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Gastric cancer (GC) is a disease characterized by high molecular and phenotypic
heterogeneity and represents a leading cause of cancer-related death worldwide. The
tumor immune microenvironment (TIME) affects the response to immunotherapy and the
prognosis of patients with GC. Explorations of the TIME in GC and characterization of
molecular subtypes might enhance personalized treatment and facilitate clinical decision-
making. In this study, two molecular subtypes were defined through unsupervised
consensus clustering based on immune-related dysregulated genes. Then, patients with
different molecular subtypes of GC were shown to have distinct differences in sensitivity to
immune checkpoint blockers (ICBs). The immune-related prognostic signature was
established utilizing least absolute shrinkage and selection operator (LASSO)-Cox
regression analysis. Three independent external cohorts and the IMvigor210 cohort were
introduced to validate the robustness of IPRS. scRNA-seq data of GC samples were used
to decipher the underlying mechanisms of how IPRS contributes to the TIME. GC
biospecimens were collected for RT-qPCR to further validate our findings. In summary,
we characterized the abnormal TIME of GC and constructed a reliable immune-related
prognostic signature correlating with the response to immunotherapy. This study may
provide new strategies for developing individualized treatments for patients with GC.

Keywords: gastric cancer, molecular subtypes, gene signature, prognosis, immunotherapy
Abbreviations: ACRG, Asian Cancer Research Group; AJCC, American Joint Committee on Cancer; AUC, area under the
curve; CI, confidence interval; CIBERSORT, cell type identification by estimating relative subsets of RNA transcripts; DEG,
differentially expressed gene; DFS, disease-free survival; ESTIMATE, Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data; FDR, false discovery rate; FPKM, Fragments Per Kilobase of exon model per Million mapped
fragments; GC, gastric cancer; GDSC, Genomics of Drug Sensitivity in Cancer; GEO, Gene Expression Omnibus; GO, Gene
Ontology; GSEA, gene set enrichment analysis; HR, hazard ratio; IC50, the half-maximal inhibitory concentration; ICB,
immune checkpoint blocker; IDG, immune-related dysregulated gene; IPRS, immune-related prognostic risk score; KEGG,
Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and selection operator; MSI: Microsatellite
Instable; MSigDB: Molecular Signatures Database; OS, overall survival; PCA, principal component analysis; ROC, receiver
operating characteristic curve; RT–qPCR, real-time quantitative polymerase chain reaction; ssGSEA, single-sample gene set
enrichment analysis; TCGA, The Cancer Genome Atlas; TIDE, Tumor Immune Dysfunction and Exclusion; TIME, tumor
immune microenvironment; TIMER, Tumor Immune Estimation Resource; TMB, Tumor Mutation Burden; TPM,
Transcripts Per kilobase of exon model per Million mapped reads.
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INTRODUCTION

Gastric cancer (GC) is a disease with high molecular and
phenotypic heterogeneity (1). Although GC is not one of the
top malignancies in the United States (2), it represents a leading
cause of cancer-related death worldwide. Surgery is currently
considered the only curative option, but recurrence is common,
even after complete resection (3). Moreover, most patients with
GC develop advanced-stage disease because of the lack of specific
signs of early gastric cancer, and some patients have missed the
optimal surgical window when receiving the diagnosis (4). The
benefit of chemotherapy varies from person to person because of
primary or acquired drug resistance (5). Immune checkpoint
blockers (ICBs), such as cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4) and programmed cell death 1 (PD-1)
inhibitors, exert revolutionary effects on several tumors, while
the efficacy seems to be closely related to the tumor immune
microenvironment (TIME) (6, 7). Noncoding RNAs, such as
microRNAs, long noncoding RNAs, and circular RNAs, as well
as epigenetic alterations, including DNA methylation, histone
acetylation, and chromatin remodeling, were reported to play
vital roles in cancer development and resistance to therapeutic
reagents (8, 9), but much more work is needed before their
clinical application. Therefore, the identification of new
molecular biomarkers to predict and improve the prognosis of
patients with GC is essential.

The tumor immune microenvironment, which contains
numerous cell types and the factors they secrete, plays critical
roles in tumor growth, progression, and metastasis (10).
According to the presence or absence of T cell-based
inflammation, solid tumors are roughly characterized as “hot”
(T cell-infiltrated) and “cold” (inflamed but not infiltrated or not
inflamed) tumors (11, 12). Most patients with hot tumors exhibit
greater sensitivity to ICBs, potentially because immune
checkpoint inhibitors relieve the exhaustion of CD8+ T cells
and renew their priming (13). Among various types of cells,
cancer-associated fibroblasts, M2 macrophages, and regulatory T
cells prevent CD8+ T cells from killing tumor cells by creating
immunologic barriers. Hence, studies exploring and targeting the
predominant components of the TIME may prolong the survival
of patients.

Based on accumulating evidence, the classification of GC based
on molecular subtypes rapidly identifies cancer characteristics and
enhances the efficacy of personalized therapy (14). In the present
study, we aimed to explore the TIME of GC and identify immune-
related molecular subtypes. We estimated the immune and
stromal components of the TIME of GC samples using gene
expression profiles. Based on solid immune-related dysregulated
genes, we characterized the molecular subtypes of GC and
visualized the differences. We obtained insight into the
correlation between immune-related molecular subtypes and the
possible response to ICBs estimated using machine learning
methods to determine if the identified subtypes would help
improve risk stratification and guide therapeutic strategies. For
the convenience of clinical applications of the molecular subtypes,
we subsequently devoted ourselves to constructing a relatively
streamlined and quantified prognostic signature. We calculated
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the immune-related prognostic risk scores (IPRSs) of patients
using the established signature and investigated the relationship
between the IPRS and clinical features, tumor-infiltrating immune
cells, and the potential sensitivity to chemotherapy and
immunotherapy. Single-cell RNA-seq data were introduced to
decipher the underlying mechanisms of how IPRS contributes to
the TIME. This study may provide guidelines to improve
therapeutic strategies for patients with GC.
MATERIALS AND METHODS

