable relationship between physical activity and
cognitive function in AD patients [131].

4.5.2. Social Activities

A lack of interpersonal engagement, or social isolation, is thought to be the main cause
of mental and psychosocial stress, which raises the risk of neurological illnesses [134]. It
also accelerates the onset of numerous cognitive problems and raises the risk of morbidity
and mortality [134,135]. The mouse model of AD has repeatedly shown that social isola-
tion intensifies memory loss [136,137]. Possible mechanisms underlying this impairment
connected with isolation and cognitive impairment include the production of Aβ-peptide
and the phosphorylation of tau protein [138], an increase in oxidative stress and inflamma-
tory reactions [139] accompanied by the inhibition of anti-inflammatory responses [140],
changes in synaptic plasticity (including a reduction inBDNF) [141], and myelination [142].
However, these processes are not yet fully understood [143]. The benefits of BDNF on
brain mechanisms are numerous. For instance, it improves neurogenesis, synaptic plas-
ticity, and cognitive abilities [144]. On the other hand cognitive decline in aging is tied
to lower BDNF and its receptor tropomyosin-related kinase B (TrkB) expression [145,146].
In postmortem AD brain samples and MCI patients, lower levels of BDNF protein and
mRNA were discovered in the hippocampus [147]. In rat models, age-related changes
in gene expression and age-related cognitive impairment were both improved by BDNF
injection [148]. Maintaining strong social relationships can help people delay the beginning
of AD and lower their risk of cognitive decline, according to doctors and clinical studies. It
is true that there is a link between participating in social activities frequently and having
higher cognitive performance [149,150]. However, little is understood about the processes
that underlie social and emotional influence on the course of the disease.

4.5.3. Music Therapy

Another intriguing hypothesis looks at music therapy as a possible treatment for
AD. A growing body of research suggests that this type of treatment may help dementia
patients with their memory [151]. It is believed that music interacts with the parts of
the brain involved in emotions and decision-making; however, the precise mechanism
is still not entirely understood. This has allowed for the identification of some potential
mechanisms underlying this behavior, including sympathetic arousal and dopaminergic
circuit activation [151]. The music therapy is performed by professional music therapists
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or formally certified rehabilitation trainers, along with a caretaker for dementia sufferers.
In order to achieve a unique purpose in the relationship of music therapy, a pleasant and
friendly setting or atmosphere is established by active music therapy, which involves
singing, dancing, or instrument performance, or passive music therapy, which involves
listening to live or recorded music [152]. The positive effects of music therapy on cognition,
emotion, and behavior in AD patients were confirmed by a systematic review undertaken
by Garcia-Casares et al. [153]. Interestingly, after only four sessions, this form of therapy
helped AD patients’ despair and anxiety and significantly improved their memory and
orientation [154]. However, newer studies do not agree with previous data, and further
study is required in this area [152].

5. New Approach
5.1. Anti-Inflammatory Treatment

Knowing how important neuroinflammation is in AD, new potential markers should
be analyzed and discovered for a better understanding of the disease. With better knowl-
edge on pro- and anti-inflammatory cytokines released during the disease, discovering and
developing a new drug might be much easier.

Non-steroidal anti-inflammatory drug (NSAID) use has been shown to be protective
against AD in epidemiological research carried out in recent years. The usefulness of anti-
inflammatory medications in the treatment of AD, however, has generated conflicting and
inconsistent results from clinical trials [155,156]. This is probably because the unspecific
inhibition of both the proinflammatory and anti-inflammatory phenotypes may not be a
successful tactic. An even more focused strategy focuses on proinflammatory cytokines
that are released later. According to preclinical studies, an anti-TNF antibody effectively
reduced amyloid pathology and tau phosphorylation [157,158]. As shown in clinical pilot
research, etanercept—a TNF inhibitor—may enhance language function in a small cohort
of AD patients [159]. In mouse models of AD, intraperitoneal treatment of an IL-1 receptor-
blocking antibody has also shown potential for improving cognition and reducing tau
pathology, but additional clinical trials are required to determine the antibody’s safety and
effectiveness in people [160].

