
REVIEW ARTICLE

Serotonin and beyond—a tribute to Manfred Göthert (1939-2019)

H. Bönisch1
& K. B. Fink2 & B. Malinowska3 & G. J. Molderings4 & E. Schlicker1

Received: 23 February 2021 /Accepted: 29 March 2021
# The Author(s) 2021

Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg’s Arch Pharmacol as Managing Editor from 1998 to 2005,
deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on
serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and
ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular,
he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and
voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the
peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of
ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol
intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in
AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-
HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the
cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found
altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also
shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to
sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on
today’s pharmacology.
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On June 28, 2019, Professor Manfred Göthert, former
Managing Editor of Naunyn-Schmiedeberg’s Arch
Pharmacol, passed away in Hamburg, at the age of 79 years.
Manfred Göthert was born in 1939 in Braunschweig. He

started to study medicine at the University of Hamburg in
1959 and continued studies in Freiburg, Innsbruck, Vienna,
and finally Göttingen where he graduated in 1965. In
Göttingen, he also prepared his doctoral thesis and received
his MD title (Dr. med.) in 1965. In 1967, he joined the
Institute of Pharmacology of the University of Hamburg as a
postdoctoral scholar where he completed his habilitation the-
sis in 1971 and received the title “Professor” in 1976. He was
called to the University of Essen in 1978 (C3 Professor) and to
the University of Bonn in 1985 (C4 Professor) where he was
Head of the Institute of Pharmacology and Toxicology until
his retirement in 2006. Manfred Göthert served Naunyn-
Schmiedeberg’s Archives of Pharmacology as editor 1987-
1995 and 2002-2003 and as Managing Editor 1995-2002.
During his time as Managing Editor jointly with Karl Heinz
Jakobs (Aktories et al. 2019), he guided the journal very well
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and initiated its change from a journal mainly recognized in
the German Society for Experimental and Clinical
Pharmacology and Toxicology to an internationally recog-
nized platform to publish studies in experimental pharmacol-
ogy. Naunyn-Schmiedeberg’s Archives of Pharmacology is
extremely grateful to Manfred Göthert for his long-lasting
service and will dearly miss his input.

The scientific work by Manfred Göthert encompasses 271
articles covered in pubmed, which appeared during the time pe-
riod from 1968 (Göthert et al. 1968) to 2020 (Baranowska-
Kuczko et al. 2020; Göthert et al. 2020). Since the titles of no
less than 110 articles contain serotonin, 5-hydroxytryptamine, or
5-HT (encompassing eight 5-HT receptors; Tables 1 and 2), the

title of this review and the headings of its chapters (“Serotonin”
and “Beyond serotonin”) were chosen accordingly.

Serotonin

Manfred Göthert published his first papers dedicated to
serotonin in 1972 and his interest in this monoamine
lasted up to his death. His scientific activities directed
towards serotonin may be differentiated into three pe-
riods (as reflected by the headings “Early studies”,
“Presynaptic autoreceptors and heteroreceptors” and

Table 1 Metabotropic 5-HT receptor subtypes examined by Manfred Göthert

1Subtype Function See

h5-HT1A Unchanged pharmacology of the Ile28Val variant of the
human 5-HT1A receptor (Brüss et al. 1995)

“Molecular vistas” section

Impairment of signal transduction in the Arg219Leu variant
of the human 5-HT1A receptor (Brüss et al. 2005a)

“Molecular vistas” section

Major depression associated with the Arg219Leu variant of
the human 5-HT1A receptor gene (Haenisch et al. 2009)

“Molecular vistas” section

r5-HT1B Inhibitory presynaptic autoreceptor and heteroreceptor in rat
brain (Engel et al. 1986) and vena cava (Molderings et al. 1987)

“Presynaptic autoreceptors and heteroreceptors” section

h5-HT1B Inhibitory presynaptic autoreceptor in human brain
(Schlicker et al. 1997a)

“Presynaptic autoreceptors and heteroreceptors” section

Postsynaptic receptor involved in the contraction of human
temporal arteries (Verheggen et al. 2006)

“Molecular vistas” section

Reduced surface expression of the Phe124Cys variant of the
human 5-HT1B receptor (Brüss et al. 1999b)

“Molecular vistas” section

The Phe124Cys variant of the human 5-HT1B receptor shows
much lower agonist efficacy (Kiel et al. 2000)

“Molecular vistas” section

Potential role of the Phe124Cys variant in human temporal
arteries (Verheggen et al. 2006)

“Molecular vistas” section

h5-HT1D Inhibitory presynaptic heteroreceptor in human atrium
(Molderings et al. 1996a)

“Presynaptic autoreceptors and heteroreceptors” section

5-HT2A Postsynaptic receptor involved in rat vascular contraction in vitro
(Baumgarten et al. 1972b) and in situ (Göthert et al. 1973)

“Early studies” section

Postsynaptic receptor involved in the contraction of human temporal
arteries in vitro (Verheggen et al. 2006)

“Molecular vistas” section

Postsynaptic receptor involved in tachycardia in rats in situ
(Göthert et al. 1986b)

Not discussed in the text

h5-HT2C Inverse agonist-induced resensitization is more rapid at the Cys23Ser
variant than at the wild type (Walstab et al. 2011)

“Molecular vistas” section

5-HT4 Facilitatory presynaptic heteroreceptor in rabbit pulmonary artery
(Molderings et al. 2006)

“Presynaptic autoreceptors and heteroreceptors” section

5-HT4 ?
2 Inhibitory presynaptic heteroreceptor in pig coronary artery

(Molderings et al. 1989a)
“Presynaptic autoreceptors and heteroreceptors” section

h5-HT7A Agonists show lower efficacy and potency at the Pro279Leu
variant than at the wild-type receptor (Kiel et al. 2003)

“Molecular vistas” section

Agonists show much lower affinity to the Thr92Lys receptor variant
(Brüss et al. 2005b)

“Molecular vistas” section

1 h and r designate human and rat, respectively. This is e.g. interesting for the 5-HT1B and 5-HT1D receptors since the species homologs r5-HT1B and h5-
HT1B receptors markedly differ in their pharmacological properties, whereas the h5-HT1B and h5-HT1D receptors (former designations: 5-HT1Dß and 5-
HT1Dα, respectively) are very similar in this respect
2 The pharmacological properties most closely fit to the 5-HT4 receptor, which is, however, not a likely candidate since 5-HT4 receptors are linked to Gs

protein, whereas inhibitory presynaptic receptors are usually Gi/o protein-linked
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“Molecular vistas”) and roughly correspond to his time
spent in Hamburg, Essen, and Bonn, respectively.

Early studies

Manfred Göthert performed some of his early studies on 5-HT
in cooperation with the anatomist H.G. Baumgarten, who had
desc r ibed the 5 -HT neu ro tox ins 5 ,6 - and 5 ,7 -
dihydroxytryptamine (5,6- and 5,7-DHT) for the first time
(for review, see Jonsson 1980). The question was whether
the neurotoxins also affect noradrenergic neurones. In rodents,

intraperitoneally administered 5,7-DHT destroyed the post-
ganglionic sympathetic neurones with a potency comparable
to that of 6-hydroxydopamine, the standard neurotoxin for
noradrenergic neurones (Baumgarten et al. 1974), whereas
5,6-DHT showed such an effect at high doses only
(Baumgarten et al. 1972a). Subsequently, the complexity of
acute effects of 5-HT and its monohydroxylated and
dihydroxylated analogs on cardiovascular parameters was
studied in vitro, in situ, and in vivo. The compounds act (i)
directly by activation of postsynaptic 5-HT receptors (Rs)
(Table 1) and/or via effects on the noradrenergic system

Table 2 5-HT3 receptors examined by Manfred Göthert

See

Function in whole animal

Receptor involved in the emetogenic effect of cisplatin in domestic pig (Szelenyi et al. 1994) Not discussed in the text

Cocaine-induced hyperlocomotion of rats (Przegaliński et al. 2005) “Cannabinoids” section

5-HT-induced activation of Bezold-Jarisch reflex in rats (Malinowska et al. 1995, 1996) “Cannabinoids” section

Function in isolated tissue

5-HT-induced facilitation of catecholamine release in bovine adrenal medulla (Göthert et al. 1976a) “Ethanol, general anesthetics,
gabapentinoids,
and ion channels” section

5-HT-induced facilitation of noradrenaline release via presynaptic heteroreceptors in rabbit heart (Göthert
and Dührsen 1979; Göthert and Thielecke 1976)

“Early studies” and “Ethanol, general
anesthetics, gabapentinoids, and ion
channels” sections

Tools and studies at the cellular, subcellular, or molecular level

Agonist-induced 14C-guanidinium influx through the 5-HT3 receptor channel of mouse N1E-115 cells:
basic pharmacology (Bönisch et al. 1993)

“Molecular vistas” section

5-HT-induced 14C-guanidinium influx through the 5-HT3 receptor channel of mouse N1E-115 cells: effect
of anesthetics (Barann et al. 1993)

“Molecular vistas” section

5-HT-induced 14C-guanidinium influx through the 5-HT3 receptor channel of mouse N1E-115 cells: effect
of alcohols and substance P (Barann et al. 1995)

“Molecular vistas” section

5-HT-induced 14C-guanidinium influx through the 5-HT3 receptor channel of mouse N1E-115 cells: effect
of steroids (Barann et al. 1999)

“Molecular vistas” section

5-HT-induced 14C-guanidinium influx and 3H-GR65630 binding in N1E-115 cells: effect of replacement
of sodium ions (Barann et al. 2004)

“Molecular vistas” section

Patch-clamp studies at mouse 5-HT3 receptors of N1E-115 cells: basic properties and effects of pento-
barbital (Barann et al. 1997)

“Molecular vistas” section

Patch-clamp studies at mouse 5-HT3 receptors of N1E-115 cells: effect of ifenprodil (Barann et al. 1998) “Molecular vistas” section

Cloning and functional analysis (in transfected cells) of the human 5-HT3 receptor and of two splice
variants (Brüss et al. 1998)

“Molecular vistas” section

Patch-clamp and radioligand binding study in transfected HEK293 cells expressing a short splice variant of
the mouse 5-HT3 receptor (Brüss et al. 1999a)

“Molecular vistas” section

Exon-intron organization of the human 5-HT3A receptor gene (Brüss et al. 2000a) “Molecular vistas” section

Modification of 5-HT3 receptor function by co-expression of alternatively spliced isoforms (Brüss et al.
2000b)

“Molecular vistas” section

Patch-clamp studies in patches from HEK293 cells transfected with the cDNA of the human 5-HT3
receptor: effect of barbiturates (Barann et al. 2000)

“Molecular vistas” section

Patch-clamp and radioligand binding study in transfected HEK293 cells expressing the Pro391Arg variant
of the human 5-HT3 receptor (Kurzwelly et al. 2004)

“Molecular vistas” section

Patch-clamp and radioligand binding study in transfected HEK293 cells expressing the Arg344His variant
of the human 5-HT3 receptor (Combrink et al. 2009)

“Molecular vistas” section

Aequorin luminescence-based Ca2+ assay to characterize 5-HT3 receptors: establishment of the assay
(Walstab et al. 2007)

“Molecular vistas” section

Characterization of the novel human receptor subunits 5-HT3C, 5-HT3D and 5-HT3E (Niesler et al. 2007) “Molecular vistas” section
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including (ii) activation of α-adrenoceptors (α-ARs), (iii) an
indirect sympathomimetic effect, and/or (iv) activation of fa-
cilitatory presynaptic 5-HT-Rs (Baumgarten et al. 1972b;
Göthert et al. 1973; Göthert and Klupp 1978). A masterpiece
of this early phase is the paper by Göthert and Dührsen (1979)
on rabbit atria (Table 2), in which the chronotropic effect and
noradrenaline release were quantified. Infusion of 6-
hydroxytryptamine (6-HT) led to a gradual increase in heart
rate and noradrenaline release, whereas 5-HT itself and 5,7-
DHT caused rapid increases in both parameters, followed by a
fading down. Reserpine inhibited all effects, the inhibitor of
the neuronal noradrenaline transporter, desipramine, selec-
tively counteracted the effects of 6-HT, whereas the Ca2+ an-
tagonist verapamil attenuated the effects of 5-HT and 5,7-
DHT. The positive chronotropic effect of 5-HT was
desensitized by prior exposure to 5-HT itself or 5,7-DHT.
The data clearly revealed that mechanisms (iii) and (iv) are
involved, respectively.

The facilitatory presynaptic receptor in the study by Göthert
and Dührsen (1979) is a 5-HT3-R. This type of receptor can be
regarded as a hub within the scientific work of Manfred Göthert
(Table 2). One of his coworkers, interested in histamine H3-Rs,
sometimes informed him about latest results obtained and he
repeatedly responded: You mean 5-HT3? The 5-HT3-R will re-
appear in many sections of this review, e.g. under the “Molecular
vistas” section where molecular biological properties of this re-
ceptor will be considered. The reason why 5-HT3-Rs will also be
discussed in the second chapter of this review is that they play a
role beyond serotonin, i.e. the 5-HT3-R is just one example of
ligand-gated ion channels (besides nicotinic acetylcholine
(nACh) and/or N-methyl-D-aspartate (NMDA)-Rs) which are
targeted by ethanol (“Ethanol, general anesthetics,
gabapentinoids, and ion channels” section) and cannabinoids
(“Cannabinoids” section).

Presynaptic autoreceptors and heteroreceptors

Presynaptic serotonin autoreceptors

Presynaptic receptors represent a mechanism by which a
transmitter (or a locally formed mediator or a hormone) in-
hibits or increases the release of the same (autoreceptor) or of
another transmitter (heteroreceptor). In 1971, the
autoreceptors modulating the release of noradrenaline, acetyl-
choline, and γ-aminobutyric acid (GABA) from their respec-
tive neurones have been described for the first time (reviewed
in Starke et al. 1989). It took until 1979 before the serotonin
autoreceptor was identified, by the groups of Manfred
Göthert in Essen (Göthert and Weinheimer 1979) and M.
Raiteri in Genova (Cerrito and Raiteri 1979). Both groups
examined the depolarization-induced release of tritium from
brain preparations preloaded with 3H-serotonin. Göthert and
Weinheimer (1979) used rat brain cortex slices, whereas

Cerrito and Raiteri (1979) performed their study on synapto-
somes (i.e., isolated nerve endings) from rat hypothalamus.
In subsequent studies, Manfred Göthert, who was support-
ed by E. Schlicker (since 1980) and K. Fink (since 1986)
(see Fig. 1), further characterized the 5-HT autoreceptor,
particularly the mechanism involved in its action (Göthert
1980a). In addition, a series of drug tools including ago-
nists (Göthert and Schlicker 1983; Göthert et al. 1987;
Schlicker et al. 1992a), antagonists (Schlicker and
Göthert 1981; Schlicker et al. 1985a), and a 5-HT uptake
inhibitor (important for performing superfusion studies;
Classen et al. 1984) was examined. The autoreceptor re-
tains its function in spontaneously hypertensive (SHR;
Schlicker et al. 1988a) and even in senescent rats
(Schlicker et al. 1989a). The 5-HT autoreceptor could also
be identified in the human cerebral cortex (Schlicker et al.
1985b) and hippocampus (Schlicker et al. 1996a) and is
likely to be involved in the pathogenesis of mood disorders
and in the effect of antidepressant drugs (Groß et al. 1987;
Starke et al. 1989); it might be a target for antihypertensive
drugs (reviewed in Starke et al. 1989).

The major scientific topic in the research on the 5-HT
autoreceptor was the determination of the 5-HT subtype.
This task proved to be very exciting since 5-HT-R classifi-
cation was still in its beginning at that time. Gaddum and
Picarelli (1957) had proposed D-Rs and M-Rs on the basis
of organ bath studies in the guinea-pig ileum. In the se-
venties, the radioligand binding technique was developed
and allowed the rapid determination of receptor affinities of
huge amounts of drugs. Peroutka and Snyder (1979) sug-
gested 5-HT1-Rs and 5-HT2-Rs on the basis of their exper-
iments with 3H-5-HT and 3H-spiroperidol, respectively.
Both nomenclatures show partial overlap only, the D and
the 5-HT2-R being very similar. To have a unified nomen-
clature, the D-Rs and M-Rs were re-named 5-HT2 and 5-
HT3, respectively (Bradley et al. 1986).