Data Collection and Processing
The RNA-sequencing profiles of 32 adjacent normal tissues and
375 primary gastric cancer (GC) tissues in the forms of counts
and fragments per kilobase million (FPKM) were downloaded
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) and subsequently transformed to log2
(TPM+1). Meanwhile, the corresponding clinicopathological
data from patients with GC in TCGA were obtained from the
cBioPortal website (https://www.cbioportal.org/). The HMU-GC
cohort [GEO accession: GSE184336 (15)], which takes advantage
of RNA-sequencing technology, was employed in this study to
verify the reproducibility of the results of the consensus
clustering and immune subtypes. Batch effects caused by non-
biotech bias between different datasets were removed using
ComBat function in “sva” package. In addition, another three
datasets, GSE14210 (16), GSE84437 (17), the Asian Cancer
Research Group (ACRG) study [GEO accession: GSE66229
(18)], were obtained from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database and were
utilized for validation with the log2 transformed gene
expression matrices. The detailed criteria for inclusion of
patients enrolled in this study were as follows: 1) histologically
confirmed GC and 2) simultaneously available information on
gene expression profiles and OS. The exclusion criteria were 1)
patients with other diseases except for GC and 2) the follow-up
time less than one month. The IMvigor210 dataset (19)
containing 298 urothelial cancer cases who received anti-PD-
L1 therapy was downloaded from http://research-pub.gene.com/
IMvigor210CoreBiologies/. The processed scRNA-seq data of
nine GC samples were acquired from professor Ying (Genome
Sequence Archive accession: HRA000051, https://ngdc.cncb.ac.
cn/gsa-human/) (20). A summary of the characteristics of GC
patients in the four cohorts described above are shown in
Table S1.

Identification of Immune-Related
Dysregulated Genes
The immune scores and stromal scores were calculated using the
“Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data” (ESTIMATE) algorithm to
infer the fractions of immune and stromal cells in primary GC
samples (21). According to the median score, GC samples were
assigned into high and low immune/stromal score groups.
Differentially expressed genes (DEGs) between GC samples
July 2022 | Volume 13 | Article 939836
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and adjacent normal tissues or high and low immune/stromal
score groups were screened using the R package “DESeq2” with
the thresholds of log2fold change > 1 or < -1 and adjusted p
values (padj) < 0.05. The overlapping genes among the three sets
of DEGs described above were considered immune-related
dysregulated genes (IDGs).

Functional Enrichment Analysis
Gene set enrichment analysis (GSEA), Gene Ontology (GO), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were conducted using the R package “clusterProfiler”
(22). Annotated gene sets in “h.all.v7.4.symbols.gmt” and
“c2.cp.kegg.v7.4.symbols.gmt” obtained from the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/
gsea/index.jsp) were selected as the reference gene sets in
GSEA. Enriched terms with a false discovery rate (FDR) < 0.05
were considered significant and were visualized using the R
packages “enrichplot” and “ggplot2”.

Characterization of Molecular Subtypes
and Estimation of Tumor-Infiltrating
Immune Cells
Based on IDGs, the R package “ConsensusClusterPlus” was
employed to characterize the immune-related molecular
subtypes of primary GC samples. Principal component analysis
(PCA) was subsequently conducted to verify the differences
among subtypes. Three algorithms, including single-sample
GSEA (ssGSEA), Tumor Immune Estimation Resource
(TIMER), and CIBERSORT, were utilized to estimate the
fractions of tumor-infiltrating immune cells. The signatures of
28 immune cells were collected from TISIDB (23), which were
used to calculate the abundance of tumor-infiltrating immune
cells through ssGSEA.

Construction and Validation of Immune-
Related Prognostic Signatures
For the convenience of clinical application, we decided to
develop a relatively streamlined prognostic risk model
composed of gene expression levels and their respective
coefficients. Briefly, a univariate Cox regression analysis was
first conducted to screen the immune-related prognostic
dysregulated genes with the threshold of a p value < 0.05 based
on primary GC samples acquired from TCGA database, their
corresponding clinical information, and IDGs previously
identified. For the accuracy of model construction, patients
who were followed for less than one month were excluded. A
total of 338 remaining samples were randomly assigned into a
training set (237 patients) and an internal validation set (101
patients) at a 7:3 ratio. The clinical features of the two sets are
summarized in Table S2. Then, the least absolute shrinkage and
selection operator (LASSO) regression algorithm was performed
to screen the immune-related prognostic signatures with a
minimum 10-fold cross-validation based on the training set
and prognostic IDGs using the R package “glmnet”. Finally,
prognostic risk models were constructed based on genes
extracted from the LASSO regression analysis and their
Frontiers in Immunology | www.frontiersin.org 3
respective coefficients (b). Kaplan-Meier Plotter (http://kmplot.
com/analysis/), a web-based survival analysis tool, was utilized to
confirm the prognostic power of selected genes in this study (24).
The immune-related prognostic risk score (IPRS) of each patient
was calculated using the following formula: IPRS = expression
level of gene1 × bgene1 + expression level of gene2 × bgene2 + …
expression level of genen × bgenen. The internal validation set, the
whole TCGA set, and four independent external sets consisting
of GSE14210, GSE88437, ACRG, and IMvigor210 were used for
validation. Patients in each set were divided into high-IPRS and
low-IPRS groups according to the optimal IPRS cutoff. Kaplan–
Meier curves, receiver operating characteristic (ROC) curves,
and time-dependent area under the curve (AUC) were
introduced to evaluate the robustness of immune-related
prognostic signatures.