Microglia are known to sustain neuronal function by removing toxic damage in the
very early stages of the AD trajectory. These anti-inflammatory characteristics can be
maintained for extended periods of time via interfering with microglial activation. Several
teams are working on methods to control microglial activation towards a phagocytic
and/or anti-inflammatory phenotype [158]. In preclinical investigations, a number of anti-
inflammatory cytokines—such as IL-2, IL-4, and IL-33—have demonstrated the capacity to
control microglial activation and reduce AD pathogenesis [161–163]. However, the results
are not conclusive, these potential therapeutics deserve more investigation, including
testing in sizable preclinical investigations. Furthermore, the majority of preclinical research
has used viral vectors as a gene expression mechanism, making the direct administration
of these cytokines into humans a difficulty. New methods to control these cytokines may
be necessary [158,164].

5.2. miRNA Treatment

MicroRNAs (miRNAs) are single-stranded, non-coding RNA sequences that typically
contain 18 to 22 nucleotides [165]. Translational repression or degradation of target genes
is caused by miRNA regulation of target genes by binding to complementary 3′-UTRs
of mRNAs. miRNAs are involved in many biological processes, including development,
differentiation, proliferation, and apoptosis [166,167]. Moreover, they are crucial for appro-
priate neuronal development and are involved in neuronal plasticity [168]. Consequently,
many human disorders—including AD—are influenced by the dysregulation of miR-
NAs [169,170]. According to several studies, pathological circumstances alter the miRNA
profile [171,172]. The dysregulation of miRNA expression in AD patients is supported
by an increasing body of research. Several miRNA targets—including Aβ and tau signal-
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ing, inflammation, and apoptosis—have been identified, according to a meta-analysis by
Swarbrick et al. However, the majority of miRNA targets are still unknown [173]. Ad-
ditionally, it was shown that the expression of several miRNAs—including miR-29a and
miR-29b-1—which control the production of APP and the beta-site APP-cleaving enzyme 1
(BACE1), was downregulated in AD brains. Furthermore, it has been hypothesized that
the loss of these particular miRNAs may help to cause an increase in BACE1 and A levels
and the improper development of amyloid plaques in sporadic AD [174,175]. Importantly,
altered miRNAs can be seen in patients with MCI diagnoses earlier on as well as in fully
developed AD. Knowing that miRNAs can regulate Aβ, tau protein, neuroinflammation,
and also synaptic function, researchers started to consider changes in the miRNA profiles
as a chance to cure the disease. However, with the present knowledge, miRNA research is
rather used to study and confirm the connection and origin of the disease.

5.3. Gut-Microbiota Modulation

Investigating the relationship between gut bacteria and the neurological system pro-
vides a fresh look at neuroinflammation. Numerous recent studies have investigated the
role of the so-called “brain–gut axis” in AD pathology [176]. When compared to healthy
controls, research on rodent AD models and AD patients has shown that the gut microbiota
of AD patients differs from controls, which is linked to the loss of epithelial barrier integrity
and persistent systemic and intestinal inflammation [177,178]. LPS, bacterial amyloid, and
other toxins that can change physiological barriers and be linked to systemic inflamma-
tion are also produced by the gut microbiota. Despite structural differences between the
gut and CNS amyloid, the latter can also trigger increased immune reactions, leading
to neuronal amyloid aggregation [176,179,180]. Additionally, LPS release from the gut
microbiota in particular can activate microglia, which can disrupt the clearance of amyloid
and cause neurotoxicity [176]. According to a study by Kim et al., transferring healthy
mouse microbiota into AD models reduced glial activation and the development of Aβ

plaques and NFTs [177]. In addition, the prevalence of several Escherichia/Shigella-related
proinflammatory taxa was positively connected with elevated blood levels of proinflam-
matory cytokines in amyloid-positive patients and negatively correlated with E. rectale, an
anti-inflammatory bacteria [181]. It is interesting to note that probiotic treatment increased
levels of the anti-inflammatory cytokines IL-4 and IL-6, while decreasing levels of proin-
flammatory cytokines IL-1α, IL-1β, IL-2, IL-12, IFN, and TNFα [182]. The summary of the
results of therapeutic approaches for AD patients is summarized in Table 1.
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Table 1. Table summarizing the influence of different types of therapy on AD patients.