To determine the pharmacological properties of the 5-HT
autoreceptor in the rat brain, Manfred Göthert cooperated with
G. Engel and D. Hoyer from Sandoz (now Novartis) in Basle,
who contributed radioligand binding studies (see Fig. 2).
Comparison of the potencies of agonists and antagonists at
the 5-HT autoreceptor revealed identical properties with their
affinities at 5-HT1 sites labeled with 3H-5-HT as opposed to
their potencies at functional 5-HT2-Rs and 5-HT3-Rs (Engel
et al. 1983). Since 5-HT1 sites are not homogeneous (Engel
et al. 1983), its two components, termed 5-HT1A and 5-HT1B,
were labeled by 3H-8-hydroxy-2-(di-n-propylamino)tetralin
(3H-8-OH-DPAT) and 125I-cyanopindolol (in the presence of
isoprenaline), respectively, and the autoreceptor could be sub-
classified as 5-HT1B (Engel et al. 1986; Table 1). By the way,
the latter article is the most frequently quoted original paper by
Manfred Göthert (745 citations; Google Scholar, accessed on
March 26, 2021).
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Subsequent research revealed that 3H-5-HT binds to a third 5-
HT1-R subtype, termed 5-HT1D, in the bovine brain (reviewed
by Peroutka 1988). Since the 5-HT1B-Rwas found in the brain of
rodents but not of other species (reviewed by Peroutka 1988), the
pig brain was chosen as a model for the human brain (Fink et al.
1988). An additional cooperation study with D. Hoyer, based on
superfusion and binding studies and a biochemical 5-HT1D-R
model (inhibition of cAMP formation), revealed that the 5-HT
autoreceptor in the pig brain can be classified as 5-HT1D-R
(Schlicker et al. 1989b; Table 1).

With the advent of molecular biological methods, it be-
came evident that 5-HT1D-Rs are heterogeneous; the two
sub-subtypes were originally termed 5-HT1Dα and 5-HT1Dβ,
respectively (Hoyer et al. 1994). Using ketanserin, which has
a higher affinity for the former than for the latter receptor
(Hoyer et al. 1994), the autoreceptor in not only the guinea-
pig cerebral cortex (Bühlen et al. 1996), which served as a
model for the human brain, but also in the human cerebral
cortex itself could be classified as 5-HT1Dβ-R (Fink et al.
1995a; Table 1).

Comparison of the amino acid sequence of the human 5-
HT1Dα-R and 5-HT1Dβ-R revealed an overall identity of 63%
only although the pharmacological properties of both recep-
tors are very similar. On the other hand, the amino acid se-
quence of the human 5-HT1Dβ-R shows an overall identity of
93% with that of the rat 5-HT1B-R; this is in marked contrast
to the pronounced difference in the pharmacological proper-
ties (Price et al. 1997). Interesting enough, the exchange of
one amino acid (Thr355Asn) conferred the pharmacological
properties of the rat 5-HT1B to the human 5-HT1Dβ-R
(Oksenberg et al. 1992). In other words, the human 5-
HT1Dβ-R is the species homolog of the rat 5-HT1B-R and
consequently was re-named h5-HT1B-R, whereas the human
5-HT1Dα-R was re-termed h5-HT1D-R (Hartig et al. 1996). In
cooperation with D.N. Middlemiss and G.W. Price from
SmithKline Beecham (now GlaxoSmithKline) in Harlow,
who contributed two selective h5-HT1B-R antagonists (SB-
216641, SB-236057) and one selective h5-HT1D-R antagonist
(BRL-15572), the final proof that the 5-HT autoreceptor in the
human (and guinea-pig) cerebral cortex is h5-HT1B was pos-
sible (Schlicker et al. 1997a; Middlemiss et al. 1999; Table 1).

The 5-HT5A-R, which was described for the first time in
1992/3, is Gi/o protein-coupled, like the 5-HT1-R subtypes
(reviewed in Göthert et al. 2020). The possibility that it may
serve as an additional inhibitory 5-HT autoreceptor was con-
sidered in a cooperation project with G. Groß from Abbott in
Ludwigshafen. However, a 5-HT autoreceptor can be

Fig. 1 Manfred Göthert and his
colleagues of the Institute of
Pharmacology and Toxicology,
University of Bonn. From left:
Martin Barann (inset), Dieter
Abbo Kalbhen, Karlfried Karzel,
Ivar von Kügelgen, Kurt Racké,
Gerhard J. Molderings, Manfred
Göthert, Eberhard Schlicker,
Michael Brüss, Klaus Fink,
Markus Kathmann, and Heinz
Bönisch. The photograph was
taken on October 29, 2002 in
front of the main door of the old
institute building in Bonn-
Poppelsdorf, Reuterstr. 2b

Fig. 2 Manfred Göthert and some colleagues. From left, first line: Jorge
Gonçalves, Manfred Göthert, and Daniel Moura; second line: Mark
Geyer, Daniel Hoyer, Ewan Mylecharane, David Nelson, Stephanie
Watts, and Richard Green. The photograph was taken on occasion of
the 1st EPHAR Serotonin Satellite Meeting in Porto (Portugal) in
July 2004 organized by the International Society for Serotonin
Research (formerly The Serotonin Club). Note that Moura (Molderings
et al. 1993) and Hoyer (e.g., Engel et al. 1986) have cooperated with
Manfred Göthert
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excluded at least for the mouse brain cortex and hippocampus
since the highly selective 5-HT5A-R antagonist A-763079 did
not increase 5-HT release nor did it shift the concentration-
response curve of the unselective 5-HT-R agonist 5-CT to the
right (Drescher et al. 2007).

Presynaptic serotonin heteroreceptors on noradrenergic
neurones

The question whether 5-HT-Rs also serve as heteroreceptors
on noradrenergic neurones has been studied as well and re-
vealed different results in central and peripheral neurones. In
rodent brain cortex slices, neither inhibitory (Göthert and
Schlicker 1991) nor facilitatory (Schlicker et al. 1994a) 5-
HT-Rs could be identified. By contrast, both inhibitory and
facilitatory presynaptic 5-HT-Rs could be identified on sym-
pathetic neurones innervating cardiovascular tissues. The fa-
cilitatory 5-HT3-Rs in the rabbit heart have already been
discussed above (Göthert and Dührsen 1979).

Much emphasis was put on inhibitory presynaptic 5-HT-
Rs. Although such a receptor had already been described in
canine blood vessels (McGrath 1977), several new locations
(human atrial appendages and saphenous vein; porcine coro-
nary artery; rabbit pulmonary artery; rat vena cava) have been
identified by Manfred Göthert; he was supported in this re-
spect by G.J. Molderings (see Fig. 1) since 1986. The possi-
bility that inhibitory 5-HT-Rs on the sympathetic neurones in
the heart and in resistance vessels (identified in the pithed rat
preparation; Göthert et al. 1986b) are involved in antihyper-
tensive drugs targeting the 5-HT system had to be considered
and again precise determination of the 5-HT-R subtype ap-
peared mandatory. Presynaptic receptors were examined in
superfused tissues preloaded with 3H-noradrenaline and the
potencies of agonists and antagonists were, at least in some
of the studies, correlated with their affinities in radioligand
studies with native or recombinant 5-HT-Rs. The 5-HT-R in
the rat vena cava (Göthert et al. 1986b) could be identified as
r5-HT1B-R (Molderings et al. 1987; Table 1) and therefore
resembles the autoreceptor in the brain of this species (see
above Engel et al. 1986). On the other hand, the 5-HT-R in
human atrial appendages (Molderings et al. 1996a; Schlicker
et al. 1997a) and most probably also its counterpart in the
human saphenous vein (Göthert et al. 1986a; Molderings
et al. 1990) are h5-HT1D-Rs (Table 1); thus, they differ from
the central autoreceptor, which is a h5-HT1B-R (see above
Schlicker et al. 1997a; Middlemiss et al. 1999). One might
have expected that the 5-HT-R in the pig coronary artery
closely resembles the h5-HT1D-R but surprisingly it could
not be ascribed to any of the 5-HT1-R subtypes and in phar-
macological terms most closely resembles the 5-HT4-R
(Molderings et al. 1989a; Table 1). Finally, the situation is
particularly complicated in the rabbit pulmonary artery
(Molderings et al. 2006). An inhibitory effect on

noradrenaline release occurs indirectly via 5-HT4-Rs and di-
rectly via 5-HT1-Rs (Table 1). The 5-HT4-Rs are located pre-
synaptically on cholinergic neurones where they increase ace-
tylcholine release; acetylcholine in turn activates inhibitory
muscarinic acetylcholine (mACh)-Rs on the postganglionic
sympathetic neurones. By contrast, the inhibitory 5-HT1B-Rs
or 5-HT1D-Rs (subtype not determined) are located on the
sympathetic neurones themselves. The latter receptors de-
crease noradrenaline release in the presence of the mACh-R
antagonist atropine only. The likely reason is that mACh ac-
tivation abrogates the 5-HT1B/D-R-mediated effect (an analo-
gous type of receptor interaction has been studied for the α2-
AR and the 5-HT1B-R in the rat vena cava; see next
paragraph).

The inhibitory effects mediated via presynaptic 5-HT-Rs
were less pronounced than the α2-autoreceptor-mediated ef-
fects and sometimes were totally missing (human pulmonary
artery; Freeman et al. 1981). This phenomenon, which casts
some doubt on the physiological relevance of the presynaptic
inhibitory 5-HT-Rs, is, however, at least partially related to the
experimental conditions. Usually, the electrical stimulation
used to evoke quasi-physiological 3H-noradrenaline release
is extending over a time period of several minutes and for this
reason, released noradrenaline can accumulate in the biophase
of the axon terminals of the postganglionic sympathetic
neurones; this phenomenon is even aggravated since the ex-
periments are carried out in the presence of an inhibitor of
noradrenaline re-uptake. Molderings and Göthert (1990)
showed in the rat vena cava that the extent of the 5-HT-R-
related inhibition of noradrenaline release was attenuated by
α2-AR agonists and increased by antagonists of this receptor
suggesting a receptor interaction between the α2-auto- and 5-
HT1B-heteroreceptor (reviewed in Schlicker and Göthert
1998). Since α2-AR agonists and antagonists decrease and
increase noradrenaline release, the possibility had to be con-
sidered that their modulatory effects on the 5-HT-R-related
inhibition are related to their effects on noradrenaline release
per se rather than to their effects on the α2-ARs. This possi-
bility, however, could be excluded since the alteration of the
inhibitory effect of 5-HT also occurred when noradrenaline
release was adjusted by modification of the stimulation pa-
rameters. The study by Molderings and Göthert (1990) also
explains findings in the rat vena cava that the extent of inhi-
bition elicited by the 5-HT1-R agonist RU 24969 in the pres-
ence of an α-AR antagonist was much higher than the inhib-
itory effect of 5-HT in its absence (Schlicker et al. 1988d).

Presynaptic heteroreceptors on serotoninergic neurones

Finally, many efforts were dedicated to the identification of
presynaptic heteroreceptors on the serotoninergic neurones
in the brain. Manfred Göthert has examined inhibitory (Fig.
3a) and facilitatory heteroreceptors (Fig. 3b) in the rat brain
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cortex. In cortex slices, the excitatory amino acid glutamate
evoked 5-HT release; its facilitatory effect was mimicked by
agonists of the three types of ionotropic glutamate-Rs. The
facilitatory effect of each of them was markedly inhibited by
tetrodotoxin (which inhibits propagation of action potentials),
suggesting that part of the AMPA-Rs, kainate-Rs, and
NMDA-Rs are located presynaptically on the serotoninergic
nerve endings (Fink et al. 1995b; Fig. 3b). Inhibitory presyn-
aptic receptors were identified in slices and/or synaptosomes
in which depolarization-induced 5-HT release was studied
(Fig. 3a); the presynaptic receptors for histamine (Schlicker
et al. 1988b), neuropeptide Y (Michel et al. 1990), and pros-
taglandins of the E series (Schlicker et al. 1987b) were iden-
tified for the first time. Although evidence for the existence of
α-ARs on serotoninergic neurones has been presented by oth-
er authors before (Starke and Montel 1973; Farnebo and
Hamberger 1974), final proof came from the study by
Göthert and Huth (1980), in which the interaction of noradren-
aline with an α-AR antagonist was studied. This receptor (i)
belongs to the α2-AR subtype (Göthert et al. 1981a); (ii) may
be subject to an endogenous tone, i.e. is also activated by
endogenous noradrenaline (Göthert and Huth 1980;
Schlicker et al. 1982; Feuerstein et al. 1993) although the
evidence is not unequivocal (Göthert et al. 1981a; Schlicker
et al. 1983); (iii) may be inhibitorily coupled to adenylate
cyclase (Schlicker et al. 1987a); and (iv) also occurs in the
human brain (shown in cooperation with the group of M.
Raiteri; Raiteri et al. 1990). The α2-AR-mediated effect was
increased when rats had been pretreated with 6-
hydroxydopamine (to destroy the noradrenergic neurones) 3

weeks before the experiments and decreased when the animals
had received desipramine in the drinking water for 3–4 weeks
(Schlicker et al. 1982; Feuerstein et al. 1993). The latter find-
ing might partially explain the delayed effect obtained with
antidepressant drugs.

Molecular vistas

Basic properties of ligand-gated 5-HT3 receptors

When in 1988 H. Bönisch moved from the University of
Würzburg to the University of Bonn (to the Institute of
Pharmacology and Toxicology, headed by Manfred Göthert
since 1985; see Fig. 1), he introduced two important tech-
niques, which led to a lively collaboration between his group
(including M. Brüss and M. Barann) and Manfred Göthert.
The culture of human or animal cell lines natively expressing
a receptor of interest and, much more important, the establish-
ment of molecular biology methods (such as cDNA cloning,
site-directed mutagenesis, transfection of cells, and expression
of receptors) enabled studies at the cellular and molecular
level.

The first common project with Manfred Göthert was the
characterization of 5-HT3-Rs in vitro (at the cellular or sub-
cellular level). Altogether we used four different techniques to
examine this receptor in rodent cell lines natively expressing
the 5-HT3-R or in cells transfected with the cDNA of the
mouse or human receptor, namely by measuring (i) the 5-
HT-induced influx of a radioactively labeled cation through
the cation channel of the receptor (Bönisch et al. 1993), (ii) the
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Fig. 3 Inhibitory and facilitatory presynaptic heteroreceptors on
serotoninergic neurones in rat brain cortex slices identified by Manfred
Göthert. a The inhibitory effect of five transmitters or mediators leading
to inhibition of the electrically (3 Hz) evoked 3H-5-HT release (the
receptors are given in parentheses). The curves were re-drawn from
Schlicker et al. (1991)—neuropeptide Y; Schlicker et al. (1987b)—pros-
taglandin E2; Göthert et al. (1983a)—noradrenaline; Schlicker et al.

(1988b)—histamine; Schlicker et al. (1984a)—GABA. b Glutamate
and the prototypical agonists at the three ionotropic glutamate receptors
(AMPA, kainate, NMDA) facilitate 3H-5-HT release. Re-drawn from
Fink et al. (1995b). In both panels, SEM values and statistics are not
shown. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
GABA, γ-aminobutyric acid; NMDA, N-methyl-D-aspartate
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binding of a radioligand to the receptor protein (Barann et al.
2004), (iii) 5-HT-induced membrane potential changes in
patches of cells by means of patch-clamp techniques
(Barann et al. 1997), and (iv) aequorin bioluminescence
changes caused by the 5-HT-induced Ca2+ influx in
suspended cells expressing the human 5-HT3-R (Walstab
et al. 2007). An overview of studies of M. Göthert at 5-HT3-
Rs is given in Table 2.

Basic properties of 5-HT3-Rs were initially examined at
N1E-115 mouse neuroblastoma cells which natively express
this receptor (Lummis et al. 1990). After Reiser and
Hamprecht (1989) had shown that 14C-guanidinium is
flowing through the open channel of 5-HT3-Rs (expressed in
neuroblastoma x glioma hybrid cells), Manfred Göthert, in a
collaboration with H. Bönisch (and his group), used this meth-
od to examine 5-HT3-Rs in more detail in mouse neuroblas-
tomaN1E-115 cells (Bönisch et al. 1993).We could show that
5-HT and other 5-HT3-R agonists (e.g., phenylbiguanide, 2-
methyl-5-HT) cause a concentration-dependent influx of this
radioligand which, in contrast to the influx elicited by verat-
ridine, was not inhibited by tetrodotoxin or 5-HT1-R, 5-HT2-R
or 5-HT4-R antagonists but inhibited by ondansetron and oth-
er selective 5-HT3-R antagonists. All examined 5-HT3-R ag-
onists caused bell-shaped concentration-response curves with
slope factors of the ascending part of about 2, indicating rapid
desensitization and positive cooperativity. The 5-HT-induced
influx of the organic cation 14C-guanidinium was increased in
the absence of Ca2+ indicating that Ca2+ accelerates desensi-
tization kinetics. The 5-HT effect was potentiated by the
neurokinin substance P and this potentiation was inhibited
by ondansetron. This phenomenon had also been shown be-
fore by Reiser and Hamprecht (1989), and later Emerit et al.
(1993) could demonstrate that in mouse NG108-15 cells, this
potentiating effect was even more pronounced with substance
P derivatives which are inactive at the various neurokinin-R
classes. We additionally showed that substance P also poten-
tiates the 5-HT3-R-mediated Bezold-Jarisch reflex
(Malinowska et al. 1996; see the “Cannabinoids” section be-
low and Table 2). In this study, Manfred Göthert concluded
that substance P acts at an allosteric modulatory site of the 5-
HT3-R, thus, producing an increase in cation flux through this
channel, e.g. by affecting its open frequency or duration, with-
out necessarily influencing its ligand recognition (orthosteric)
site. We later identified ethanol (and other alcohols) as further
positive allosteric modulators at 5-HT3-Rs of N1E-115 cells
(Barann et al. 1995). Ethanol not only increased the 5-HT-
induced cation influx (without affecting the 5-HT-induced
inhibition of 3H-GR65630 binding) but it also abolished the
descending part of the concentration-response curve for 5-
HT3. The potentiating effect of alcohols (n-alkanols) showed
the following rank order: methanol < ethanol < n-propanol,
i.e., it increased with their lipophilicity. Interestingly, when in
the presence of substance P the 5-HT-induced cation influx

was already enhanced, the ability of ethanol to increase the 5-
HT-induced influx was considerably diminished. Thus, alco-
hols (n-alkanols) by interacting with a modulatory hydropho-
bic region of the 5-HT3-Rmay either stabilize the open state or
decrease desensitization as proposed by Davies (2011) for
further positive allosteric modulators of the 5-HT3-R.