Prediction of the Sensitivity to
Chemotherapy and Immune
Checkpoint Blockers
Benefiting from the application of machine learning in medicine,
people have predicted the potential therapeutic effects of different
treatments. oncoPredict, an R package for predicting the drug
response of patients with cancer that has been applied to various
in vitro and in vivo contexts for drug and biomarker discovery,
was employed to evaluate the sensitivity of patients with GC to
common chemotherapeutic drugs (25). The candidate drugs,
including 5-fluorouracil, Docetaxel, Paclitaxel, Epirubicin,
Irinotecan, Cisplatin, and Oxaliplatin, were selected according
to the Food and Drug Administration (https://www.cancer.gov/
about-cancer/treatment/drugs/stomach) and the Chinese Society
of Clinical Oncology (CSCO). The Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm, which was developed by Jiang
P et al. through modeling two primary mechanisms of tumor
immune evasion for predicting ICB response (26), was
introduced to estimate the potential response of patients with
GC to ICB therapy.

Single-Cell RNA Sequencing
Data Analyses
The processed scRNA-seq data of nine GC samples were
acquired from professor Ying (20). The raw gene expression
matrices were processed using the R package “Seurat” (version
4.1.0) with a standard workflow including quality control,
dimension reduction, clustering, and cell type annotation.
Quality control criteria were as follows: 1) cells had either
fewer than 500 RNA features, 2) over 60,000 or less than 500
RNA counts, 3) over 50% RNA features derived from the
mitochondrial genome, or 4) less than 3% RNA features
derived from the ribosome genes were removed. Gene
expression matrices of the remaining 23,511 cells were
normalized and subsequently scaled by regressing out the cell-
cycle signature scores. Data integration and batch effect removal
steps were conducted using R package “harmony” after PCA.
Top 20 dimensions from harmony were selected to perform
UMAP dimensionality reduction, followed by cell clustering with
a resulotion value of 0.3. Clusters with cell numbers less than 50
July 2022 | Volume 13 | Article 939836
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were deserted. A total of 14 main clusters were generated and
annotated to 9 cell types according to marker genes from the
origin article (20). Cell-cell communication were evaluated using
CellChat and iTALK tools. Top ligand-receptor pairs and
signaling pathways were displayed.

Real-Time Quantitative Polymerase
Chain Reaction
Seven pairs of GC samples and adjacent normal tissues were
obtained from Shanghai East Hospital Biobank. This research
was approved by the Ethics Committee of East Hospital Affiliated
Tongji University, Tongji University School of Medicine (2020-
053). All patients signed informed consent forms before
donating their specimens. Total RNA was extracted using
TRIpure Total RNA Extraction Reagent (ELK Biotechnology,
EP013) according to the manufacturer’s instructions. Reverse
transcription was performed using M-MLV Reverse
Transcriptase (ELK Biotechnology, EQ002). RT–qPCR was
performed with QuFast SYBR Green PCR Master Mix (ELK
Biotechnology, EQ001) and a StepOne™ Real-Time PCR System
(Life Technologies). GAPDH was selected as the internal
reference. The relative expression level was calculated using the
2-DDCT method. The primer sequences are presented in Table S3.

Statistical Analysis
Statistical tests were conducted using R software (version 4.1.0).
Categorical variables were compared using chi-square tests.
Comparisons between two groups were performed using the
Wilcoxon rank-sum test. Univariate and multivariate Cox
regression analyses were conducted to screen the independent
prognostic factors. Correlation analyses were performed with the
Pearson correlation test. Kaplan–Meier curves for overall
survival (OS) were plotted, and the difference between groups
was compared using the log-rank test. The random-effects meta-
analysis model was employed to calculate the pooled hazard ratio
(HR) with the R package “meta”. A P value < 0.05 was considered
statistically significant.
RESULTS

Identification of Tumor Immune
Microenvironment-Related
Dysregulated Genes
A flow diagram of overall analyses was displayed in Figure 1. The
tumor immune microenvironment (TIME) favors the growth
and progression of cancer cells, affecting the clinical outcomes of
patients (27, 28). In the present study, we assessed the TIME of
each GC sample by calculating the immune and stromal scores.
Subsequently, DEGs between the low and high immune/stromal
score groups were screened. Compared with the low immune
score group, 2092 upregulated DEGs and 1630 downregulated
DEGs were identified in the high immune score group.
Meanwhile, 3104 upregulated and 875 downregulated DEGs
were identified in the high stromal score group compared to
the low stromal score group. In addition, DEGs between GC
Frontiers in Immunology | www.frontiersin.org 4
samples and normal tissues were also calculated, and 10724
dysregulated DEGs were screened (Figure S1 and Table S4). We
took the intersection among the three sets of DEGs described
above to investigate the immune-related dysregulated genes
(IDGs). As shown in Figure 2A, 1083 overlapping genes were
identified and considered IDGs (Table S4). We performed
functional enrichment analyses to further explore the function
of IDGs. As a result, the main enriched GO terms were associated
with immune responses, including humoral immune response,
immunoglobulin complex, and antigen binding. KEGG
pathways were mainly enriched in neuroactive ligand–receptor
interactions and calcium signaling pathways (Figure 2B, C, and
Table S5). Based on these results, the 1083 overlapping genes
were robust IDGs.

Characterization of Immune-Related
Molecular Subtypes
Previously, the tumor microenvironment subtypes have been
shown to be correlated with the responses of patients with
various cancers to immunotherapy, and patients with immune-
favorable subtypes tend to benefit more from immunotherapy
(29). Emerging evidence indicates that differences in the
molecular pathology of indistinguishable cancers affect the
clinical features of the disease, and molecular subtypes now
guide clinical therapeutic strategies for multiple cancers (30,
31). Based on IDGs, GC samples were assigned to three
clusters using consensus clustering with an optimal k of 3
(Figures 2D, E). PCA revealed distinct differences among these
three clusters (Figure 2F).