Type of Therapy
Influence

AuthorCognitive
Functions Attention Learning Memory Aβ Plaques Agitation Proinflammatory

Response
Progression

of AD Emotions Side Effects

Cholinesterase
inhibitors ↑ ↑ ↑ ↑

insomnia, gastrointestinal
symptoms (nausea, loss of
appetite, diarrhea), muscle

cramping and weakness

[31–34]

Memantine ↑ ↑ ↑ Confusion, aniety [42–45]

Aducanumab ↑
Removal,

disturbing
accumulation

micro-bleeds, swelling in
the brain, dizziness,
headaches nausea

[49]

Antidepressants ↓ ↑ Citalopram: risk of QT
prolongation [62,63]

Vitamin E ↑
Overdosage: fatigue,

gastrointestinal cramps,
diarrhea

[72]

Melatonin Prevent
accumulation ↓ ND [83,85,86]

Curcumin ↑ Prevent
accumulation ND [89,94,95]

Ginkgo biloba ↑ ↓ ND [102]

Saffron ↑ ↑ ↑ ND [109,110]

Ashwaganda ↓toxicity ND [118]

Physical activities ↑ ND [124,125]

Social activities ↑ ND [144,148]

Music therapy ↑ ↑ ↑ ND [151,153]

Anti-inflammatory
treatment ↑ ↓pathology ND [157,158,

160]

Gut microbiota
alterations

Stopping
development ND [177]

ND—Not described.
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6. Summary

The treatment of patients is still difficult due to AD’s complexity. Only cholinesterase
inhibitors, memantine, or a combination of these drugs are currently approved therapies for
AD. The AD therapy options, however, continue to be supportive and symptomatic without
affecting the long-term outlook. Memantine and cholinesterase inhibitors are two examples
of medications that enhance cognition and alertness, respectively, without affecting the
lifespan or general course of AD dementia. In addition, numerous novel medications have
failed larger Phase 3 trials because they did not reach efficacy endpoints, despite the early
promise of many of them.

Existing approaches are not enough while speaking of the cure to the disease but also
as slowing agents. Approved drugs have limitations and side effects while alternative
and non-pharmacological treatment are useful in single symptoms management without
complex view. Moreover, they sometimes depict contradictory meta-analysis results and
they vary depending on the person.

The complex pathologic causes of AD, as well as our incomplete understanding of the
connections between the various pathways involved in AD development and subsequent
neurodegeneration, and the potential ineffectiveness of currently available agents, are all
major contributors to the high failure rate of AD therapies under development. Therefore,
better understanding of the disease is crucial to develop the medication. Future treatments
may enhance presently available medications and reduce the evolution of AD pathology
or even the symptoms of the disease. They may also be able to delay or even stop the
development of AD symptoms in people who are at high risk for the condition. It is
likely that targeting numerous pathways will be necessary for effective treatment, even
though combining cholinesterase inhibitors with memantine has had mixed outcomes in
the treatment of AD. As a result, more studies looking at plausible agent combinations
should be carried out.
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141. Murínová, J.; Hlaváčová, N.; Chmelová, M.; Riečanský, I. The Evidence for Altered BDNF Expression in the Brain of Rats Reared
or Housed in Social Isolation: A Systematic Review. Front. Behav. Neurosci. 2017, 11, 101. [CrossRef]

142. Liu, J.; Dietz, K.; Deloyht, J.M.; Pedre, X.; Kelkar, D.; Kaur, J.; Vialou, V.; Lobo, M.K.; Dietz, D.M.; Nestler, E.J.; et al. Impaired
adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 2012, 15, 1621. [CrossRef]