In N1E-115 mouse neuroblastoma cells, we studied the
influence of sodium ion substitutes on the 5-HT-induced flux
of 14C-guanidinium through the cation channel of the 5-HT3-
R and on the competition of 5-HT with binding of the selec-
tive 5-HT3-R antagonist 3H-GR 65630 (Barann et al. 2004).
Replacement of sodium by the organic cation choline caused
both a rightward shift of the 5-HT concentration-response
curve and an increase in the maximum effect of 5-HT, where-
as replacement of Na+ by Li+ had no effect on the potency and
maximal response of 5-HT. Replacement by Tris
(tris(hydroxymethyl)aminomethane), tetramethylammonium
(TMA), or N-methyl-D-glucamine (NMDG) caused an in-
crease in the maximal response to 5-HT similar to that caused
by choline. The potency of 5-HTwas only slightly reduced by
Tris, to a high degree decreased by TMA and choline, but not
influenced by NMDG. The potency of 5-HT in inhibiting 3H-
GR65630 binding to intact cells was much lower when sodi-
um was replaced by choline, but remained unchanged after
replacement by NMDG. These results indicate that NMDG, in
contrast to choline, is a suitable sodium substituent for studies
of 5-HT-evoked 14C-guanidinium flux through 5-HT3-R
channels since it increases the signal-to-noise ratio without
interfering with 5-HT binding (Barann et al. 2004). The results
also suggest that choline might compete with 5-HT for bind-
ing to the 5-HT3-R and that the increased maximum response
may be partly due to a choline-mediated delay of the 5-HT-
induced desensitization.

Using the same techniques and cells, we examined several
pharmacologically active compounds for their affinity to this
receptor. In N1E-115 cells (and in rat brain cortical mem-
branes), anpirtoline, a highly potent 5-HT1B-R agonist, be-
haved as 5-HT3-R antagonist (Göthert et al. 1995a). Both
the 5-HT3-R channel and the voltage-gated sodium channel
of N1E-115 cells were shown to be targets of steroids; how-
ever, their interaction is obviously due to a non-specific hy-
drophobic effect (Barann et al. 1999). Furthermore,
imidazolines (e.g., idazoxane, cirazoline, or clonidine) as well
as some σ ligands (e.g., ifenprodil) showed low inhibitory
potencies at 5-HT3-Rs and it was suggested that they may
exert their inhibitory effect on cation influx through the 5-
HT3-R channel, at least in part, by interacting with σ2 binding
sites (Molderings et al. 1996b).

By the installation of a patch-clamp workstation in his in-
stitute, Manfred Göthert initiated the establishment of the
patch-clamp technique which finally was introduced by M.
Barann. In superfused outside-out patches of N1E-115 cells,
we examined further basic properties of the mouse 5-HT3-Rs
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in detail (Barann et al. 1997). We could show that at negative
membrane potentials, 5-HT caused concentration-dependent
inward currents which were characterized by a Hill coefficient
of 1.8 and a peak current of about 21 pA at a high concentra-
tion of 5-HT (30 μM). We furthermore demonstrated that the
currents induced by 30 μM 5-HT (for 2 s) were characterized
by inward rectification, a monophasic onset, and a
monophasic decay (desensitization), and that after a short
washout period, fully desensitized patches completely recov-
ered (Barann et al. 1997). In this study, we also demonstrated
that pentobarbital causes inhibition of the 5-HT3-R through an
open channel block. 5-HT-induced influx of 14C-guanidinium
as well as patch-clamp techniques were used to characterize
the effects of further anesthetics at the cation channel of the 5-
HT3-R. By measuring the influx of the organic cation 14C-
guanidinium induced by either veratridine or 5-HT, the influ-
ence of local and general anesthetics on cation influx through
the fast, voltage-dependent sodium channel and through the 5-
HT3-R cation channel was studied in N1E-115 mouse neuro-
blastoma cells (Barann et al. 1993). The 14C-guanidinium in-
flux through both channels was inhibited by local and general
anesthetics. With the exception of procaine and cocaine,
which were equipotent at both channels, the local anesthetics
were 4.4-fold (lidocaine) to 25-fold (tetracaine) more potent at
the fast sodium channel than at the 5-HT3-R channel. The rank
order of potency for general anesthetics was clearly different
at the two channels. With the exception of ketamine, which
was about equipotent at both channels, the general anesthetics
were between 2.2 and 8.1-fold more potent at the 5-HT3-R
channel than at the fast sodium channel and only at the fast
sodium channels, their inhibitory potency was correlated with
their lipophilicity. Thus, the relative high inhibitory potencies
of the general anesthetics argue in favor of a specific interac-
tion with the 5-HT3-R channel (Barann et al. 1993). Using the
patch-clamp technique, we re-examined the abovementioned
effects of ifenprodil (Molderings et al. 1996b) and we could
show that it inhibited the peak currents evoked by 5-HT and
that it also produced a concentration-dependent increase of the
onset time constant (τON) of the 5-HT-induced currents and
that ifenprodil accelerated current inactivation as reflected by
a decrease of the current inactivation time constant (τOFF)
(Barann et al. 1998).

Molecular biology of 5-HT3 receptors

In 1991, the first findings on the molecular biology of 5-HT3-
Rs have been published (Maricq et al. 1991). Maricq and
coworkers had cloned this receptor from mouse DNA and it
was termed as 5-HT3A; thereafter, the human 5-HT3A cDNA
was cloned by Miyake et al. (1995) and Belelli et al. (1995).
All cloned 5-HT3A-R cDNAs show a high degree of amino
acid identities of more than 80%. Hydrophobicity analysis of
the deduced amino acid sequences predicts the receptor

subunits to be integral membrane proteins with a large extra-
cellular N-terminus, 4 transmembrane domains (TMs), a large
intracellular loop between TM3 and TM4, and a short extra-
cellular C-terminus (see Fig. 4). The ligand-binding domain is
proposed at the N-terminal part (containing a Cys-loop, i.e. a
cystine pair separated by 13 amino acids, conserved among all
ligand-gated ion channels), and TM2 is the putative channel
pore-forming domain of this homopentameric ion channel
which is closely related to the α-subunit of the nACh-R
(Ortells and Lunt 1995). When we cloned the human cDNA
of the 5-HT3A-R from human amygdala, we amplified three
cDNAs of different length, one corresponded to the already
known cDNA, whereas the other two were a shorter and a
longer alternative splice product (Brüss et al. 1998), and only
the longer isoform with an insertion of 96 base pairs leading to
the insertion of 32 amino acids into the extracellular loop
between TM2 and TM3 was able to form an active receptor
protein (Brüss et al. 1998). Both splice variants did not corre-
spond to known mouse isoforms (Jackson and Yakel 1995).
We cloned the short splice variant of the mouse 5-HT3-R
(Hope et al. 1993), expressed the receptor protein in human
embryonic kidney (HEK293) cells, and compared its pharma-
cological properties with those of the native mouse 5-HT3-R
in N1E-115 neuroblastoma cells by means of 3H-GR65630
binding and 5-HT-induced 14C-guanidinium influx measure-
ments (Brüss et al. 1999a). The differences between the two
isoforms were, however, only marginal and may be due to
cell-specific post-translational modifications of the receptor
protein in the two cell types (Brüss et al. 1999a). To identify
potential alternative exons, we sequenced all exons and in-
trons, the length and positions of all introns of the coding
region,and about 19 kb of the 5′-noncoding region of the hu-
man 5-HT3A-R gene (Brüss et al. 2000a). The human gene
stretches over about 14.5 kb. From three published human 5-
HT3A-R cDNAs, we could confirm only that reported by
Miyake et al. (1995); the coding region of the human 5-
HT3A-R gene is separated by eight introns located at positions
nearly identical to those of the murine counterpart (Werner
et al. 1994). The length of most introns differs markedly from
those of the murine counterpart. Exon 1 encodes the mem-
brane translocation, exons 2 to 6 encode the extracellular N-
terminus, exon 7 encodes TM1, TM2, and the extracellular
loop between TM2 and TM3, exon 8 codes for TM3, and exon
9 for the large intracellular loop between TM3 and TM4 as
well as TM4 and the extracellular C-terminus (see Fig. 4).

In outside-out patches of stably transfected HEK293 cells
expressing the recombinant human 5-HT3A-R, we character-
ized basic properties of this receptor and we compared the
effects of the barbiturate anesthetics methohexital and pento-
barbital (which differ in their lipophilicity) on this receptor
channel (Barann et al. 2000). Both anesthetics inhibited the
5-HT response with about equal potency but they clearly dif-
fered with respect to the kinetics of their effects indicating that
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lipophilicity may affect their access to an amphipathic site of
action via both a hydrophilic and a hydrophobic pathway.

Of major scientific interest for Manfred Göthert was the ex-
ploration of functional consequences of genetic variations of
human 5-HT-Rs. Concerning the human 5-HT3A-R, he was in-
volved in the pharmacological characterization of two naturally
occurring variants of the human 5-HT3A-R, a Pro391Arg and an
Arg344His variant. Both had been detected in schizophrenic
patients when the human 5-HT3A-R gene was screened for var-
iations in schizophrenic patients and patients suffering from bi-
polar affective disorder (Niesler et al. 2001). Both missense mu-
tations are located in the second intracellular loop of the receptor
protein (see Fig. 4). The variant Pro391Arg receptor was exam-
ined in comparison to the wild-type form (each expressed in
stably transfected HEK293 cells). In binding experiments with
3H-GR65630, the variant receptor exhibited no changes in recep-
tor densities or affinities to diverse 5-HT3-R agonists and antag-
onists, and also the patch-clamp experiments showed no differ-
ences between the wild-type and variant receptor (Kurzwelly
et al. 2004). Combrink et al. (2009) compared the other receptor
variant (Arg344His) in transfected HEK293 cells and in compar-
isonwith thewild-type receptor. This comparisonwas performed
using 3H-GR65630 binding and patch-clamp analyses including
technically demanding single-channel analyses. In addition, 5-
HT-induced Ca2+ currents through the 5-HT3A-R channel were
measured by an aequorin luminescence-based Ca2+ assay which
previously had been established in our group (Walstab et al.

2007). Compared to the wild-type receptor, the density of the
variant receptor was decreased by nearly 50%, whereas the Ca2+

influx was unchanged. While the radioligand experiments re-
vealed no differences for several agonists and antagonists be-
tween wild-type and variant receptor, single-channel analysis
suggested an increase in channel open time; this increase appears
to compensate for the reduction in variant receptor density.

In 1999, a further 5-HT3-R subunit, the 5-HT3B-R, was
identified (Davies et al. 1999; Dubin et al. 1999), which, in
contrast to the 5-HT3A-R, is not able to form a functional
homopentameric receptor but which was able to cause, when
co-expressed with the 5-HT3A subunit, subtle modifications in
5-HT3-R agonist and antagonist effects; in addition,
heteromeric assemblies of human 5-HT3A and 5-HT3B sub-
units display larger single-channel conductance than
homopentameric assemblies of 5-HT3A subunits (Dubin
et al. 1999). Shortly after this report, we described a human
short, truncated (5-HT3AT) and a long (5-HT3AL) splice vari-
ant of the human 5-HT3A-R subunit (Brüss et al. 2000b). The
protein of the short isoform consists of only 238 amino acids
with a single transmembrane domain (TM1), whereas the long
isoform contains 32 additional amino acids within the extra-
cellular loop between TM2 and TM3 (see Fig. 4). Both splice
variants are co-expressed in the amygdala and hippocampus,
whereas in the placenta, only the short splice variant is co-
expressed (Brüss et al. 2000b). When expressed in transfected
HEK293 cells, both splice variants are not able to form a

Fig. 4 a Genomic organization of the human 5-HT3A receptor gene
(HTR3A) with exons (indicated by numbers), localization of the Cys-
loop (cystein bond within the N-terminal region) and the four transmem-
brane regions (TM1-TM4), and the organization of the long (HTR3AL)
and of the truncated (HTR3AT) splice variant. b The corresponding

protein structure and the two naturally occurring 5-HT3A receptor variants
Arg344His and Pro391Arg due to single-nucleotide polymorphisms of
the HTR3A gene. c The protein structures of the human 5-HT3 receptor
subtypes. UTR, untranslated region. All these variants and subtypes have
been examined by Manfred Göthert (see text)
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functional receptor, but modify 5-HT responses at heteromeric
5-HT3A-Rs. Heteromeric assemblies of 5-HT3A and the 5-
HT3AT subunit exhibit much larger 5-HT-induced cation
fluxes than homomeric 5-HT3A-Rs, whereas heteromeric re-
ceptors containing the long splice variant display reduced cat-
ion fluxes (Brüss et al. 2000b). Thus, tissue-selective expres-
sion of 5-HT3A splice variantsmay contribute to the functional
diversity of this receptor.

Using the aequorin luminescence-based Ca2+ assay, which
had been shown to be a highly sensitive method for functional
characterization of 5-HT3-Rs and which allows high-
throughput screening (Walstab et al. 2007), we characterized
three novel human 5-HT3-R subunits, 5-HT3C, 5-HT3D, and 5-
HT3E (Niesler et al. 2007). The proteins of these novel genes,
which had been isolated by Niesler et al. (2003), show the
following structures: 5-HT3C and 5-HT3E present a huge N-
terminal extracellular segment containing a cysteine loop, four
hydrophobic TMs, a large intracellular loop between TM3 and
TM4, and an extracellular C-terminus (see Fig. 4). The archi-
tecture of the 5-HT3D subunit (Fig. 4) is rather different, since
it lacks the signal sequence and the large N-terminal region,
including the ligand-binding site, indicating that it may not
form a functional ion channel. Interestingly, the genes of the
5-HT3D and 5-HT3E subunits are predominantly or even ex-
clusively (5-HT3E) expressed in the gastrointestinal tract
(Niesler et al. 2003). Using immunofluorescence and immu-
noprecipitation of recombinantly expressed proteins, we ex-
plored whether they are able to form 5-HT3-Rs. Radioligand
binding experiments and aequorin luminescence-based Ca2+

assays were performed to reveal whether they modulate 5-
HT3-R function. We found that each of the respective candi-
dates coassembled with 5-HT3A. The functional experiments
revealed that the 5-HT3C, 5-HT3D, and 5-HT3E subunits alone
cannot form functional receptors. Co-expressionwith 5-HT3A,
however, results in the formation of functional heteromeric 5-
HT3-Rs, which exhibit quantitatively different properties
compared with homomeric 5-HT3A-Rs (Niesler et al. 2007).
An excellent review on genetics, molecular biology, physiol-
ogy, and pharmacology of 5-HT3-Rs has been published by
Walstab et al. (2010). It should be noted that M. Brüss (to-
gether with M. Göthert and H. Bönisch) had an intense col-
laboration on 5-HT3-Rs with B. Niesler (Department of
HumanGenetics, University of Heidelberg). The PhD student,
J. Walstab, involved in this project was later working as post-
doc in Niesler’s laboratory when this collaboration between
the universities of Bonn and Heidelberg was continued after
the sudden and unexpected death of M. Brüss.

Variants of metabotropic 5-HT receptors

Within a collaborative research center (SFB 400: Molecular
Basis of CNS Disorders) at the University of Bonn, Manfred
Göthert was involved in the characterization of naturally

occurring variants of the human metabotropic 5-HT1A-Rs, 5-
HT1B-Rs, 5-HT2C-Rs, and 5-HT7-Rs. Genetic variations in 5-
HT-Rs might contribute not only to genetics of diseases but
also to changes in pharmacological properties of these recep-
tors (for a short review, see Göthert et al. 1998). Table 1 shows
an overview of all studies of M. Göthert at metabotropic 5-
HT-Rs.