To further explore the relationship between clusters and
immune activities, we firstly applied TIMER algorithm to estimate
the levels of tumor-infiltrating immune cells. Compared with GC
samples in Cluster_1, samples in Cluster_2 and Cluster_3 exhibited
significantly higher fractions of all the estimated six types of
immune cells, while the discrepancies in levels of immune cells
between Cluster_2 and Cluster_3 were not so distinct (Figure 3A).
In addition, the abundance of CD8+ T cells and myeloid dendritic
cells between Cluster_2 and Cluster_3 showed no statistical
differences. This tendency was more obvious in the HMU-GC
cohort (Figures S2A–E). On the other hand, we took advantage
of TIDE algorithm and inferred the possible sensitivities to ICB to
compare the potential differences in immunotherapeutic efficiency
among the identified three clusters. Patients in Cluster_1 showed
distinctly lower TIDE scores than any other clusters, meaning that
patients in Cluster_1 may benefit more from ICB (Figure 3B).
Agreeing with the results of immune cell analyses, the TIDE scores
between Cluster_2 and Cluster_3 also showed no significant
differences (Figure 3B), suggesting that patients in the Cluster_2
and Cluster_3 were in the similar immune states. Therefore, we
manually classified the GC patients in Cluster_1 as Immune_L
subtype other ones belonged to the Immune_H subtype. Significant
higher fractions of all the six kinds of immune cells were observed in
the Immune_H subtype compared to the Immune_L subtype
(Figure 3C). The TIDE scores between the two immune subtypes
were also obviously discrepant (Figure 3D). The characterized
immune subtypes were further confirmed by the abundance of 28
July 2022 | Volume 13 | Article 939836
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immune cells calculated through the ssGSEA algorithm
(Figure 3E). To ensure the reproducibility of the results of
consensus clustering and immune subtypes, we introduced the
HMU-GC cohort and found the almost same results (Figures
S2A–H). Next, we compared the identified immune subtype with
previously reported subtypes in GC, such as the TCGA molecular
subtype (32) and the Lauren class. As displayed in Figure 3F, the
alluvial diagram indicated that the immune subtype was associated
with the TCGA molecular subtype, the Lauren class, and tumor
grade, while having less connection to the TNM stage. Taken
Frontiers in Immunology | www.frontiersin.org 5
together, GC patients exhibited a certain degree of heterogeneity
in immune status, and the immune subtype we identified could
partly reflect the levels of tumor-infiltrating immune cells and
sensitivities to ICB, which may help guide clinical decision-making.

Construction of a Prognostic Signature
Based on Prognostic IDGs
For a better clinical application of identified immune-related
molecular subtypes, we constructed a relatively simple and
quantified prognostic gene signature. We first conducted a
FIGURE 1 | The flow diagram of overall analysis.
A B

D

E

F

C

FIGURE 2 | Identification of IDGs and immune-related clusters. (A) Screening the IDGs by Venn diagram. (B, C) GO (B) and KEGG (C) enrichment analyses of
IDGs. (D) The cumulative distribution function (CDF) curves for k = 2 to 6. (E) Three clusters were identified through consensus clustering. (F) PCA analysis revealed
the dissimilarity among three clusters. BP, biological process; CC, cellular component; MF, molecular function.
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univariate Cox regression analysis on 1083 previously identified
IDGs, and 63 prognostic IDGs were screened (Table S6). Then,
we fit the aforementioned prognostic IDGs into a LASSO
regression model with the training set to identify the optimal
prognostic signature (Figure 4A). Subsequently, 10-fold cross-
validation was performed to overcome the overfitting effect. A log
lambda of -2.742 was selected with the lowest partial likelihood
deviance (Figure 4B). A panel of five genes remained with
nonzero coefficients (Figures 4C, D and Table S7). The
survival analysis revealed that patients with higher expression
levels of each of these five genes experienced worse clinical
outcomes (Figure 4E). The results from Kaplan-Meier Plotter
also confirmed the prognostic power of these five genes in GC
(Figure S3). In addition, the multivariate Cox regression analysis
indicated that four of five genes, namely, GCG, ITIH2, CYTL1,
and MAGEA11, were independent risk factors for the OS
of patients with GC (Figure 4C). The formula for calculating
the immune-related prognostic risk score (IPRS) from
the prognostic signature is as follows: IPRS = (0.12733) ×
ExpCDH10 + (0.07203) × ExpGCG + (0.08738) × ExpITIH2 +
(0.17213) × ExpCYTL1 + (0.05973) × ExpMAGEA11.
Frontiers in Immunology | www.frontiersin.org 6
Validation and Evaluation of the
Prognostic Signature
Patients in each set were divided into high and low IPRS groups
according to the optimal cutoff value to validate the robustness of
the prognostic signature. Kaplan–Meier curves revealed that the
IPRS performed well in distinguishing patients with good or
unfavorable overall survival not only in the training set
(Figure 5A) but also in the internal validation set and the
whole TCGA set (Figures 5B, C). We determined the accuracy
of the IPRS and traditional clinical features by plotting ROC
curves and calculating the AUC value for OS based on the whole
TCGA set. The AUC value for IPRS was 0.745 at 3 years and
0.771 at 5 years (Figure 5D), which suggested promising
predictive power. Compared to clinical characteristics, the
IPRS exhibited the highest accuracy for predicting OS at 5
years (Figure 5E). In addition, we calculated the time-
dependent AUC value of each factor to evaluate the overall
predictive ability. As shown in Figure 5F, the AUC value of IPRS
was approximately 0.75 and ranked at the top most of the time,
indicating that the IPRS might serve as a supplement to the
AJCC staging system for improving the prognosis of patients
A B