143. Hsiao, Y.H.; Chang, C.H.; Gean, P.W. Impact of social relationships on Alzheimer’s memory impairment: Mechanistic studies. J.
Biomed. Sci. 2018, 25, 3. [CrossRef]

144. Schinder, A.F.; Poo, M. ming The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 2000, 23, 639–645. [CrossRef]
145. Peng, S.; Wuu, J.; Mufson, E.J.; Fahnestock, M. Precursor form of brain-derived neurotrophic factor and mature brain-derived

neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 2005, 93, 1412–1421. [CrossRef]
[PubMed]

146. Devi, L.; Ohno, M. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without
affecting β-amyloidosis in 5XFAD mice. Transl. Psychiatry 2015, 5, e562. [CrossRef]

147. O’Bryant, S.E.; Hobson, V.; Hall, J.R.; Waring, S.C.; Chan, W.; Massman, P.; Lacritz, L.; Cullum, C.M.; Diaz-Arrastia, R. Brain-
Derived Neurotrophic Factor Levels in Alzheimer’s Disease. J. Alzheimers. Dis. 2009, 17, 337. [CrossRef] [PubMed]

148. Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner,
J.M.; et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease.
Nat. Med. 2009, 15, 331. [CrossRef]

149. Szekely, C.A.; Breitner, J.C.S.; Zandi, P.P. Prevention of Alzheimer’s disease. Int. Rev. Psychiatry 2007, 19, 693–706. [CrossRef]
150. Paradise, M.; Cooper, C.; Livingston, G. Systematic review of the effect of education on survival in Alzheimer’s disease. Int.

psychogeriatrics 2009, 21, 25–32. [CrossRef]
151. Peck, K.J.; Girard, T.A.; Russo, F.A.; Fiocco, A.J. Music and Memory in Alzheimer’s Disease and The Potential Underlying

Mechanisms. J. Alzheimer’s Dis. 2016, 51, 949–959. [CrossRef]
152. Wang, Y.; Zheng, T.; Liao, Y.; Li, L.; Zhang, Y. A meta-analysis of the effect of music therapy on Alzheimer’s disease. Int J Clin Exp

Med 2020, 13, 317–329.
153. García-Casares, N.; Moreno-Leiva, R.M.; García-Arnés, J.A. Music therapy as a non-pharmacological treatment in alzheimer’s

disease. A systematic review. Rev. Neurol. 2017, 65, 529–538. [CrossRef]
154. Gómez Gallego, M.; Gómez García, J. Musicoterapia en la enfermedad de Alzheimer: Efectos cognitivos, psicológicos y

conductuales. Neurología 2017, 32, 300–308. [CrossRef] [PubMed]
155. Ozben, T.; Ozben, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin. Biochem. 2019,

72, 87–89. [CrossRef] [PubMed]
156. Miguel-Álvarez, M.; Santos-Lozano, A.; Sanchis-Gomar, F.; Fiuza-Luces, C.; Pareja-Galeano, H.; Garatachea, N.; Lucia, A. Non-

steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment
effect. Drugs Aging 2015, 32, 139–147. [CrossRef]

157. Steeland, S.; Gorlé, N.; Vandendriessche, C.; Balusu, S.; Brkic, M.; Van Cauwenberghe, C.; Van Imschoot, G.; Van Wonterghem, E.;
De Rycke, R.; Kremer, A.; et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease.
EMBO Mol. Med. 2018, 10, e8300. [CrossRef]

158. Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev.
Neurol. 2020, 17, 157–172. [CrossRef] [PubMed]

159. Tobinick, E.L.; Gross, H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s
disease. BMC Neurol. 2008, 8, 27. [CrossRef] [PubMed]

160. Kitazawa, M.; Cheng, D.; Tsukamoto, M.R.; Koike, M.A.; Wes, P.D.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M. Blocking IL-1
signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s
disease model. J. Immunol. 2011, 187, 6539–6549. [CrossRef] [PubMed]