Central 5-HT1A-Rs act as somadendritic autoreceptors on
serotoninergic neurones and in many brain regions, this recep-
tor has been identified in high density, e.g. in the hippocampus
and amygdala where it has been assumed to be involved in the
regulation of mood and anxiety. This receptor is a target for
anxiolytic and antidepressant drugs (Hamon 1997; Blier and
De Montigny 1997; Kaufman et al. 2016). 5-HT1A-Rs are
preferentially coupled to Gi/o proteins to inhibit adenylate cy-
clase but can also be coupled to inwardly rectifying potassium
channels mediating hyperpolarization (Andrade and Nicoll
1986; Albert and Vahid-Ansari 2019). In a systematic screen-
ing for mutations in the promoter and coding regions of the
human 5-HT1A gene, Erdmann et al. (1994) identified two
naturally occurring receptor variants with either Ile28Val (in
the N-terminus) or Arg219Leu (in the third intracellular loop)
substitutions (Table 1, Fig. 5); the allele frequency of the
Ile28Val and the Arg219Leu variants is about 8% and <1%,
respectively. In transfected COS-7 cells, we could show that
the Ile-28-Val exchange had no effect on receptor expression
or on the affinities (measured in 3H-8-OH-DPAT binding ex-
periments) of a series of agonists or antagonists at 5-HT1A-Rs
(Brüss et al. 1995). However, the Arg-219-Leu exchange ex-
amined later in transfected HEK293 cells by 3H-8-OH-DPAT
and 35S-GTPγS binding (a measure of G protein coupling) to
membranes as well as inhibition of forskolin-stimulated 3H-
cAMP formation by agonists (in whole cells) revealed an im-
pairment of signal transduction (Brüss et al. 2005a). While the
variant receptor did not differ from the wild-type receptor with
respect to receptor density or potencies of agonists or antago-
nists, the ability of 5-HT to stimulate 35S-GTPγS binding to
the variant receptor and of agonists to inhibit forskolin-
stimulated cAMP accumulation was decreased by 60-90%
(Brüss et al. 2005a). Interestingly, in an association study of
major depression with this Arg219Leu variant, we could show
that this receptor variant is associated with major depression
and that it may play a role in the pathogenesis of depression
(Haenisch et al. 2009).

A further naturally occurring 5-HT-R variant examined by
Manfred Göthert was the human 5-HT1B-R in which Phe in
position 124 (within the third transmembrane domain) is
substituted by Cys (Table 1, Fig. 5). The allele frequency of
this variation is 2%. In transfected COS-7 cells, the
Phe124Cys variant, in comparison to the wild-type receptor,
showed a reduction by 70% of surface expression (Bmax) and
two to three times higher affinity for several agonists (e.g., 5-
CT or 5-HT) in radioligand binding experiments with 3H-5-
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carboxamidotryptamine (3H-5-CT) (Brüss et al. 1999b). This
result was confirmed in a second study using transfected C6
glioma cells; this study additionally showed an about 50-65%
lower efficacy of agonists (such as 5-CT, 5-HT, or sumatrip-
tan) in stimulating 35S-GTPγS binding to membranes of cells
expressing the Phe124Cys receptor variant (Kiel et al. 2000).
In whole cells expressing the variant receptor, 5-CT and su-
matriptan inhibited the forskolin-stimulated cAMP accumula-
tion 3.2-fold more potently than in cells expressing the wild-
type receptor. Thus, the Phe-124-Cys mutation modifies the
pharmacological properties of the 5-HT1B receptor and may
account for pharmacogenetic differences in the action of 5-
HT1B-R ligands (Kiel et al. 2000).

Manfred Göthert proposed that the sumatriptan-induced
vasospasm, which occurs at low incidence as a side effect in
migraine therapy, may at least partly be related to the expres-
sion of the Phe124Cys variant of the h5-HT1B-R in patients
with additional pathogenetic factors such as coronary heart
disease. This proposal was later tested in human temporal
arteries from patients undergoing neurosurgery. These arteries
were used to examine whether in vivo expression of the
Phe124Cys 5-HT1B-R variant (Cys/Phe genotype) modifies
5-HT-induced constriction (mediated not only by 5-HT1B

but also by co-expressed 5-HT2A-Rs). It was shown that in
arteries fromCys/Phe individuals, the contribution of 5-HT1B-
Rs to the mediation of the effects of 5-HT was increased
(Verheggen et al. 2006; Table 1).

5-HT2C-Rs arewidely expressed in the central nervous system
and appear to play an important role in psychiatric disorders and
drug dependence (Giorgetti and Tecott 2004; Chagraoui et al.
2016). The pre-mRNA of the 5-HT2C-R undergoes post-
transcriptional editing resulting in diversity among RNA tran-
scripts and 5-HT2C-Rs are heterogeneous due to alternative splic-
ing (Werry et al. 2008; Bass 2002;Wang et al. 2000). In addition,
a single-nucleotide polymorphism (SNP) in the 5-HT2C-R gene,
leading to substitution of cysteine 23 to serine (Cys23Ser) in the

N-terminal domain of the 5-HT2C-R (Table 1, Fig. 5), had been
found to be associated with neuropsychological diseases (Lerer
et al. 2001) and to alter the response to clozapine (Segman et al.
1997). An allele frequency of about 13% has been found for this
variant. Since published results concerning the functional prop-
erties of the two isoforms were inconsistent, Manfred Göthert
examined, in more detail, the wild-type and the Cys23Ser variant
of the 5-HT2C-R in transiently transfected HEK293 cells with
respect to function (by an aequorin luminescence-based Ca2+

assay) and to surface expression (by means of 3H-mesulergine
binding) (Walstab et al. 2011). Surface expression of the
Cys23Ser variant was found to be 116% of that of the wild-
type receptor. No difference was observed between wild-type
and variant receptor concerning 5-HT-induced increase in cyto-
solic Ca2+ and its inhibition by the inverse agonist SB206553.
Furthermore, no difference between wild-type and variant recep-
tor was observed in the time-dependent reduction of 5-HT-
induced increase in cytosolic Ca2+, i.e. of the rapid and strong
receptor desensitization due to preexposure of the cells to 5-HT.
On the other hand, prolonged preexposure to SB206553 caused
resensitization of the receptor, i.e., elevation of the Ca2+ response.
However, at the variant receptor, this elevation was seen already
within 1 h, whereas at the wild-type receptor, a preexposure time
of 4.5 h was needed for this effect to occur. The different time
course of SB206553-induced resensitization of the two
isoreceptors might be therapeutically relevant for some atypical
antipsychotics (such as clozapine) and certain antidepressants
(such as mirtazapine) acting as inverse agonists at 5-HT2C-Rs.
Prolonged preexposure to an inverse agonist is assumed to re-
duce the constitutive activity of the 5-HT-R in vivo, thereby
increasing receptor responsiveness to classical agonists
(Walstab et al. 2011).

The human 5-HT7-R, first described by Bard et al. (1993),
was the most recently identified member of the 5-HT-R family.
This receptor, which is coupled to Gs protein to stimulate cAMP
formation, is expressed in the central nervous system, e.g., in the
thalamus, hypothalamus, hippocampus, cerebral cortex, amygda-
la, and dorsal raphe; it is involved in circadian rhythm by acting
at the suprachiasmatic nucleus (Lovenberg et al. 1993) and seems
to play a role in the action of antipsychotics and antidepressants
(Matthys et al. 2011). Alternative splicing at the second intron,
located at the C-terminal end of the 5-HT7-Rs, gives rise to three
splice variants (5-HT7(a,b,d), Heidmann et al. 1997) which show
the same pharmacological properties; among these splice vari-
ants, the 5-HT7(a) is the most abundant isoform (Gellynck et al.
2013). All three splice variants have very similar abilities to
stimulate adenylyl cyclase in HEK293 cells (Krobert et al.
2001), indicating that the C-terminal tail does not influence li-
gand binding or G protein coupling. Systematic mutation screen-
ing in patients suffering from schizophrenia or bipolar affective
disorder revealed an SNP leading to the exchange of proline
against leucine in position 279 in the third intracellular loop of
the receptor protein (Table 1, Fig. 5; Erdmann et al. 1996);

N

C

5-HT1A
Ile28Val

5-HT7
Thr92Lys

5-HT1B
Phe124Cys

5-HT2C
Cys23Ser

5-HT7
Pro279Leu

5-HT1A
Arg219Leu

Fig. 5 Schematic diagram of a human metabotropic 5-HT receptor in
which amino acid exchanges and their position in naturally occurring
variants of the 5-HT1A, 5-HT1B, 5-HT2C, and 5-HT7 receptor are indicat-
ed. Manfred Göthert has explored all shown variants (see text)
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interestingly, both control individuals and patients exhibited the
same allele frequency (1%). Manfred Göthert has studied this
Pro279Leu variant in comparison to the wild-type receptor in
transfected HEK293 cells by means of binding of 3H-5-CT to
membranes and stimulation of 3H-cAMP formation in whole
cells evoked by 5-HT-R agonists (Kiel et al. 2003). All agonists
and antagonists examined exhibited no difference in affinity be-
tween the variant receptor and the wild-type receptor. However,
in cells expressing the Pro279Leu variant, the intrinsic activity of
all agonists examined in stimulating 3H-cAMP accumulation
was almost abolished and their potency was 2.9–4.3-fold lower.

The mutation screening study of Erdmann et al. (1996; see
above) additionally revealed an SNP leading to the exchange of
threonine against lysine in position 92 located in the first trans-
membrane domain of the receptor protein (Fig. 5). The allele
frequency of this variant was <1% for both control individuals
and patients (Erdmann et al. 1996). In HEK293 cells transfected
either with the wild-type cDNA or that of the Thr92Lys variant,
we determined binding of 3H-5-CT tomembranes and stimulated
3H-cAMP accumulation in whole cells (Brüss et al. 2005b). The
variant receptor exhibited 3–11 times lower binding affinity to
the agonists 5-HT, 5-CT, 8-OH-DPAT, sumatriptan, and
RU24969 compared to the wild-type receptor. The variant recep-
tor, however, did not differ from the wild type with respect to the
binding properties of antagonists such as risperidone,
mesulergine, clozapine, and SB-269970. In agreement with the
decreased binding affinity of 5-HT, 5-CT, RU24969, and 8-OH-
DPAT for the variant receptor, these agonists were less potent in
stimulating 3H-cAMP accumulation in cells expressing the var-
iant receptor. Sumatriptan did not stimulate cAMP accumulation
in spite of its affinity for both receptor isoforms pointing to a
weak antagonistic property of this drug at the 5-HT7-R. SB-
269970 and clozapine were equipotent at both the variant and
the wild-type receptor in producing a rightward shift of the 5-HT
concentration-response curve for its stimulant effect on 3H-
cAMP accumulation. Thus, the results of our two studies (Kiel
et al. 2003; Brüss et al. 2005b; Table 1) may have relevance for
drugs acting on 5-HT7-Rs which affect circadian rhythm.

Beyond serotonin

Carbon monoxide toxicology

When Manfred Göthert joined the Institute of Pharmacology
at the University of Hamburg in 1967, he first did not deal
with serotonin and not even with pharmacology. As a member
of the group of G. Malorny, then head of department, the first
scientific studies ofManfred Göthert were dedicated to carbon
monoxide toxicology. Experiments on animals exposed to
carbon monoxide revealed that the partial pressure of CO in
the pneumoperitoneum (which served to quantify the partial
pressure of CO in tissue) is the lower, the higher its affinity for

hemoglobin is. This was shown for not only rats (high),
guineapigs (high), and rabbits (low hemoglobin affinity)
(Göthert et al. 1968, 1970) but also for single rabbits, which
for unknown reasons markedly differed in their hemoglobin
affinity (Göthert and Malorny 1969). Moreover, the partial
pressure of CO in the pneumoperitoneum of rabbits exposed
to air containing 1000 parts per million (ppm) of CO at normal
(1 bar) or increased pressure (3 or 4 bar) was higher in the
former than in the latter groups (Gerhardt et al. 1972).
Although these findings may appear strange at first glance,
they can easily be explained by the law of mass action; carbon
monoxide and oxygen compete for the same receptor
(hemoglobin).

CO toxicologywas also studied in humans. In volunteers who
breathed air containing 50 ppm CO under normal (1 bar) and
hyperbaric (3 bar) pressure over a time period of 2 h, the percent-
age of CO hemoglobin in the group with normal pressure (7%)
was higher than in the group with increased pressure (5%)
(Gerhardt et al. 1971). This result is practically relevant since
the possibility had to be considered that Caisson workers might
suffer from an increased CO-hemoglobin concentration. On the
basis of this study, a reduction of the threshold limit value
(maximale Arbeitsplatzkonzentration, MAK) for CO in
Caisson workers did not appear to be necessary. In another study
(Bender et al. 1971), human volunteers exposed to air containing
100 ppm CO over a time period of 2.5 h showed a CO concen-
tration of 55 ppm in the alveolar air and exhibited reduced visual
perception, manual dexterity, and ability to learn and to perform
certain intellectual tasks. This study clearly confirmed that the
reduction of the MAK for CO in Germany from 100 to 50 ppm
in 1966 was really justified.

Ethanol, general anesthetics, gabapentinoids, and ion
channels

General anesthetics, alcohols, and ligand-gated cation
channels

In parallel to the toxicological studies on CO, Manfred Göthert
became interested in the mode of action of general anesthetics.
Although this work is apparently unrelated to 5-HT-Rs, it was an
important period of his work andManfred Göthert remained life-
long interested in the cardiovascular and neuronal effects of gen-
eral anesthetics and alcohols. Specifically, this early work was
continued in Bonn 15 years later with K. Fink on ionotropic
glutamate-Rs and with H. Bönisch, M. Brüss, and M. Barann
on 5-HT3-Rs. In the early 70s, notmuchwas known on themode
of action of general anesthetics; while it is even today not
completely clear for inhalational anesthetics, for the injectable
anesthetics propofol and etomidate, the GABAA-R with a spe-
cific subunit composition has been found as the predominant
target. According to the current understanding, all ligand-gated
ion channels are targets of anesthetic drugs, however, in a more
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specific way than general hydrophobic interaction with cell
membrane or membrane proteins according to the Meyer-
Overton correlation (for review, see Franks 2006; Lynch 2008).
Most attention for all anesthetics has been attracted by not only
interactions with the GABAA-R but also the other ligand-gated
ion channels as well as Na+ and K+ channels (Rudolph and
Antkowiak 2004; Hemmings et al. 2019). After diethylether
had been widely administered as an anesthetic since Morton’s
demonstration in the Massachusetts General Hospital in Boston
in 1846, halothane was introduced in Germany in 1956, me-
thoxyflurane in 1960, and enflurane in 1966. These inhalative
anesthetics were frequently used in anesthesiology around 1970
when Manfred Göthert started to work on it; obviously other
inhalative anesthetics such as isoflurane, desflurane, or
sevoflurane that were less metabolized followed later.