D

E
F

C

FIGURE 3 | Exploration of the TIME and characterization of immune-related molecular subtypes. (A, B) The fractions of tumor-infiltrating cells estimated by TIMER
(A) and TIDE scores (B) among three clusters. (C, D) The fractions of tumor-infiltrating cells estimated by TIMER (C) and TIDE scores (D) between the two immune
subtypes. (E) The levels of 28 immune cells of GC samples in the two immune subtypes were calculated through ssGSEA. (F) The relationships between immune
subtypes and other previously reported subtypes in GC. NS. or ns, no statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001.
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with GC. On the other hand, we conducted univariate and
multivariate Cox regression analyses to assess the prognostic
value for the OS of patients with GC. The hazard ratio (HR) and
95% confidence interval (CI) of the IPRS were 6.07 and 3.28-
11.22, respectively, in the univariate Cox regression analysis
(Figure S4A). The IPRS was identified as the only independent
risk factor in the multivariate Cox regression analysis (HR = 5.11,
95% CI = 2.35-11.09, Figure S4B). Taken together, the IPRS
exhibited great prognostic value and might help improve the
clinical outcomes of patients with GC.
Frontiers in Immunology | www.frontiersin.org 7
Correlation Between the IPRS and
Clinicopathological Features
We generated a series of boxplots based on the whole TCGA set
to investigate and illustrate the relationships between the IPRS
and clinicopathological characteristics (Figure 6). Among the
various clinical features, a higher IPRS was associated with male
sex (p < 0.05), distant metastasis (p < 0.01), and poor clinical
outcomes (living status and disease-free status, both p < 0.001)
but was unrelated to age and lymph node metastasis. Moreover,
the IPRS exhibited a certain discriminatory power for the tumor
A B
D

E

C

FIGURE 4 | Construction of an immune-related prognostic gene signature. (A) The changing trajectory of each variable in LASSO-Cox regression analysis. (B) Selection
of the optimal lambda value with the minimum partial likelihood deviance. (C) Forest plot of multivariate Cox analysis of five selected genes based on the training set. (D)
The coefficients of five selected genes. (E) Kaplan-Meier curves with log-rank p-values of the five selected genes. *p < 0.05, **p < 0.01.
A B

D E F

C

FIGURE 5 | Validation and assessment of the immune-related prognostic gene signature. (A–C) Kaplan-Meier curves of low and high IPRS groups in the training set
(A), internal validation set (B), and the whole TCGA set (C). (D) ROC curves of the IPRS at 3 years and 5 years. (E) ROC curves of the IPRS and traditional clinical
characteristics at 5-year-survival. (F) Time-dependent AUC curves of the IPRS and clinical factors.
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grade (G3 vs. G2, p < 0.01), tumor stage (stage IV vs. lower
stages, all p < 0.05), and pathological T stage (T1 vs. higher T
stage levels, all p < 0.05). Besides, IPRS in the Immune_H
subtype was significantly higher than that in the Immune_L
subtype (p < 0.01, Figure S5A). Based on these results, the IPRS
that was established from gene signatures partially reflects the
clinical features of patients with GC and has the ability to
distinguish patients with relatively early-stage GC from
advanced-stage tumors, which might assist with clinical
decision-making.

IPRS May Predict the Responses to
Chemotherapy and ICB
Because the IPRS was developed based on prognostic IDGs, we
explored the association of the IPRS with tumor-infiltrating
immune cells. The IPRS exhibited a positive correlation with
the fractions of naïve B cells, M2 macrophages, and resting mast
cells (Figure 7A). In contrast, the IPRS was negatively correlated
with the fractions of CD8+ T cells and activated CD4+ memory
T cells (Figure 7A). We determined whether the IPRS predicted
the potential sensitivity of patients to chemotherapy and ICBs
based on the immune-related molecular subtypes previously
identified by comparing the IC50 values of common chemical
drugs and TIDE scores between the low and high IPRS groups.
As we expected, patients with GC presenting a lower IPRS tended
to be more sensitive to various chemotherapeutic agents for GC,
such as 5-fluorouracil, Paclitaxel, Docetaxel, and Oxaliplatin
(Figure 7B). Setting the default value of 0 as the threshold
(26), patients with GC were considered responsive or
nonresponsive to ICBs according to the individual TIDE
scores. The distribution of the TIDE score of each patient in
the low and high IPRS groups is shown in Figure 7C. In addition,
the chi-square test indicated that patients with GC in the low
Frontiers in Immunology | www.frontiersin.org 8
IPRS group were more likely to respond to ICBs (chi-square test,
p < 0.001). Thus, the IPRS might predict the responses to
chemotherapy and ICBs.

GSEA was performed by setting the gene signatures in
“h.all.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” as
references to investigate the potential regulatory mechanisms
responsible for the differences between the low and high IPRS
groups. Hallmarks, including angiogenesis, coagulation, the
epithelial-mesenchymal transition, and myogenesis, were
significantly enriched in the high IPRS group (Figure 8A and
Table S8). KEGG pathways such as neuroactive ligand-receptor
interaction, complement, coagulation cascades, and
adipocytokine signaling pathways were positively correlated
with the IPRS, while pathways such as mismatch repair and
protein export were negatively regulated in the high IPRS group
(Figure 8B and Table S8). Since the IPRS was capable of
predicting the possible sensitivities to ICB, we wondered if the
IPRS had connections to the classical predictive markers of
immunotherapy, such as immune checkpoints, TMB (Tumor
Mutation Burden), and MSI (Microsatellite Instable) status. As a
result, most of the immune checkpoints were low expressed
(Figure S5B), and the scores of immune checkpoints exhibited
no obvious differences in different risk groups (Figure S5C).
While, the TMB was negatively correlated with the IPRS (R =
-0.3, p < 0.001, Figure 8C). In addition, the IPRS showed
significant discrepancies among different MSI statuses
(Figure 8D). The relationships between IPRS and predictive
markers may be responsible for the capability of IPRS to predict
the possible response to ICB in GC.
External Validation of the Immune-Related
Prognostic Signature
Three independent external GC cohorts (GSE14210, GSE84437,
and ACRG) were utilized to further validate the established
prognostic signature. Patients in each cohort were divided into
high and low IPRS groups according to the optimal cutoff value.
Kaplan–Meier curves showed that the immune-related
prognostic signature performed well in discriminating patients
with favorable and poor OS (Figures 9A–C). For the DFS
(disease-free survival), the IPRS also exhibited a certain
distinguishing power (Figures 9D–F). Along with TCGA set,
the meta-analysis revealed that the pooled HR and 95% CI of the
IPRS were 2.02 and 1.61-2.53, respectively (Figure 9G). Besides,
we compared the efficacy of the immune-related prognostic
signature with other three prognostic signatures, including a
six-gene pyroptosis-related signature (33), a two-gene signature
(34), and a five-gene glycolysis-related signature (35). Among the
four prognostic signatures, the IPRS showed the highest accuracy
in predicting the 3-year-survival and 5-year-survival (Figures
S6A, B). By generating a time-dependent AUC plot, we found
that the efficacy of IPRS ranked at the top in the first five years
and was surpassed by glycolysis-related signature at the seventh
year (Figure S6C). To examine the utility of IPRS in speculating
the benefits from immunotherapy, we employed the IMvigor210
cohort consisting of patients who received anti-PD-L1 therapy. It
is as expected that patients with low IPRS were more likely to
FIGURE 6 | The relationships between IPRS and clinicopathological features.
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achieve CR/RR and survived longer than patients with high IPRS
(Figures 9H, I). The objective response rate of anti-PD-L1
therapy was significantly higher in the low IPRS group than
Frontiers in Immunology | www.frontiersin.org 9
that in the high IPRS group (chi-square test, p = 0.002,
Figure 9J). Therefore, our results revealed that the immune-
related prognostic signature was robust and reliable.
A