161. Alves, S.; Churlaud, G.; Audrain, M.; Michaelsen-Preusse, K.; Fol, R.; Souchet, B.; Braudeau, J.; Korte, M.; Klatzmann, D.;
Cartier, N. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain 2017,
140, 826–842. [CrossRef]

162. Kiyota, T.; Okuyama, S.; Swan, R.J.; Jacobsen, M.T.; Gendelman, H.E.; Ikezu, T. CNS expression of anti-inflammatory cytokine
interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 2010, 24, 3093–3102. [CrossRef]

163. Fu, A.K.Y.; Hung, K.W.; Yuen, M.Y.F.; Zhou, X.; Mak, D.S.Y.; Chan, I.C.W.; Cheung, T.H.; Zhang, B.; Fu, W.Y.; Liew, F.Y.; et al.
IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA 2016, 113, E2705–E2713.
[CrossRef]

164. Zheng, C.; Zhou, X.-W.W.; Wang, J.-Z.Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-α,
TGF-β and IFN-γ. Transl. Neurodegener. 2016, 5, 7. [CrossRef] [PubMed]

165. Lee, C.Y.; Ryu, I.S.; Ryu, J.H.; Cho, H.J. miRNAs as Therapeutic Tools in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 13012.
[CrossRef] [PubMed]

166. Lee, C.Y.; Shin, S.; Lee, J.; Seo, H.H.; Lim, K.H.; Kim, H.; Choi, J.W.; Kim, S.W.; Lee, S.; Lim, S.; et al. MicroRNA-Mediated
Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells
(MSCs) Transplanted into Infarcted Heart. Int. J. Mol. Sci. 2016, 17, 1752. [CrossRef] [PubMed]

http://doi.org/10.3389/fnbeh.2017.00101
http://doi.org/10.1038/nn.3263
http://doi.org/10.1186/s12929-018-0404-x
http://doi.org/10.1016/S0166-2236(00)01672-6
http://doi.org/10.1111/j.1471-4159.2005.03135.x
http://www.ncbi.nlm.nih.gov/pubmed/15935057
http://doi.org/10.1038/tp.2015.55
http://doi.org/10.3233/JAD-2009-1051
http://www.ncbi.nlm.nih.gov/pubmed/19363274
http://doi.org/10.1038/nm.1912
http://doi.org/10.1080/09540260701797944
http://doi.org/10.1017/S1041610208008053
http://doi.org/10.3233/JAD-150998
http://doi.org/10.33588/RN.6512.2017181
http://doi.org/10.1016/j.nrl.2015.12.003
http://www.ncbi.nlm.nih.gov/pubmed/26896913
http://doi.org/10.1016/j.clinbiochem.2019.04.001
http://www.ncbi.nlm.nih.gov/pubmed/30954437
http://doi.org/10.1007/s40266-015-0239-z
http://doi.org/10.15252/emmm.201708300
http://doi.org/10.1038/s41582-020-00435-y
http://www.ncbi.nlm.nih.gov/pubmed/33318676
http://doi.org/10.1186/1471-2377-8-27
http://www.ncbi.nlm.nih.gov/pubmed/18644112
http://doi.org/10.4049/jimmunol.1100620
http://www.ncbi.nlm.nih.gov/pubmed/22095718
http://doi.org/10.1093/brain/aww330
http://doi.org/10.1096/fj.10-155317
http://doi.org/10.1073/pnas.1604032113
http://doi.org/10.1186/s40035-016-0054-4
http://www.ncbi.nlm.nih.gov/pubmed/27054030
http://doi.org/10.3390/ijms222313012
http://www.ncbi.nlm.nih.gov/pubmed/34884818
http://doi.org/10.3390/ijms17101752
http://www.ncbi.nlm.nih.gov/pubmed/27775615


Int. J. Mol. Sci. 2022, 23, 8902 19 of 19
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