Manfred Göthert presented first results of this work at
the 10th Spring Meeting of the German Pharmacological
Society in Mainz 1969 (Göthert and Benthe 1969). In
diethylether-anesthetized guinea-pigs or rats, noradrena-
line and adrenaline concentrations increased in the heart
but decreased in the adrenal medulla, whereas in halothane
anesthesia, noradrenaline only initially decreased in the
heart and in chloroform anesthesia, noradrenaline de-
creased in the heart for the entire duration of application
(Göthert 1971). It explained the overall less pronounced
cardiosuppressive effects of diethylether vs. chloroform
or halothane but did not reveal the underlying mode of
action of these general anesthetics. In a series of further
studies, he provided an in-depth analysis of the differential
effects of diethylether, chloroform, halothane, enflurane,
or methoxyflurane on catecholamine release in the adrenal
medulla and myocardium and the resulting cardiovascular
effects (Göthert and Tuchinda 1973; Benthe et al. 1973;
Göthert et al. 1974a, b; Schmoldt and Göthert 1974). The
overall negative chronotropic effect of halothane could be
attributed to the inhibition of catecholamine release from
adrenal medulla (30%), the inhibition of noradrenaline re-
lease from sympathetic nerve terminals in the heart (25%;
Table 3), a direct effect on the myocardium (25%), and a
stimulatory effect on parasympathetic nerves (20%;
Göthert and Tuchinda 1973). In vitro in cat heart, the order
of negative ionotropic effects, i.e., halothane > chloroform
> diethylether, was confirmed (Benthe et al. 1973). In
1974, he showed the inhibition of ACh-stimulated cate-
cholamine release from isolated bovine adrenal medulla
by inhalation anesthetics (halothane (Table 3), methoxy-
flurane, chloroform) and aliphatic alcohols (n-propanol,
n-butanol, n-pentanol, n-hexanol) and concluded, as mode
of action, a hydrophobic interaction with membranes cor-
relating to the membrane-buffer partition coefficients
(Göthert et al. 1974a). The catecholamine release from
cat adrenal medulla after splanchnic nerve stimulation
was largely reduced by chloroform and ether (Göthert

et al. 1975). However, this could not be attributed at
in vivo applied anesthetic concentrations to a reduced cat-
echolamine synthesis in the adrenal medulla (Schmoldt
and Göthert 1974). The spontaneous release of catechol-
amines from the adrenal medulla was concentration-
dependently decreased by halothane (Göthert and Dreyer
1973) and, similarly, by methoxyflurane (Dreyer et al.
1974). Halothane decreased the coronary flow in the iso-
lated rabbit heart perfused at constant pressure (Göthert
and Guth 1975) presumably by reducing the vasoconstric-
tor effect of noradrenaline on coronary arteries. As only the
nACh-R-mediated noradrenaline release from myocardial
sympathetic nerve terminals was inhibited by halothane
and not the release induced by high K+, he concluded that
halothane might cause a conformational change most po-
tently of the nACh-R protein (Göthert et al. 1974b; Göthert
1974; Table 3), an idea which is still assumed to be a major
part of the anesthetics’ mechanism. In the adrenal medulla,
he located the effect of halothane to the cell membrane of
chromaffin cells or, more specifically, to membrane pro-
teins such as the nACh-R or, at lower potency, GABA-Rs
and 5-HT-Rs (Göthert et al. 1976a; Table 3). An investi-
gation of the mode of action of the cardiovascular effects
of enflurane resulted in the same conclusion, i.e. that
enflurane interacted with hydrophobic regions of the
nACh-R while mACh-Rs were much less sensitive to
enflurane (Göthert and Wendt 1977a, b).

Besides the work on inhalative anesthetics, Manfred
Göthert also studied the mode of action of the injectable an-
esthetic pentobarbital where he also identified as the most
potent effect the inhibition of nACh-R-mediated noradrena-
line release from rabbit cardiac sympathetic nerves which is
still in line with current understanding of barbiturate action
(Ye and Ewing 2018); the inhibition of high K+ or electrically
evoked noradrenaline release occurred at 10-30 times higher
pentobarbital concentrations (Göthert and Rieckesmann 1978;
Table 3).

In 1976, he extended the idea of a hydrophobic interac-
tion of the inhalative anesthetics with the nACh-R to the
alcohols ethanol, 1-propanol, 1-butanol, and 1-pentanol
using dimethylphenylpiperazine-induced or ACh-induced
noradrenaline release from isolated perfused rabbit heart;
he suspected an altered agonist-receptor interaction
(Göthert and Kennerknecht 1975; Göthert et al. 1976b).
In these experiments, he found a threshold concentration
of 36 mM ethanol for the inhibitory effect on nACh-Rs
which may be achieved in in vivo intoxications (Göthert
and Thielecke 1976; Table 3). After Manfred Göthert had
become Professor of Pharmacology in Bonn, this work was
continued on another ligand-gated ion channel, the N-
methyl-D-aspartate (NMDA)-R. K. Fink and Manfred
Göthert established and characterized the model of
NMDA-R-mediated noradrenaline release in brain slices
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(Fink et al. 1989, 1990c) and supported it by radioligand
binding studies (Fink et al. 1992c). They used the function-
al approach of NMDA-evoked noradrenaline release to
demonstrate the inhibitory effect of ethanol on NMDA-
Rs. The threshold concentration was between 10 and
32 mM which was definitely in the range of clinical etha-
nol intoxications (Göthert and Fink 1989; Table 3, Fig. 6).
The experiments were repeated with the aliphatic alcohols
methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and
1-hexanol and demonstrated a strong correlation of the
alcohols’ membrane-buffer partition coefficients and their
inhibitory potencies (Fink and Göthert 1990, 1991); etha-
nol turned out slightly more potent than the overall corre-
lation between hydrophobicity and potency indicating a
more specific interaction. As soon as they identified pre-
synaptic NMDA-Rs on noradrenergic axonal terminals in
rat neocortex using a synaptosomal preparation (Fink et al.
1990b; Göthert and Fink 1991), they could also demon-
strate the inhibitory effect of ethanol on presynaptic
NMDA-Rs (Fink and Göthert 1992). The existence of the
ionotropic glutamate-Rs NMDA, kainate, and AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
was also shown in the human neocortex, including the
inhibitory effects of ethanol at concentrations that were
observed in human intoxications in vivo (Fink et al.
1992a, b; Table 3). All these data of Manfred Göthert’s
group contributed strong evidence to the idea that general
anesthetics and alcohols have rather individual effects on

different neuronal target structures as compiled in box 2 of
the review by Rudolph and Antkowiak (2004).

Although the interaction may be partially or even predomi-
nantly hydrophobic by nature, it still depends on size, type, and
exposition of the hydrophobic patches or uncharged sequences
of the individual receptor protein. In order to explain the differing
sensitivities to ethanol of NMDA-Rs on noradrenergic, seroto-
nergic, GABAergic, dopaminergic, and cholinergic neurones, K.
Fink and Manfred Göthert compared the ethanol effects to the
respective effects of the NR2B (current nomenclature GluN2B)
subunit preferential receptor antagonist ifenprodil. NMDA-Rs
are tetramerically composed of two obligatory GluN1 and two
GluN2 or GluN3 subunits; GluN2 exists in four subtypes A-D
and GluN3 in two subtypes A and B (Paoletti et al. 2013) while
the specific role of different NMDA-R assemblies is not
completely clear. They found a strong correlation (0.96;
p<0.001) of ethanol and ifenprodil potency and concluded that
ethanol predominantly inhibits NR2B-assembled NMDA-Rs on
noradrenergic, serotoninergic, and GABAergic neurones (Fink
and Göthert 1996) (Fig. 6).

During these experiments, the potential effect of
hyperosmolarity was discussed within the group and, as
few agents e.g. sugars, urea, and ethanol can cause serious
hyperosmolar disorders in patients, the question was ad-
dressed with D-glucose. Interestingly, high K+-evoked
GABA release in neocortex was strongly increased by D-
glucose ≥32 mM, that of acetylcholine was unaffected, and
that of noradrenaline and 5-HT was decreased (Fink and

Table 3 Effect of halothane, pentobarbital, and ethanol on the evoked catecholamine release from peripheral organs and brain tissue

Ligand-gated cation channels Activation of Gq

protein-coupled
receptors

Voltage-dependent cation channels

NMDA Kainate nACh 5-HT3 Histamine H1 mACh K+ Veratridine Electrical stimulation

IC50

Halothane 1Bovine adrenal medulla 0.25 4.6 > 4.3 > 4.3 > 14 mM

Halothane 2Rabbit heart 0.06 > 1 > 1 mM

Pentobarbital 3Rabbit heart 34 190 440 μM

Ethanol 4Rabbit heart 129 203 830 1150 mM

Ethanol 5Human cortex 90 115 > 150 > 150 mM

Ethanol 6Rat cortex 45 126 > 320 > 320 mM

To evoke catecholamine release from bovine adrenal medulla chromaffine cells and noradrenaline release from noradrenergic nerve terminals, intra-
cellular Ca2+ was increased by activation of ligand-gated or voltage-dependent cation channels or of Gq protein-coupled receptors. The table shows that
the inhibitory potency of the three agents (IC50, concentration leading to an inhibition of 50%) at ligand-gated channels is higher than at Gq protein-
coupled receptors and voltage-dependent cation channels.Within the ligand-gated ion channels, the potency towards NMDA receptors is higher than that
towards nACh and 5-HT3 receptors. Inhibition of the nACh receptor-mediated inhibition of catecholamine/noradrenaline release may contribute to the
clinical effect of halothane and pentobarbital. Thus, the IC50 of halothane is close to its MAC in saline of 0.24 mM (the MAC (minimal alveolar
concentration) is a parameter of the potency of a general anesthetic). The IC50 of pentobarbital is within the range of the plasma/serum concentration
(4.4-44 μM) obtained under treatment with this barbiturate. Inhibition of the NMDA-induced noradrenaline release in human cortex may contribute to
the toxic effect of ethanol 2‰ (= 46 mM; inhibition by ~ 40% at this concentration). Derived from 1Göthert (1972) and Göthert et al. (1976a), 2 Göthert
(1974), 3 Göthert and Rieckesmann (1978), 4 Göthert and Thielecke (1976) and Göthert et al. (1979a), 5 Fink et al. (1992a), and 6Göthert and Fink et al.
(1989) and Fink and Göthert (1990)
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Göthert 1993a). The increased GABA release remained
elusive but might result from the blockade of ATP-
sensitive K+ channels by increased ATP levels. It was con-
c luded tha t an inte rac t ion between GABAergic
interneurones and other neurones downstream was the un-
derlying mechanism that increased GABA release and that
this phenomenon could explain some of the symptoms in
hyperosmolar diabetic coma (Fink et al. 1994a). The group
also proved the modulation of NMDA-R-mediated nor-
adrenaline release by presynaptic α2-ARs and H3-Rs
(Fink and Göthert 1993b; Fink et al. 1994b; Table 4) as
well as the modulation of NMDA R-mediated 5-HT release
(Fig. 3) by 5-HT autoreceptors (Fink et al. 1996) and pre-
synaptic α2-heteroreceptors (Fink et al. 1995b).

Gabapentinoids and voltage-gated Ca2+ channels

A further chapter of work focussed on presynaptic voltage-gated
Ca2+ channels. Using Ca2+ fluorometry on synaptosomes, the

PhD student W. Meder identified the P/Q-type (meanwhile re-
ferred to as CaV2.1α1 subunit) voltage-gatedCa

2+ channel as the
major and the N-type (CaV2.2 α1 subunit) and the Na+/Ca2+

exchanger as minor contributors to presynaptic Ca2+ entry in
rat and human neocortex (Meder et al. 1997, 1999; Fink et al.
2002a). In the same paradigm, the mode of action of the
gabapentinoids gabapentin and pregabalin was discovered,
which inhibit P/Q-type (CaV2.1) voltage-gated Ca2+ channels
by binding to its α2δ subunit resulting downstream in attenuated
glutamate/aspartate release and, thus, less activation of AMPA-R
input on noradrenergic terminals (Fink et al. 2000, 2002b) (Fig.
7). The latter work has been cited by 549 articles (Google
Scholar, accessed onMarch 26, 2021), 3 patents since it appeared
(ResearchGate.net). It was again the result of a close
collaboration with, in this case, Parke-Davis and, after its acqui-
sition, with Pfizer; the work was initially triggered by
Feuerstein’s finding thatω-conotoxin GVIA inhibited noradren-
aline and acetylcholine release in the human neocortex
(Feuerstein et al. 1990), an effect, which could now be explained.

0

25

50

75

100

125

10 32 100 320
Ethanol (mM)

6 7 8 9
0.5

1.0

1.5

r = 0.98
p < 0.001

Inhibition by ifenprodil (pIC 20%)

In
hi

bi
tio

n 
by

 e
th

an
ol

 (p
IC

50
%

)

0

25

50

75

100

125

1 10 100 1000
Ifenprodil (nM)

)lortnocfo
%(

wolfrevo
muitirt

dekove-AD
MN

a

b

c

d

N1

N1

N2A or N2B or
N2C or N2D or

N3A or N3B

N2A or N2B or
N2C or N2D or

N3A or N3B

Ifenprodil

r = 0.96
p < 0.001

Fig. 6 Effect of ethanol and ifenprodil on the NMDA-evoked release of
various transmitters from rat cerebral cortex and/or striatal slices. a and b
The concentration-response curves (CRCs, SEM values not shown). The
negative logarithms of the concentrations causing the half-maximum ef-
fect, i.e. an inhibition by 50% (ethanol, pIC50%) and by 20% (ifenprodil,
pIC20%), were correlated with each other as shown in c, yielding a corre-
lation coefficient close to 1. This suggests that ethanol acts on NMDA
receptors containing an N2B subunit which is inhibited by ifenprodil in
noradrenergic, serotoninergic, and GABAergic neurones. Closed circles,

cortical slices preincubated with 3H-noradrenaline; closed squares, corti-
cal slices, 3H-5-HT; closed rhomboids, cortical slices, 3H-GABA; open
circles, striatal slices, 3H-dopamine; open triangles, striatal slices, 3H-
choline; open squares, striatal slices, 3H-5-HT (CRCs not shown); open
rhomboids, striatal slices 3H-GABA (CRCs not shown). Re-drawn from
Fink and Göthert (1996). d The structure of NMDA receptors (which
occur as di-heteromeric or tri-heteromeric tetramers) and the site of action
of ifenprodil.GABA, γ-aminobutyric acid;NMDA, N-methyl-D-aspartate
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Various presynaptic receptors, imidazolines, and
agmatine

Various presynaptic receptors

Noradrenaline attracted the attention of Manfred Göthert even
earlier than 5-HT did. In a series of studies, structure-activity
relationships were determined for compounds provided by the
Beiersdorf company (Hamburg) with respect to their
noradrenaline-depleting effect (Benkert et al. 1975) or their
antagonistic effects at α1-ARs and/or α2-ARs (Benthe et al.
1972; Göthert et al. 1983b; Schlicker et al. 1984b). The α1-
AR antagonist BE 2254 played some role as drug tool in own
studies (e.g., Göthert et al. 1981b) or studies from other groups
(e.g., 125I-BE 2254 in Engel and Hoyer 1981). However,
Manfred Göthert became particularly interested in presynaptic
autoreceptors and heteroreceptors on noradrenergic neurones.
In the same year, in which he entered this field (Göthert 1977),

long reviews about numerous types and sites of presynaptic
receptors written by key players appeared (Langer 1977;
Starke 1977; Westfall 1977); nonetheless, he became one of
the major scientists in this area of research.

In the central nervous system, α2-autoreceptors, e.g. in the
rat (Göthert et al. 1979b) and mouse cerebral cortex (Schlicker
et al. 1992b), and particularly heteroreceptors attracted his
attention (Table 4); he was supported in this respect by E.
Schlicker and K. Fink and later by M. Kathmann. In detail,
he dealt with histamine, opioid, somatostatin, and cannabinoid
receptors (the latter ones will be described in the
“Cannabinoids” section; Table 4). Presynaptic histamine H3-
Rs, originally identified as autoreceptors by Arrang et al.
(1983), were identified for the first time on serotoninergic,
noradrenergic, and dopaminergic neurones of the brain
(Schlicker et al. 1988b, 1989c, 1993; Fink et al. 1990a; Fig.
3, Table 4). Although most studies were carried out on rodent
brain, the H3-R was also identified on the noradrenergic
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Fig. 7 Chain of events involved in the inhibitory effect of gabapentin on
noradrenaline (NA) release in rat brain cortex. Gabapentin inhibits the
K+-induced a Ca2+ influx via P/Q-type (but not N-type) Ca2+ channels, b
glutamate and aspartate release, and c NA release via AMPA (but not
NMDA) receptors. Experiments were performed on slices or synapto-
somes (dotted columns) and results are expressed as means ± SEM (*p
< 0.05, **p < 0.01, based on the t-test for paired (B) or unpaired (A, C)
data). The fact that the inhibitory effect of gabapentin on NA release (C)
was not retained in isolated nerve endings (synaptosomes) demonstrates
that it is not related to a direct effect on the noradrenergic neurone. The
effect of gabapentin occurred in the range of therapeutically relevant
plasma concentrations of 10–100 μM. Re-drawn from Fink et al.