B C

FIGURE 7 | Investigation of the correlation between IPRS and tumor-infiltrating cells and the sensitivity to chemotherapies and ICBs. (A) IPRS was positively or
negatively correlated with some tumor-infiltrating cell types. (B) The estimated IC50 for various chemotherapeutic drugs. (C) The distributions and proportions of
potential responders and non-responders were estimated by TIDE scores between low and high IPRS groups. NS., no statistical significance, **p < 0.01,
***p < 0.001.
A

B

DC

FIGURE 8 | Exploration of the regulatory mechanisms resulting in the differences between low and high IPRS groups. (A, B) Hallmarks of cancers (A) and KEGG
pathways (B) were investigated between low and high IPRS groups through GSEA. (C) IPRS was negatively correlated with the TMB. (D) IPRS showed significant
discrepancies among different MSI statuses. MSI, Microsatellite Instable; MSS, Microsatellite Stable.
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Experimental Verification of the Aberrant
Expression of Screened IDGs
in Biospecimens
As mentioned above, a panel of five genes was screened to
construct the prognostic signature. Among them, CDH10,
GCG, and CYTL1 were downregulated in GC samples
compared to adjacent normal tissues, while TITH2 and
MAGEA11 were upregulated (Figure 10A and Table S4). We
conducted experimental validation using biospecimens to
confirm the expression patterns of these five genes. All genes
showed the same patterns of expression as TCGA gene
expression profiles except GCG (Figure 10B), which interested
us and suggested further research. By analyzing the gastric cancer
samples and paired adjacent normal tissues in TCGA, we found
that these 27 paired samples exhibited different GCG expression
patterns, which in turn reflected the high heterogeneity of GC
(Figure S7).
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Decipher the Underlying Mechanisms of
How IPRS Contributes to TIME at the
Single-Cell Level
The scRNA-seq data of nine GC samples were analyzed to
decipher the underlying mechanisms of how IPRS might
contribute to the TIME (Figure 11A). A total of 23,511 cells
remained after quality control and were used for subsequent
analyses. According to canonical marker genes, 14 main clusters
with cell numbers over 50 were annotated to nine cell types
(Figures 11B–D): B cell (4,094 cells, 17.4%, marked with CD79A
andMS4A1), T cell (6,071 cells, 25.9%, marked with CD2, CD3D,
and CD3E), endocrine cell (234 cells, 1.0%, markered with
CHGA), endothelial cell (231 cells, 0.9%, marked with ENG
and VWF), epithelium (9,992 cells, 42.6%, marked with
EPCAM, KRT18, and KRT8), fibroblast (327 cells, 1.4%,
marked with ACTA2 and COL1A2), macrophage (1,015 cells,
4.3%, marked with CD14 and CD68), mast cell (500 cells, 2.1%,
A B D

E F

G

IH J

C

FIGURE 9 | External validation of the immune-related prognostic gene signature. (A–C) Kaplan-Meier analyses of the low and high IPRS groups in three
independent external cohorts on OS, including GSE14210 (A), GSE84437 (B), ACRG (C). (D–F) Kaplan-Meier analyses of the low and high IPRS groups in three
cohorts on DFS, including TCGA-STAD (D), GSE14210 (E), ACRG (F). (G) Meta-analysis was conducted to evaluate the pooled HR of the immune-related
prognostic signature. (H) IPRS in groups with a different anti-PD-L1 response status. (I) Kaplan-Meier analysis of patients with high and low IPRS in the IMvigor210
cohort. (J) The objective rate of clinical response to anti-PD-L1 immunotherapy in high and low IPRS groups in the IMvigor210 cohort. CR, complete response; PR,
partial response; SD, stable disease; PD, progressive disease. *p < 0.05.
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marked with CPA3 and KIT), plasma cell (1,012 cells, 4.3%,
marked with CD79A and MZB1). T cells were subclustered into
CD4+ T cells or CD8+ T cells according to CD4 or CD8A
expression levels. To reveal the potential mechanisms of IPRS,
we firstly checked the expression levels of five selected genes,
including CYTL1, GCG, CDH10, ITIH2, and MAGEA11. CYTL1
was predominantly expressed by endothelial cells, while GCG
was mainly expressed by endocrine cells (Figure 11E). Other
genes were either with extremely low expression patterns or not
detectable. Hence, the functions of endothelial cells and
endocrine cells in the TIME were the key links to the
underlying mechanisms of IPRS. Cell-cell communication
indicated that endocrine cells had impacts on cancer cells
through strong MDK-SDC4 and MDK-NCL interactions, while
endothelial cells affected tumor cells mainly through COL4A2-
SDC4 and COL4A1-SDC4 interactions (Figures 11F, H). SDC4
was reported to promote cancer cell progression and
angiogenesis (36). NCL was found to play a role in promoting
neuroblastoma tumorigenesis (37). These results revealed that
endothelial cells and endocrine cells in the TIME could foster
cancer development. Besides, IGFBP4-LRP6 interactions
between endothelial cells and tumor cells (Figure 11G) might
also promote tumor formation and progression (38). More
importantly, high expression levels of HAVCR2 on immune
cells including CD8+ T cells, CD4+ T cells, and macrophages
plus high expression levels of LGALS9 on endothelial cells and
endocrine cells (Figure 11I) indicated that endothelial cells and
endocrine cells may suppress immune cells activation and induce
immunosuppressive tumor microenvironment. Therefore, the
underlying mechanisms of IPRS could be summarized as
Frontiers in Immunology | www.frontiersin.org 11
promoting tumor growth and suppressing the anti-tumor
functions of tumor-infiltrating immune cells.
DISCUSSION