(2000). The experiments were further elaborated in the study by Fink
et al. (2002b), which shows that the mechanisms also occur in human
cortical slices and also extend to pregabalin, another gabapentinoid, but
not to its enantiomer R-(-)-3-isobutylgaba. The schematic drawing in d
shows that gabapentin (and pregabalin) (i) inhibit Ca2+ influx into gluta-
matergic neurones via P/Q-type (CaV2.1) voltage-gated Ca

2+ channels by
binding to its α2δ subunit, subsequently leading to (ii) decreased gluta-
mate release, (iii) reduced activation of excitatory AMPA receptors on
noradrenergic neurones, and (iv) eventually to a decrease in NA release.
AMPA,α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;CNQX,
6-cyano-7-nitroquinoxaline-2,3-dione; EAA, excitatory amino acids;
NMDA, N-methyl-D-aspartate
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neurones of the human cerebral cortex (Schlicker et al.
1994c). Its counterpart in the mouse brain cortex was exam-
ined in detail. (i) In a mechanistic study, the receptor-mediated
inhibitory effect was the more pronounced the lower the Ca2+

concentration in the medium or the stimulation frequency
was; moreover, experiments with N-ethylmaleimide
(Schlicker et al. 1994b) and pertussis toxin (Schlicker et al.
1994c) suggested that this receptor is Gi/o protein-coupled.
The latter findings were interesting since the H3-R was cloned
5 years later only (Lovenberg et al. 1999). (ii) A receptor
interaction, like that shown for the r5-HT1B-R in the rat vena
cava (Molderings and Göthert 1990; see the “Presynaptic se-
rotonin heteroreceptors on noradrenergic neurones” section),
was also shown for the H3-R in the mouse brain. Pre-
activation of the α2-autoreceptor decreases the inhibitory ef-
fect mediated via the H3-R; the reverse is true as well
(Schlicker et al. 1992b). Since α2-autoreceptor blockade con-
sequently increases the extent of the H3-R-mediated effect,
subsequent experiments were usually performed in the pres-
ence of the α2-AR antagonist rauwolscine. (iii) The potencies
of new H3-R antagonists/inverse agonists were compared to
their affinities in radioligand studies in the mouse brain
(Nickel et al. 2001). The compounds had been synthesized
by W. Schunack and H. Stark (Berlin), who later developed
the H3-R inverse agonist pitolisant together with J.C.
Schwartz (Paris), which has been marketed as a novel drug
against narcolepsy in 2016 (Ganellin et al. 2018). A typical
property of H3-Rs is their constitutive activity (Rouleau et al.
2002) and accordingly the H3-R inverse agonist pitolisant
tended to increase noradrenaline in mouse brain cortex slices
(reviewed in Schlicker and Kathmann 2016). The possibility
has to be considered that this effect (provided that it also
occurs in human brain) contributes to the main action and/or
the side effects of pitolisant.

Somatostatin not only serves as an inhibitor of the release
of a series of hormones including growth hormone but also
occurs in several brain regions (Günther et al. 2018). In a
paper that appeared in Nature, Göthert (1980b) was the first
to show that somatostatin also acts via presynaptic inhibitory
receptors. This effect, which was examined in rat brain slices,
is selective in two respects. First, somatostatin inhibits nor-
adrenaline release in the hypothalamus but not in the cerebral
cortex. Second, the inhibitory effect of somatostatin does not
extend to 5-HT release.

Peripheral presynaptic receptors on postganglionic sympa-
thetic neurones attracted the attention of Manfred Göthert al-
ready in Hamburg and later in Essen (supported by F.
Hentrich) and Bonn (supported by G. Molderings). Unlike
in the brain, the peripheral noradrenergic neurones are
equipped with a series of facilitatory receptors. Six of them
have been considered, including two ligand-gated ion chan-
nels (5-HT3, Tables 2 and 3 and nACh-R, Tables 3 and 4), one
Gq-coupled-receptor (AT1; Table 4) and three Gs-coupled

receptors (β2, MC2, and DP; Table 4). For each of the four
G protein-coupled receptors, at least one human model has
been described.

The presynaptic β2-AR was examined with respect to its
location, mechanism, and physiological role. (i) In two in vitro
models and in one in situ model (Table 4), the effect of a β-
AR agonist was counteracted by inhibitors of the angiotensin-
converting enzyme and/or angiotensin AT1-R antagonists.
These data suggest that at least part of the β2-ARs is not
located directly on the postganglionic sympathetic nerve end-
ings but rather in the wall of blood vessels. When activated by
a β2-AR agonist, the receptors lead to an increased formation
of angiotensin II, which in turn facilitates noradrenaline re-
lease via presynaptic AT1-R. In the rat vena cava and human
saphenous vein, the occurrence of AT1-Rs has been shown
directly (Göthert and Kollecker 1986; Molderings et al.
1988b). (ii) Hentrich et al. (1985) showed in the human pul-
monary artery that a stimulator of cAMP formation, an inhib-
itor of its degradation, and a lipid-soluble cAMP analog in-
crease noradrenaline release. The facilitatory effect of the β-
AR agonist isoprenaline on noradrenaline release was mark-
edly enhanced in the presence of a low concentration of the
stimulator of cAMP formation, suggesting that the β2-AR is
coupled to adenylate cyclase. (iii) The possibility that the β2-
AR, reached by endogenous adrenaline, is involved in a pos-
itive feedback loop and may even be implicated in the devel-
opment of essential hypertension had to be considered (for
review, see Rand and Majewski 1984). If this were true also
for the human saphenous vein, a β-AR antagonist should
decrease noradrenaline release. Such an effect, however, did
not occur, even if the veins were preincubated with 3H-adren-
aline instead of 3H-noradrenaline (Molderings et al. 1988a).

Göthert (1981) was the first to identify a presynaptic
ACTH-R. In experiments similar to those described in the
previous paragraph, evidence was presented that also the pre-
synaptic ACTH-R, which was identified on the postganglion-
ic neurones of the rabbit pulmonary artery, is positively
coupled to adenylate cyclase (Göthert and Hentrich 1984).
Although evidence for a facilitatory receptor for prostaglandin
D2 (DP-R) was first presented by Nakajima and Toda (1984)
in canine mesenteric arteries, final proof for their existence
based on an appropriate antagonist was given for four human
tissues in the lab of Manfred Göthert (Table 4). Interesting
enough, in each of the four tissues, both facilitatory (DP)
and inhibitory (EP3) prostaglandin-Rs could be identified
(Table 4).

In addition to the EP3-R, other types of inhibitory
heteroreceptors and the inhibitory α2-autoreceptor have been
identified on peripheral noradrenergic neurones (most
receptor types also in human tissues; Table 4). For the α2-
autoreceptor in the human saphenous vein and the rabbit pul-
monary artery, the potencies of α2-AR antagonists in func-
tional experiments were correlated with their affinities in
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radioligand binding studies on tissues or cells expressing one
α2-subtype only (Molderings and Göthert 1995a). The study
clearly showed that the autoreceptor is α2A both in the human
and in the rabbit vessel. These results conform to two general
observations, namely (i) that presynaptic α2-ARs belong to
the α2A-subtype in species like humans and rabbits, whereas
in guinea pigs and rodents, the α2D-subtype (which turned out
to be the species homolog of α2A) is involved instead
(Trendelenburg et al. 1997) and (ii) that, compared to the
α2A/D-subtype, the α2B-subtype, and/or α2C-subtype, plays
no or a smaller role only (Brede et al. 2004). Nonetheless,
the α2A-autoreceptors in humans and rabbits do not possess
completely identical properties since rilmenidine and
oxymetazoline behave as antagonists in humans but as ago-
nists in rabbits (Molderings et al. 2000a, 2003a). This is also
reflected by marked differences in the amino acid sequence of
the two species homologs (Molderings et al. 2000a; Brüss
et al. 2003).

Imidazolines

For the identification of α2-ARs, ligands with imidazoline
structure like the agonist clonidine and the antagonist BDF
6143 have been used frequently. In addition to their effects
on α2-ARs, imidazolines appear to possess α2-AR-indepen-
dent effects and in this context, (i) imidazoline recognition
sites (Göthert et al. 1983a), (ii) presynaptic imidazoline recep-
tors, and (iii) imidazoline I1 and I2 binding sites attracted the
attention of Manfred Göthert. The latter two topics, which
were elaborated together with G.J. Molderings and reviewed
repeatedly (Göthert et al. 1995b, 1999; Molderings and
Göthert 1999; Molderings et al. 1995b, 1999a), will be con-
sidered here in more detail.

The study of Docherty et al. (1982), a cooperation project
between Manfred Göthert and K. Starke, was an early hint to
the occurrence of presynaptic imidazoline-Rs in addition to
α2-ARs in rabbit aorta and pulmonary artery. BDF 6143, an
α2-AR antagonist with imidazoline structure, concentration-
dependently facilitated, did not affect or even inhibited nor-
adrenaline release, whereas a pure inhibitory effect occurred
when the α2-ARs had been blocked by rauwolscine, an α2-
AR antagonist devoid of imidazoline structure. Göthert and
Molderings et al. (1991) showed that imidazolines like the α1-
AR agonist cirazoline, the α2-AR agonist clonidine, and the
α2-AR antagonists idazoxan and phentolamine inhibited nor-
adrenaline release in the presence of rauwolscine. The latter
proved to be antagonistic not only against α2-ARs (high pA2

> 8) but also against imidazoline-Rs (low pA2 < 7;Molderings
et al. 1991). Further studies revealed that the potencies of the
imidazoline-R agonists are not correlated with their lipophi-
licity (log P) and their affinities at the imidazoline I1 and I2
binding sites discussed below (Molderings and Göthert
1995b). Presynaptic imidazoline-Rs, although not found in

the rabbit or rat brain (Schlicker et al. 1997c), were also iden-
tified in human, guinea-pig, and rat cardiovascular tissues
(Table 4). In addition to high concentrations of rauwolscine,
also high concentrations of the cannabinoid CB1-R antago-
nists rimonabant (former name SR141716) and LY320135
showed an antagonistic effect at the presynaptic imidazoline-
Rs (Molderings et al. 1999b).

Presynaptic imidazoline-Rs were also found in the rabbit
heart (Fuder and Schwarz 1993), the rat kidney (Bohmann
et al. 1994), and, using an electrophysiological technique, in
rat superior cervical ganglion neurones (Chung et al. 2010).
Nonetheless, the evidence is not unequivocal; Gaiser et al.
(1999) re-investigated the effects of 10 α-AR and/or
imidazoline-R agonists in the rabbit pulmonary artery using
conditions under which an endogenous α2-AR-mediated
auto-inhibition of noradrenaline release does not occur. In
their study, rauwolscine revealed the same potency against
each agonist (pA2 ~ 8) leaving no place for presynaptic
imidazoline-Rs. However, Molderings et al. (2002a, b) found
another example of a functional imidazoline-R in a cell line,
i.e. pheochromocytoma 12 cells (PC12) of rats, which possess
many properties of sympathetic neurones but are devoid of
α2-AR and CB1-R mRNA. The inhibitory effect of
imidazolines was shared by 1-oleoyl-lysophosphatidic acid
which activates LPA1-Rs and LPA3-Rs (former designation
edg2 and edg7, respectively; Chun et al. 2010). mRNA of the
latter two receptors, which are the only G protein-coupled
receptors with a significant homology (of ~ 40%) to α2-Rs
and CB1-Rs, could indeed be detected in PC12 cells
(Molderings et al. 2002a). LPA1-Rs and/or LPA3-Rs may rep-
resent the molecular entities of the presynaptic imidazoline-
Rs; unfortunately, final proof based on knockout mice is so far
missing.

Imidazoline binding sites, which are pharmacologically
different from α-ARs and presynaptic imidazoline-Rs, were
identified first in bovine ventrolateral medulla (I1) and human
fat cells (I2); a third type of imidazoline binding site (I3) was
suggested as well (reviewed in Regunathan and Reis 1996). In
collaboration with G.J. Molderings, Manfred Göthert further
characterized imidazoline sites in a threefold manner. (i) The
occurrence of imidazoline sites in various preparations was
shown by radioligand binding studies. Using 3H-clonidine
and 3H-idazoxan, both I1 (Molderings et al. 1993) and I2 sites
(Molderings et al. 1994b) were found in bovine adrenal me-
dulla, i.e. in a tissue which is devoid of α2-ARs. Using the
same radioligands, I1 sites were also identified in the afore-
mentioned PC12 cells (Molderings et al. 2007a) and I2 sites in
rat and human stomach (Molderings et al. 1998b).
Experiments dedicated to further disclose the properties of
the I1 sites in PC12 cells showed that the ligands under study
had a simi lar aff ini ty for 3H-clonidine and 3H-
lysophosphatidic acid which labels sphingosine (S1P)-Rs; in
subsequent experiments, binding to both ligands was
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abolished by short interfering RNA (siRNA) directed towards
S1P1-Rs and S1P3-Rs (Molderings et al. 2007a). This finding
is very interesting since the latter receptors and the LPA-Rs
(the putative molecular entities of the presynaptic imidazoline
receptors above) represent the two subgroups of the
lysophospholipid receptors (Chun et al. 2010). Although 3H-
idazoxan labels I2 sites both in the rat stomach (Molderings
et al. 1998b) and bovine adrenal medulla (Molderings et al.
1994b), 3H-clonidine binds to different entities in either tissue.
As opposed to I1 sites in the adrenal medulla, 3H-clonidine
binds to σ-like receptors in the rat stomach (Molderings et al.
1995a), i.e. to receptors which were originally considered an
opioid receptor subtype but later turned out to be two entities
(σ1 and σ2) with entirely different pharmacological properties
(reviewed in Kim and Pasternak 2017). Nonetheless, the σ-
like receptors labeled with 3H-clonidine in the rat stomach are
not identical with the σ2 sites labeled by 3H-1,2-di-(2-
tolyl)guanidine in this tissue and were designated as non-I1-
non-I2 sites instead (Molderings et al. 1998b). “True” σ2 sites,
labeled by 3H-1,2-di-(2-tolyl)guanidine, could also be identi-
fied in human stomach and in N1E-115 neuroblastoma cells
(Molderings et al. 1998b).

(ii) In several papers, efforts were made to define principal
mechanistic properties of the imidazoline and σ2 sites. I1 bind-
ing (3H-clonidine; bovine adrenal medulla) was inhibited by
the stable GTP analog 5′-guanylylimidodiphosphate
(Gpp(NH)p), whereas binding to I2 (

3H-idazoxan; bovine ad-
renal medulla) and non-I1-non-I2 sites (

3H-clonidine; rat stom-
ach) was not, suggesting that only I1 sites are G protein-
coupled (Molderings et al. 1993, 1994b, 1995a). The coupling
of I1 sites to G proteins was further supported by the finding
that I1-Rs on PC12 cells can be classified as S1P-Rs
(Molderings et al. 2007a), which belong to the G protein-
coupled receptors (Chun et al. 2010). When S1P3-Rs (which
most efficiently bind to Gq protein; Chun et al. 2010) were
transiently expressed in human embryonic kidney (HEK) 293
cells, imidazolines consequently led to an increase in intracel-
lular Ca2+ (Molderings et al. 2007a). For σ2 sites, an entirely
different mechanism is very likely. Thus, imidazoline and σ
ligands inhibited the 5-HT3-R-induced

14C-guanidinium in-
flux in N1E-115 cells (a model of cation influx); the results
suggest that this effect is, at least in part, related to an interac-
tion with σ2 sites (Molderings et al. 1996b).

(iii) Finally, studies were carried out to determine function-
al effects associated with imidazoline and related receptors.
Molderings et al. (2007b) found that ligands at imidazoline/
S1P-Rs inhibited the protein content (which represents an es-
timate for cell numbers) in PC12 cells; this effect could be
reduced by siRNA species directed towards S1P1-Rs, S1P2-
Rs, and S1P3-Rs. Imidazolines and/or σ ligands did not affect
the tone of rat gastric strips and acid secretion, suggesting that
I2, non-I1-non-I2, orσ2 sites are not implicated in the latter two
functional effects (Molderings et al. 1998b). Despite their lack

of effect on acid secretion, imidazolines led to an increase in
histamine release in the rat stomach (Molderings et al. 1999c),
which, most probably, is related to the inhibition of KATP

channels, i.e. the mechanism known for the increase in insulin
release elicited by imidazolines (Chan 1998) or sulfonylureas
(Rorsman et al. 1990). The facilitatory effect on histamine
release was shared by agmatine which was identified in hu-
man gastric juice in high concentrations and showed an even
higher concentration in the stomach of Helicobacter pylori-
positive subjects, pointing to a pathophysiological role in gas-
troduodenal ulcer (Molderings et al. 1999a). Apart from the
latter effect in the stomach, imidazolines were suggested to
have various effects also on cardiovascular functions
(Molderings and Göthert 1999). Endogenous ligands at
imidazoline-Rs (and α-ARs) may play a role in vascular
smooth muscle proliferation and blood pressure regulation
and the imidazoline moxonidine and the oxazoline
rilmenidine appear to exert their antihypertensive effect at
least partially via I1-Rs (Schäfer et al. 1995). Exogenously
added imidazolines may also possess antiarrhythmic effects
implicating central and peripheral and α2-AR-dependent and
α2-AR-independent sites of action (Molderings and Göthert
1999). They may, however, also interfere with the beneficial
cardiac effects of compounds activating KATP channels due to
their known antagonistic effect at this mechanism.

Agmatine

Agmatine, decarboxylated arginine, is an aminoguanidine
that was discovered by the Nobel laureate A. Kossel
(Kossel 1910) in bacteria and plants. More than 80 years
later, Reis and coworkers purified agmatine from bovine
brain and they discovered that agmatine is an endogenous
ligand at imidazoline binding sites (Li et al. 1994).
Thereafter, a variety of agmatine-mediated effects in mam-
mals has been described (for recent reviews, see Laube and
Bernstein 2017; Xu et al. 2018). In the late 1990s, Manfred
Göthert and G.J. Molderings started to examine agmatine
(Fig. 8). In a study on the expression of imidazoline binding
sites in rat and human stomach, they demonstrated that
Helicobacter pylori is able to form and to release the endog-
enous imidazoline-R ligand agmatine and that considerable
amounts of agmatine are present in human gastric juice, es-
pecially in that fromH. pylori-positive patients (Molderings
et al. 1999a, d). Shortly thereafter, they showed that at the
α2D-AR of rat vena cava and brain cortex (theα2D-AR is the
species homolog of theα2A-AR) agmatine acts as a compet-
itive antagonist at the ligand recognition site and that it en-
hances the effects of agonists probably by binding to an al-
losteric site which seems to be labeled by agmatine
(Molderings et al. 2000b).