Gastric cancer is considered a highly molecularly heterogeneous
disease with an extremely poor prognosis (1). Recently,
molecular subtype classification has emerged as a new strategy
for the treatment of tumors (39–41). Benefiting from the
development of next-generation sequencing and other genomic
technologies, substantial progress has been achieved in the
molecular classification of GC in the past few years (32, 42).
Four molecular subtypes, including Epstein–Barr virus-
associated, microsatellite instable, chromosomal instable, and
genomically stable carcinomas, were identified by the Cancer
Genome Atlas Research Network (40), which facilitated the
exploration of novel targeted therapeutics. In addition, a
number of potential biomarkers or signatures have been
identified or constructed based on sequencing profiles for
predicting clinical outcomes and therapeutic effects to improve
the prognosis of patients with GC (43–45). However, novel
molecular biomarkers are still urgently needed to aid in the
clinical management of patients with GC.

The tumor immune microenvironment fosters tumor
progression and metastasis and is considered a novel potential
therapeutic target in various cancers, including GC (46). Based
on accumulating evidence, the TIME of GC is very specific and
suitable for promoting the growth and expansion of cancer cells
(47). We first evaluated the levels of immune and stromal
A

B

FIGURE 10 | Validation of the aberrant expression of the five selected IDGs in biospecimens. (A) The expression levels of five selected IDGs in adjacent tissues and
gastric cancers obtained from TCGA. (B) RT-qPCR was performed using biospecimens to validate the expression pattern of five selected IDGs. *p < 0.05, **p <
0.01, ***p < 0.001.
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components and quantified them using the immune/stromal
score with the ESTIMATE algorithm to obtain insights into
the TIME of GC (21). A total of 1083 dysregulated genes were
screened and validated as robust immune-related genes via
functional annotation. Taking advantage of consensus
clustering, we characterized three clusters and two immune-
related molecular subtypes of GC based on IDGs. Estimates of
tumor-infiltrating cells using multiple algorithms all indicated
that gastric tumors in Immune_H subtype showed higher
immune response activity and a higher percentage of CD8+ T
cells, which were considered relatively “hot” tumors (11).
Surprisingly, the relatively “hot” tumors were evaluated to have
higher TIDE scores, indicating that their sensitivity to ICBs was
lower (Figures 3C, D and Figures S2F, G). Previous studies
discovered two main mechanisms of tumor immune evasion (11,
48). In some tumors, T cells are blocked by immunosuppressive
factors, leading to a low level of infiltrating T cells and
insensitivity to ICBs. Other tumors may have adequate
Frontiers in Immunology | www.frontiersin.org 12
cytotoxic T cells, but they might also exhibit a lower response
to ICBs because of the dysfunction of these T cells. Although the
fractions of CD8+ T cells in relatively “hot” tumors were high,
most of them were in a dysfunctional state, resulting in a lower
TIDE score (Figures 3C, D and Figures S2F, G). Hence, a
classification solely based on the level of infiltrating cytotoxic T
cells is too rough to guide immunotherapy, at least in patients
with gastric tumors. While the two immune-related molecular
subtypes may serve as a potential biomarker for clinical
decision-making.

However, the stratification of patients with GC into the two
identified molecular subtypes is costly since hundreds of genes must
be detected. Researchers explored a lot of popular approaches to
construct practical prognostic models for patients with other cancer
types, including immune-related lncRNA signatures (49), EMT-
related lncRNA signatures (50), m5C-related lncRNA signatures
(51), and mutation-derived genome instability-related lncRNA
signatures (52). For the convenience of application, we
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FIGURE 11 | Decipher the underlying mechanisms of how IPRS contributes to the TIME at the single-cell level. (A) UMAP plot showing sample origin after batch
effect removal. (B) UMAP plot showing the expression levels of canonical marker genes for nine cell types. (C) Violin plot showing the expression distribution of
canonical marker genes for nine cell types. (D) UMAP plot showing the distribution of nine cell types. (E) Bubble chart showing the expression patterns of genes
involved in the prognostic model. (F) Bubble chart reflecting top ligand-receptor interactions of endothelial cells and endocrine cells communicating with other cell
types. (G–I) Circle plots showing top ligand-receptor pairs in growth factor module (G), cytokine module (H), and immune checkpoint module (I) of cell-cell
communication networks. Line width positively correlates with the expression levels of ligands; arrow width positively correlates with the expression levels of
receptors.
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subsequently developed a quantified model to evaluate the risk of
individual patients with GC using as few genes as possible.
Ultimately, a panel of five IDGs was screened through variable
selection with the Cox regression model (53, 54). Genes included in
the immune-related prognostic signature all showed positive or
negative regulation of tumor progression, such as CDH10, which
encodes a type II classical cadherin of the cadherin superfamily that
was shown to be frequently mutated and associated with various
cancers, such as pancreatic ductal adenocarcinomas (55), gastric
and colorectal cancers (56), and lung squamous cell carcinomas
(57). The protein encoded by the GCG gene is glucagon, which
regulates blood glucose levels by increasing gluconeogenesis and
reducing glycolysis (58). Glucagon-induced hyperglycemia
promotes tumor growth and angiogenesis in mice (59). As shown
in the current study, patients with GC presenting high GCG
expression experienced worse clinical outcomes, agreeing with a
previous study conducted usingmice (59). It’s surprising to find that
the expression pattern of GCG in GC samples from TCGA was
inconsistent with our biospecimens. To explain this phenomenon,
we analyzed the GC samples and paired adjacent normal tissues in
TCGA, finding that a number of pairs of samples did show the
different GCG expression patterns, which may be due to the high
heterogeneity of GC. ITIH2 plays important roles in extracellular
matrix stabilization and in the prevention of tumor metastasis (60).
In addition, overexpression of the deregulated ITIH2 protein in
glioma cells not only inhibits cancer cell invasion but also suppresses
cell proliferation and promotes cell-cell adhesion (61). However,
ITIH2 seemed to be a risk factor for patients with GC in our study,
suggesting the need for more experiments. Previous studies have
revealed that CYTL1 plays opposite roles in distinct cancer types
(62). CYTL1 is considered a tumor suppressor in breast cancer by
inhibiting metabolic reprogramming (63). Meanwhile, CYTL1 was
also identified to be associated with the growth and metastasis of
neuroblastoma cells, together with its role in vessel formation (64).
MAGEA11, a cancer germline antigen, is correlated with tumor
progression, drug resistance, and poor prognosis in human cancers
(65, 66).

Integrating the five genes above and their individual coefficients,
we calculated the IPRS of patients with GC and assigned them into
high and low IPRS groups. Patients with a high IPRS experienced a
significantly shorter OS. The ROC curve analysis revealed that IPRS
was superior to traditional clinical features, with an AUC value of
0.771 at five years. Time-dependent AUC values showed that the
IPRS and TNM stage were the top two accurate predictors and that
IPRS ranked first most of the time. Univariate and multivariate Cox
analyses indicated that IPRS was the only independent risk factor
for the OS of patients with GC. In addition, we employed three
independent external cohorts to validate the reliability of the
prognostic signature and found that the IPRS still worked well.
Taken together, IPRS showed promising prognostic performance
and might represent a supplement for the TNM stage in the
management of patients with GC.

Since the IPRS originated from immune-related molecular
subtypes, we explored the relationships between the IPRS and
TIME. Correlation analyses revealed that the IPRS was positively
associated with the fractions of infiltrating naïve B cells, M2
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macrophages, and resting mast cells. In contrast, the IPRS seemed
to negatively correlate with the fractions of CD8+ T cells and
activated memory CD4+ T cells. Mature B cells are considered to
suppress tumor progression through various mechanisms, such as
secreting immunoglobulins, activating the T cell response, and killing
tumor cells directly (67), while naïve B cells have not been exposed to
antigens and perform limited functions in the TIME. Macrophages
are a plastic cell type that adopts either pro- (M1-like) or anti-
inflammatory (M2-like) phenotypes in response to signals from the
TIME (68). Existing studies show that M2-like tumor-associated
macrophages play a central role in tumor development through their
contributions to basement membrane breakdown, angiogenesis, and
immune suppression (69). Mast cells interact with infiltrated immune
cells and tumor cells through cell-to-cell interactions and promote
neovascularization and tumor invasion (70). Infiltrated CD8+ T cells
are the primary target cells of immunotherapy and are capable of
directly killing cancer cells (13). Additionally, memory CD4+ T cells
also participate in antitumor immunity (71). Considering the
correlation between the IPRS and infiltrated immune cells, the
finding that the immune-related signature performed well in risk
stratification and predicting immunotherapy sensitivity is
not surprising.

Angiogenesis and the epithelial-mesenchymal transition, two
representative hallmarks of cancers, were enriched in the high IPRS
groups. Angiogenesis is induced by tumors to satisfy the needs for
continuous nutrients and evacuating metabolic wastes (72).
Bevacizumab, a humanized anti-VEGF-A monoclonal antibody,
significantly improves the prognosis of patients with GC when
administered in combination with chemotherapy (73). The
epithelial-mesenchymal transition, a process in which epithelial
cells gain mesenchymal features, is correlated with tumor
invasion, metastasis, and resistance to drugs and apoptotic stimuli
(74, 75). These findings may explain why patients with a high IPRS
experienced poor clinical outcomes and were insensitive to
chemotherapeutic reagents. Immune checkpoints, TMB, and MSI
status are typical predictive markers of immunotherapy. IPRS
showed no correlation with checkpoints but exhibited significant
connections to TMB and MSI status, which may be responsible for
the ability of IPRS to predict the potential response to ICB.

scRNA-seq data analyses revealed that CYTL1 and GCG are
mainly expressed by endothelial cells and endocrine cells,
respectively. Tumor endothelial cells could contribute to cancer
progression by facilitating angiogenesis (76), which agrees with
our bioinformatic analyses. In addition, the results of cell-cell
communication indicated that endothelial cells and endocrine
cells in the tumor microenvironment may foster tumor cell
proliferation by targeting the SDC4 receptor while suppressing
immune cell activation through the HAVCR2 receptor. These
results further explained the underlying mechanisms of IPRS.

However, our research also had some limitations. First, our
analysis was mainly based on public retrospective datasets, and
the results require further validation by prospective studies in the
future. Second, we failed to validate whether ICB-treated patients
with different molecular subtypes of GC or IPRS benefit
differently due to the lack of expression data for patients with
GC undergoing ICB treatment.
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In summary, we identified two immune-related molecular
subtypes of GC with distinct tumor microenvironments. We also
estimated the potential responses to immunotherapy between
patients with the two molecular subtypes. In addition, we
constructed a robust and relatively streamlined prognostic gene
signature for the convenience of clinical application. Our study
may provide new insights into personalized treatment and
contribute to improving the prognosis of patients with GC.
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