Since agmatine had been shown to be degraded in mamma-
lian tissues not only to urea but also to the polyamine

1849Naunyn-Schmiedeberg's Arch Pharmacol (2021) 394:1829–1867



putrescine, Manfred Göthert examined whether both poly-
amines are taken up by the same or by different transport sys-
tems in the human glioma cell line SK-MG-1 (Molderings et al.
2001). This study demonstrated the existence of a specific up-
take system for agmatine which is not identical with that for
putrescine. In addition, agmatine uptake was not due to the
activity of organic cation transporters such as OCT1, OCT2,
OCT3, OCTN1, or OCTN2 neither in human SK-MG-1 glioma
cells nor in six human intestinal tumor cells (Heinen et al. 2003;
Molderings et al. 2003b). Since agmatine is present in human
gastric juice, it was of interest to prove whether exogenous
agmatine is taken up in the stomach. By in vitro exposure of
rat isolated stomach to 14C-agmatine and by oral administration
to rats in vivo, Manfred Göthert showed that this polyamine is
accumulated in the stomach wall and distributed in various
tissues and that the accumulation of agmatine was dose-
dependently decreased by simultaneous administration of pu-
trescine (Molderings et al. 2002b). The results indicated a trans-
port system for agmatine and they were compatible with the
idea of an entero-hepatic recirculation of agmatine (Molderings
et al. 2002b; Fig. 8). In a further in vivo study with rats, admin-
istration of agmatine after partial hepatectomy was shown to
reduce liver regeneration indicating a potential contribution of
agmatine to the development of liver diseases (Molderings et al.
2003c). Agmatine, on the other hand, was shown to inhibit
concentration-dependently the proliferation of six human intes-
tinal tumor cell lines; in addition, the agmatine content in colon
carcinoma tissue from patients who underwent surgery was

much lower than in adjacent normal tissue which was
interpreted to indicate an antineoplastic action of agmatine
(Molderings et al. 2004). In a subsequent investigation,
Manfred Göthert also demonstrated an antiproliferative effect
of agmatine in rat and human hepatoma cells, indicating an
involvement of agmatine in liver cell growth (Kribben et al.
2004). In a study in tumor cells of colonic, hepatic, and neuro-
nal origin, Manfred Göthert examined the molecular basis for
the antiproliferative effect of agmatine (Wolf et al. 2007).
Agmatine inhibited the proliferation of all examined cells. At
the human hepatoma cell line HepG2, it was demonstrated that
the antiproliferative effect is due to an interaction with neither
the NO synthases, the polyamine-dependent hypusination of
the translation factor elF5a, nor an agmatine-induced reduction
in availability of intracellular arginine but it may be due to an
increase in intracellular caspase-3 activity, indicating a promo-
tion of apoptosis (Wolf et al. 2007; Fig. 8). Finally, regulatory
mechanisms underlying agmatine homeostasis in humans have
been explored in human colon resectates by measuring mRNA
encoding ornithine decarboxylase (ODC), diamine oxidase
(DAO), and arginine decarboxylase (ADC), from the produc-
tion of agmatine by 10 cultured bacterial strains of the residual
intestinal microflora and frommeasurement of agmatine in por-
tal venous blood plasma (Haenisch et al. 2008). The study
showed that (i) the level of mRNA was lower (ADC and
DAO) or higher (ODC) in neoplastic tissue than in the adjacent
normal tissue, that (ii) bacteria strains considerably differed in
agmatine production, and (iii) a substantial hepatic agmatine

Effects with clinical implicationsMolecular targets

α2A-Adrenoceptor
α2B-Adrenoceptor
α2C-Adrenoceptor
I1-Imidazoline binding site

(=S1P3 receptor)
I2-Imidazoline binding site
NMDA receptor, NR1- /NR2-ε1

NMDA receptor, NR1- /NR2-ε2

NMDA receptor, NR1- /NR2-ε3

NMDA receptor, NR1- /NR2-ε4

2-binding site
ATP-sensitive K+ channel
Nitric oxide synthase
Agmatine carrier
Polyamine pathway

Cardiovascular effects
blood pressue ↓, heart rate ↓

Insulin release ↑

Nephroprotection
Neuroprotective effects in/for

stroke
traumatic CNS injuries
neuropathic pain
epilepsy (anticonvulsant)
glaucoma
neurodegenerative disorders

Psychiatric disorders
opioid liability ↓

antidepressant properties
anxiolytic properties
antipsychotic properties

Cognitive enhancement
Proliferation of cancer cells and

mast cells ↓

Sepsis ↓

Fig. 8 The many faces of
agmatine. Aspects studied by
Manfred Göthert are marked with
red color
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removal from blood occurred. Thus, a perturbation of agmatine
homeostasis has been proven to be involved in the regulation of
malignant cell proliferation, and agmatine available for intesti-
nal absorption may differ considerably depending on the com-
position of the bacterial flora, and finally, the liver plays a
crucial role in the maintenance of agmatine homeostasis in the
human organism (Haenisch et al. 2008).

Cannabinoids

Cannabinoids have been attracting the attention of Manfred
Göthert since 1995. He became interested (i) in presynaptic
CB1-Rs (and was supported in this respect by E. Schlicker, K.
Fink, and G.J. Molderings), (ii) in cardiovascular effects of the
endocannabinoid anandamide, and (iii) in CB1-R-independent
effects of cannabinoids on 5-HT3-Rs and nACh-Rs (supported
by B. Malinowska; see Fig. 9). Part of the latter studies was
carried out in the laboratory of B. Malinowska when Manfred
Göthert was awarded an Alexander von Humboldt Polish
Honorary Research Fellowship after his retirement (2006).
This fourth part of his professional career (following
Hamburg, Essen, and Bonn) lasted from 2006 to 2009 and
was split into several periods.

(i) CB1-Rs are typically located presynaptically on
neurones and their activation leads to the inhibition of the
release of the respective neurotransmitter (Schlicker and
Kathmann 2001; Szabo and Schlicker 2005). Examples of
such receptors could be identified on noradrenergic neurones
of the hippocampus and of blood vessels (Table 4) and on the
dopaminergic amacrine cells of the retina (Schlicker et al.
1996b). Presynaptic CB1-Rs were found in human and guinea
pig but not rat and mouse hippocampus (Schlicker et al.
1997b). This finding stresses once again that one has to be
careful when using rodent tissues as a model for humans. The
CB1-R inverse agonist rimonabant facilitated (or tended to
facilitate) transmitter release in the human and guinea-pig hip-
pocampus (Schlicker et al. 1997b) and in the guinea-pig retina
(Schlicker et al. 1996b). Although this phenomenon may be

related to an increased formation of endocannabinoids (e.g.,
anandamide or 2-arachidonoylglycerol), the alternative expla-
nation, i.e. that the CB1-Rs are constitutively active, is at least
as likely (Pertwee 2005; Szabo and Schlicker 2005). It is of
interest in this context that the density of CB1-Rs in some
brain regions exceeds 1 pmol/mg and is higher than that of
any other G protein-coupled receptor (Baker et al. 2003).

It is tempting to assume that the CB1-Rs identified in hu-
man hippocampus also contribute to the effects of hashish/
marijuana on cognitive functions although one has to consider
that presynaptic inhibitory CB1-Rs also occur on hippocampal
glutamatergic neurones which prevail when compared to nor-
adrenergic neurones (Szabo and Schlicker 2005). A similar
reasoning may hold true for rimonabant, which was available
from 2006 to 2009 as an anti-obesity agent and was with-
drawn from the market due to its potential of serious psychi-
atric disorders (Ioannides-Demos et al. 2011). Provided that
the retinal CB1-Rs also occur in humans, the possibility has to
be considered that decreased retinal dopamine release is the
biological substrate for the use of cannabis by Caribbean fish-
ermen to ameliorate their night vision (West 1991). It has been
shown for mice that the decrease in retinal dopamine occur-
ring by night is associated with an increased rod electrical
coupling (Jin et al. 2015). In that study, the rod coupling could
be further increased by a D2-R antagonist and it would be
plausible that the same may hold true for the inhibition of
dopamine release.

(ii) Anandamide induces complex cardiovascular effects. In
urethane-anesthetized mice and rats, rapid intravenous (i.v.) in-
jection of anandamide elicits a triphasic response (e.g.,
Malinowska et al. 2001, 2010, 2012; Kwolek et al. 2005): phase
I—a rapid, pronounced bradycardia and a transient drop in blood
pressure; phase II—a brief pressor response, and phase III—a
more prolonged, marked decrease in blood pressure. Since sim-
ilar triphasic changes were also obtained after i.v. administration
of methanandamide, a stable analog of anandamide, one can
exclude the possibility that anandamide acts indirectly via its
arachidonic acid metabolites (Malinowska et al. 2001). In

Fig. 9 The ceremony of awarding
the title of Doctor honoris causa
of the Medical University of
Białystok (Poland) to Manfred
Göthert (12 December 2003).
First line: Barbara Malinowska,
Manfred Göthert, and Maciej
Kaczmarski. Second line:
Włodzimierz Buczko, Edmund
Przegaliński, Zbigniew Herman,
Jacek Nikliński, and Jan Górski.
Note that B. Malinowska and W.
Buczko (e.g., Malinowska et al.
1995) and E. Przegaliński
(Przegaliński et al. 2005)
cooperated with Manfred Göthert
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conscious rodents, phase II is the most evident one, phase I is
induced only by the higher doses of anandamide, and phase III is
absent. As early as in 1996, it was shown that CB1-Rs are in-
volved in the stimulation of phase III, since it was diminished by
their antagonist rimonabant (for review, see Malinowska et al.
2012). Three years later, anandamide was recognized as endog-
enous ligand of vanilloid TRPV1-Rs, since both it and
methanandamide were shown to induce vasodilation of rat iso-
lated mesenteric and hepatic arteries and the guinea-pig basilar
artery in a manner sensitive to the TRPV1-R antagonist
capsazepine (for literature, see Malinowska et al. 2001). Phase
I resembled the so-called Bezold-Jarisch reflex, which can be
induced by the activation of TRPV1-Rs and 5-HT3-Rs located
on vagal afferent C-fibers in the heart. Thus, M. Göthert decided
to use thismodel in order to checkwhether anandamide activated
TRPV1-Rs under in vivo conditions and we were the first dem-
onstrating this property of anandamide. The working hypothesis
of M. Göthert confirmed experiments in which the anandamide
and/or methanandamide-induced phase I (i) was abolished by
bilateral vagotomy and in pithed rats (the latter model offers
the opportunity to study drug effects on the peripheral cardiovas-
cular system only); (ii) was diminished by capsazepine and by
the non-selective TRPV1-R antagonist ruthenium red but not by
rimonabant; (iii) similarly to in vitro experiments, the TRPV1-R
agonist capsaicin was more potent than anandamide and
methanandamide in stimulation of phase I (Malinowska et al.
2001; Kwolek et al. 2005). Interesting enough, we found that
acute myocardial ischemia enhances the vanilloid TRPV1-R-
mediated Bezold-Jarisch reflex induced by low doses of ananda-
mide (Lupiński et al. 2011).

M. Göthert had also decided to deal with mechanism(s)
underlying phase II in urethane-anesthetized rats.
Rimonabant and bilateral vagotomy failed to modify phase
II excluding the involvement of CB1-Rs and the possibility
that it was the simple response to the preceding hypotension.
The additional use of pithed rats allowed us to determine pe-
ripheral and central components responsible for the
anandamide-induced and/or methanandamide-induced phase
II. The peripheral component (also observed in pithed rats;
most probably located in blood vessels) was sensitive to ni-
fedipine, ruthenium red, and pentobarbitone and, hence, prob-
ably represents a Ca2+-dependent mode of action. The central
one (absent in pithed rats) was reduced by some β-AR antag-
onists (the non-selective propranolol and the β2-selective an-
tagonist ICI118551 but not by the β1-AR antagonist
CGP20712), by an NMDA-R (MK-801) and by thromboxane
A2 (TP)-R antagonists (sulotroban, daltroban, and SQ 29548).
In addition, all above compounds decreased the pressor re-
sponse to intracerebroventricular (i.c.v.) injection of ananda-
mide (studied in the presence of CB1-R and TRPV1-R antag-
onists). Anandamide and methanandamide failed to bind to
TP-Rs on washed rat platelets and an inhibitor of thrombox-
ane A2 synthase furegrelate i.c.v. reduced the pressor effect of

anandamide i.v. suggesting that anandamide causes an in-
crease in thromboxane A2 synthesis in the brain (Kwolek
et al. 2005; Malinowska et al. 2010). We later identified the
paraventricular nucleus as the possible central site of ananda-
mide action (Grzęda et al. 2017).

(iii) The pioneering electrophysiological experiments on rat
nodose ganglion neurones demonstrating that cannabinoid recep-
tor agonists inhibited the 5-HT3-R-mediated currents (Fan 1995)
allowed M. Göthert again to study the function of his favorite 5-
HT3-Rs, this time in connectionwith cannabinoid pharmacology.
Indeed, non-competitive inhibitory effects of cannabinoid-R ag-
onists, mainly anandamide, CP55940, WIN55212-2 (but not its
inactive S-(-)-enantiomer WIN55212-3), which were resistant to
the CB1-R antagonist rimonabant, were determined in vitro on
the 5-HT-induced current in HEK 293 cells expressing recombi-
nant human 5-HT3A-Rs (Barann et al. 2002) and in vivo on the
Bezold-Jarisch reflex induced by the 5-HT3-R agonist
phenylbiguanide (but not by the TRPV1-R antagonist capsaicin)
in urethane-anaesthetized rats (Godlewski et al. 2003; Table 2).
The cannabinoids act probably at an allosteric modulatory site of
the 5-HT3-R itself because of (i) the slow development of the
inhibition (about 3 min in vitro and 10-20 min in vivo); (ii) the
failure of cannabinoids to inhibit binding of the 5-HT3-R
radioligand 3H-GR65630 to membranes of HEK 293 cells stably
transfected with human 5-HT3A-Rs; and (iii) the lack of an inhi-
bition of the 5-HT-induced current when the cannabinoids were
administered to the patches exclusively during, but not before,
stimulation with 5-HT. The necessity of stimulation of the 5-
HT3-Rs at their orthosteric site for the inhibitory effect of anan-
damide exerted via its allosteric binding site was confirmed in
double CB1/CB2-R knockout mice, in which the anandamide-
induced analgesia (but not catalepsy)was reduced in the presence
of the 5-HT3-R antagonist ondansetron preventing 5-HT tonical-
ly released from the adjacent serotoninergic nerve terminals from
binding to the orthosteric site (Rácz et al. 2008). The inhibitory
influence of cannabinoids on 5-HT3-Rs may be important in 5-
HT3-R-mediated responses like analgesia and emesis.

One should keep in mind that the function of 5-HT3-Rs is
modulated by numerous substances (e.g., Al Kury et al. 2018).
We found that (+)-tubocurarine (but not another non-
depolarizing neuromuscular blocking agent, pipecuronium)
inhibited and substance P (but not mastoparan, a peptide from
wasp venom that shares the property of substance P to activate
G proteins) potentiated the 5-HT3-R (but not the TRPV1-R)-
mediated Bezold-Jarisch reflex (Malinowska et al. 1996).

Anandamide and methanandamide allosterically inhibit the
n i co t ine -evoked cu r r en t s th rough recombinan t
homopentameric α7 nACh-Rs in Xenopus oocytes (for
literature, see Baranowska et al. 2008). Allosteric sites on a
transmitter-gated ion channel may be considered potential tar-
gets of new classes of therapeutic drugs. Thus, Manfred
Göthert decided to check whether methanandamide inhibits
the function of the above receptors under in vivo conditions

1852 Naunyn-Schmiedeberg's Arch Pharmacol (2021) 394:1829–1867

1 3



in urethane-anesthetized pithed rats treated with atropine.
Urethane anesthesia makes the potential involvement of pre-
synaptic CB1-Rs unlikely (Kurz et al. 2009). We found that
methanandamide (similarly to the subunit-non-selective
nACh-R antagonist hexamethonium and the selective α7
nACh-R antagonist methyllycaconitine) reduced the
nicotine-induced tachycardia (maximally by 40% in each
case). Non-additivity of their inhibitory effects suggested that
methanandamide acts probably at an allosteric site of α7
subunit-containing nACh-Rs (Baranowska et al. 2008).

Conclusions

Manfred Göthert has published no less than 271 papers, 110
of which are related to serotonin; his h index amounts to 57
(Google Scholar, accessed on March 26, 2021). Some of his
major scientific achievements and their clinical implications
will be heralded below (“Major scientific achievements” and
“Clinical implications” sections).

Major scientific achievements

The mechanism of action of general anesthetics was unclear
over a long time period. TheMeyer-Overton rule (1899-1901)
only describes that there is an excellent correlation between
their potency as anesthetics and their hydrophobicity (Fig.
10). There was general belief that the anesthetics act via un-
specific hydrophobic interactions with membrane lipids or
lipoproteins. By contrast, Manfred Göthert showed in 1974
that anesthetics are negative allosteric modulators of nACh-Rs
(later extended to 5-HT3-Rs, another group of ligand-gated
cation channels), i.e. that they exhibit specific hydrophobic
properties. Using electrophysiological techniques, Franks
and Lieb (1984) showed that anesthetics act on central
NMDA-Rs, a third type of ligand-gated cation channels
(Fig. 10). Subsequent studies revealed that they also act as
positive allosteric modulators at GABAA-Rs, another example
of ligand-gated ion channels which, however, lead to hyper-
polarization as opposed to depolarization obtained with
nACh-Rs, 5-HT3-Rs, and NMDA-Rs. Today, the concept of
a specific interaction of anesthetics with GABAA-Rs is widely
acknowledged as their site of action (Fig. 10). Unfortunately,

1899
Meyer; 1901 Overton: lipid the-
ory, strong correla�on of hydro-
phobicity and anesthe�c potency

1974
Göthert; 1976 Göthert and Thiel-
ecke: specific hydrophobic inter-
ac�on of halothane or alcohols
with membrane proteins such as
nACh receptors, causing reduced
noradrenaline release from sym-
pathe�c nerve terminals

1989
Göthert and Fink: specific hydrophobic
interac�on of alcohols with ligand-gated
ion channels such as NMDA receptors
with specific GluN2B subunit assembly or
5-HT3 receptors

1984
Franks and Lieb: specific hydro-
phobic interac�on of general ane-
sthe�cs with membrane proteins
according to the Meyer-Overton
rule

2002
Nelson et al.: GABAA receptors in dis�nct
thalamocor�cal CNS pathways mediate
seda�ve component of anesthesia

1997
Mihic et al.: specific interac�on of vola�le
anesthe�cs or alcohols with GABAA li-
gand-gated ion channels

2003
Jurd et al.; Reynolds et al.: specific β2 or
β3 containing GABAA receptor subunit as-
semblies mediate seda�on and anesthe-
sia

2005
Farrant and Nusser; 2012; Brickley and
Mody: extrasynap�c GABAA receptors
(mainly α4/α5/α6 assembled) mediate
tonic inhibi�on in CNS, role in general
anesthes�c-induced amnesia and memo-
ry blockade

GABAA

NMDA nACh

nACh5-HT3

GABAA extrasynap�c

NMDANaV CaV
NMDA

Somadendri�c

Axonal

Presynap�c

Postsynap�c

Glutamater-
gic neurone

GABAergic
neurone

1846
Morton (reviewed by Robinson
and Toledo 2012): diethyl ether
for general anesthesia; further
structurally diverse compounds
with anesthe�c and analgesic ef-
fects such as N2O or chloroform in
clinical use .

Fig. 10 Milestones in the elucidation of the mode of action of general
anesthetics and Manfred Göthert’s contributions (seminal papers are
given in the boxes). Manfred Göthert showed that the general
anesthetic halothane is a negative allosteric modulator at periperal
nACh und 5-HT3 receptors; in other words, anesthetics have a much
more specific effect than suggested by the Meyer-Overton hypothesis.
According to Franks and Lieb (1984, 1997), anesthetics inhibit nACh
and 5-HT3 receptors which are also present in the brain (see figure) and
NMDA receptors solely occurring in the brain (see figure) and stimulate
central GABAA receptors (see figure). All receptors are ligand-gated ion

channels; only the GABAA receptors (today believed to be the major
target of anesthetic action) are inhibitory. Manfred Göthert also showed
that ethanol inhibits peripheral nACh and 5-HT3 receptors at concentra-
tions obtained under moderate intoxication. Simultaneously with, but
independent from, Lovinger et al. (1989), he found that ethanol inhibits
NMDA receptors at concentrations occurring under social drinking. Note
that the action of general anesthetics and ethanol is very selective: E.g.,
voltage-dependent cation channels (NaV, CaV; see figure) are affected at
extremely high concentrations only
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the pioneering work of Manfred Göthert was not appreciated
by the scientific community and, deeply disappointed, he
wrote in retrospect (Göthert 2014): Thus, we were the first
to identify the nACh and the 5-HT3 receptor, two ligand-
gated ion channels, as sites of action of halothane. These re-
sults were obtained about one decade earlier than the same
conclusions from electrophysiological data. My biochemical
models obviously were unknown systems used by an un-
known author, who published so far unknown results – a
typical constellation for not being cited in the relevant
literature.

Manfred Göthert also observed that ethanol, like the gen-
eral anesthetics, inhibits peripheral nACh-Rs and 5-HT3-Rs
and that the effect on the nACh-Rs occurred at ethanol con-
centrations compatible with moderate intoxication (Göthert
and Thielecke 1976). More than 10 years later, he examined
the effect of ethanol also on central NMDA-Rs (Fig. 10).
Again, an inhibitory effect could be shown and the potency
of ethanol at NMDA-Rs was even higher than that at periph-
eral nACh-Rs (Göthert and Fink 1989; see Fig. 5 in Göthert
et al. 2020). The study by Göthert and Fink et al. (1989),
together with that by Lovinger et al. (1989) based on an elec-
trophysiological technique, demonstrates that the NMDA-R is
a major site of action of ethanol.

For the sake of comparison, Manfred Göthert also consid-
ered noradrenaline release evoked by activation of Gq protein-
coupled receptors, K+ depolarization, and electrical stimula-
tion (Table 3). The fact that noradrenaline release evoked by
the latter methods was affected by very high concentrations of
halothane and ethanol only (if at all) shows again that the two
compounds possess a highly specific mode of action.
Electrical stimulation, via activation of voltage-dependent
Na+ channels, eventually leads to opening of voltage-depen-
dent Ca2+ channels (VDCC). It was tempting to assume that
the VDCCs in the rabbit heart are blocked by the classical
Ca2+ antagonists like verapamil but this held true for extreme-
ly high concentrations only, excluding that L-type VDCCs
(present nomenclature: CaV1.x) are involved (Göthert et al.
1979c). In subsequent years whenmore appropriate drug tools
had become available, Manfred Göthert could show that the
VDCCs in the rat and human neocortex belong to the P-/Q-
type (CaV2.1; major part) and N-type (CaV2.2; minor part)
(see the “Gabapentinoids and voltage-gated Ca2+ channels”
section), whereas the VDCCs in the human atrium belong to
the N-type (CaV2.2; Molderings et al. 2000c). The L-type, P-/
Q-type, and N-type VDCCs differ in their α1 subunit; another
part of the VDCCs, the α2δ subunit, is inhibited by the
gabapentinoids and Manfred Göthert could disclose a chain
of events involved in their therapeutic action in rat and human
brain (see the “Clinical implications” section).

Part of the nACh-Rs, 5-HT3-Rs, and NMDA-Rsmentioned
above are presynaptic receptors which represent another re-
search field in which Manfred Göthert excelled. Examples of

presynaptic receptors have been described decades ago but
systematic studies started around 1970 only (Fig. 11).
Manfred Göthert became interested in this topic from 1974
on and in the subsequent three decades, there was a lively
competition between the groups of E. Muscholl in Mainz, K.
Starke in Freiburg, and Manfred Göthert in Essen and since
1986 in Bonn; many of the numerous papers dedicated to this
topic appeared in Naunyn-Schmiedeberg’s Arch Pharmacol.
Manfred Göthert studied 23 different types of presynaptic
receptors (Fig. 11); he was most interested in presynaptic re-
ceptors on central serotoninergic and noradrenergic neurones
and on peripheral noradrenergic neurones. He was the first to
identify presynaptic somatostatin and ACTH (MC2)-Rs
(Göthert 1980b, 1981) and (together with Cerrito and Raiteri
1979) serotonin autoreceptors (Göthert and Weinheimer
1979). Twelve receptors were also examined in human tissues
(Tables 1 and 4). Although the mere identification of presyn-
aptic receptors was important per se (since this area was terra
incognita at that time), Manfred Göthert provided more than
just functional anatomy. Thus, his studies were helpful with
respect to the elucidation of receptor classification (e.g., of
serotonin receptor subtypes, see next paragraph). Moreover,
he disclosed the inhibitory interaction of different types of Gi/o

protein-coupled presynaptic receptor types with each other or
revealed the mechanisms behind the receptor level (e.g., by
increasing cAMP levels or inhibiting Gi/o protein by N-
ethylmaleimide or pertussis toxin).

Manfred Göthert is identified with serotonin by many
colleagues and indeed research dedicated to this mono-
amine accompanied him from the early seventies of the
previous century until his death. When his interest for
serotonin was kindled for the first time, there was only
the simple classification of Gaddum and Picarelli (1957),
encompassing D (5-HT2A)-Rs and M (5-HT3)-Rs. Using
organ bath studies and experiments on pithed rats and on
anesthetized animals, he identified new models of those
receptors or refined the available ones. Moreover, he
showed effects of serotonin itself or of its derivatives on
postsynaptic α-adrenoceptors or examined their indirect
sympathomimetic effect. In cooperation with H.G.
Baumgarten, he studied the selectivity of the neurotoxins
5,6-DHT and 5,7-DHT in terms of serotoninergic and
noradrenergic neurones (“Early studies” section). Few
years later, a new serotonin receptor classification (5-
HT1 and 5-HT2), based on radioligand binding studies,
was proposed by Peroutka and Snyder (1979). Manfred
Göthert also switched to methods based on radioligands,
i.e. superfusion studies on tissues preincubated with 3H-
serotonin , and ident i f ied presynapt ic serotonin
autoreceptors and heteroreceptors as well as presynaptic
heteroreceptors on serotoninergic neurones (“Presynaptic
serotonin heteroreceptors on noradrenergic neurones” and
“Presynaptic heteroreceptors on serotoninergic neurones”
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sections, Tables 1 and 2). Again some years later, seroto-
nin receptor subclassification was no longer based on na-
tive but on cloned receptors (starting with Lübbert et al.
1987). Manfred Göthert took the opportunity to further
refine his methodological armamentarium and compared
the properties of naturally occurring mutants of human
serotonin receptors with their respective wild types both
of which were expressed in cell lines. Differences were
obtained for almost all receptors under study and at least
some of them are clinically relevant (see the “Clinical
implications” section).

When Manfred Göthert was retired in 2006, the number of
serotonin receptor families had increased to seven and the
complete number of subtypes had reached at least 14 entities
(Göthert et al. 2020). As a matter of fact, he dealt with 6 of the
7 receptor families (except for 5-HT6-Rs) but 5-HT3-Rs fasci-
nated him most (Fig. 12). Three aspects will be briefly
discussed. First, simultaneously with, but independently from,

Fozard et al. (1979), he identified the 5-HT3-R leading to
noradrenaline release in the rabbit heart; this presynaptic re-
ceptor serves as one of the peripheral targets of anesthetics
(Tables 2 and 3). Second, he provided an in-depth analysis
of the human 5-HT3-R expressed in a cell line, using four
elegant methods (Table 2, Fig. 12). Third, he studied splice
variants and naturally occurring variants of this receptor and
was involved in the delineation of the 5-HT3C, 5-HT3D, and 5-
HT3E subtypes (Figs. 4 and 12).

Clinical implications

The oeuvre of Manfred Göthert not only is important from the
viewpoint of science but also has numerous clinical implica-
tions some of which will be highlighted here.

& His discovery that the inhibitory effect of halothane on
nACh-R-mediated noradrenaline release in cardiovascular

Fig. 11 Milestones in the identification of presynaptic receptors and
contributions of Manfred Göthert (seminal papers are given in the
boxes). The figure shows that he studied the modulation of
noradrenaline release from postganglionic sympathetic neurones by 15
types of presynaptic receptors. Activation of ligand-gated ion channels
(LGICs), Gq-coupled and Gs-coupled receptors increases noradrenaline
release (+; see vesicles fusing with the cell membrane and releasing nor-
adrenaline molecules into the synaptic cleft); activation of Gi/o protein-
coupled receptors decreases noradrenaline release (−). Signaling follow-
ing activation of G protein-coupled receptors as described by Kubista and
Boehm (2006). The types of presynaptic receptors studied by Manfred

Göthert are given next to the yellow boxes; in the case of the 5-HT4-R, a
parasympathetic neurone is interpolated and the increased release of ACh
eventually leads to inhibition of noradrenaline release (for details, see the
“Presynaptic serotonin heteroreceptors on noradrenergic neurones” sec-
tion). On noradrenergic and serotoninergic neurones of the brain, only
LGICs and Gi/o protein-coupled presynaptic receptors occur (not shown)
and 13 types of presynaptic receptors were identified byManfred Göthert
(see table on the right hand side). Altogether, 23 different types of pre-
synaptic receptors were examined. ACh, acetylcholine; PKA, protein ki-
nase A; PKC, protein kinase C; PLC, phospholipase C
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tissues occurs in a concentration range obtained under
general anesthesia was an early hint that this anesthetic
has a much more specific site of action than believed be-
fore (Göthert 1974).

& The inhibitory effect of ethanol on NMDA-R-mediated
transmitter release in the brain represents one of its major
sites of action (Göthert and Fink 1989).

& The inhibitory effect of gabapentin and pregabalin (inhib-
itors of the α2δ subunit of voltage-dependent Ca2+ chan-
nels) on AMPA-induced noradrenaline release occurred
under clinically relevant concentrations of these drugs
(Fink et al. 2002b).

Manfred Göthert has identified numerous sites of presyn-
aptic receptors involved in the main action or the side effects
of drugs.

& The serotonin autoreceptor in the brain may serve as an
example. Many antidepressants, including the selective
serotonin re-uptake inhibitors (SSRIs), have an indirect
effect on the autoreceptor, i.e. the increased serotonin

concentration in the synaptic cleft downregulates the den-
sity of the autoreceptor via which the monoamine restricts
its own release; as a consequence, serotonin release is
gradually increasing. This phenomenon explains why the
effect of such antidepressants is developing with a time lag
of some days or few weeks (Göthert and Schlicker 1993).
Although it is an attractive hypothesis that 5-HT1B-R an-
tagonists, by interrupting the negative feedback loop, may
elicit an immediate increase in serotonin release associated
with an instantaneous onset of antidepressant activity, lit-
tle evidence for such antidepressants is currently available
(Tiger et al. 2018). Nonetheless, interesting data exist for
the β-blocker pindolol, which also blocks presynaptic 5-
HT1B autoreceptors and, at even lower concentrations,
somadendritic 5-HT1A autoreceptors. In some but not all
clinical studies, pindolol accelerated and/or increased the
antidepressant activity of SSRIs when given in combina-
tion (Artigas et al. 2018).

Manfred Göthert studied the molecular properties of
naturally occurring serotonin-R-variants in cell lines

Manfred Göthert’s work

- Na+  replacements

- drug interactions:

• alcohols 

• general and local anesthetics

• receptor antagonists

• allosteric antagonists

• imidazolines 

• steroids 

• cannabinoids

- differences between wild-type 

and variant

- association with a disease 

1957 
Gaddum and Picarelli
5-HT3-Rs on ileal 
cholinergic neurones

1979 
Fozard et al.;
Göthert and Dührsen 
5-HT3-Rs on sympa-
the�c neurones

1956 
Salmoiraghi et al.
5-HT3-R-mediated  
ac�va�on of the Be-
zold-Jarisch reflex

1985 
Richardson et al.
Potent and 
selec�ve 
5-HT3-R  antagonists

1987 
Kilpatrick  et al.
Iden�fica�on of 
5-HT3-Rs in the brain 
using 3H-GR65630

1995 
Belelli et al.;
Miyake et al.
Molecular cloning 
of the 5-HT3A-R

2007 
Niesler…Göthert… et al.
Co-expression of 5-HT3C, 

5-HT3D  or 5-HT3E with 
5-HT3A subunits leads to a 
func�onal  5-HT receptor

1991-1992 
Ondansetron, grani-
setron, tropisetron
approved for medical 
use as an�eme�cs

Fig. 12 Milestones in determination of 5-HT3-R structure and function and some methods and results of the work of Manfred Göthert (seminal papers
are given in the boxes)
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transfected with the respective cDNAs. Two examples
for which differences between mutant and wild type
exist and additional studies in humans or in human tis-
sue were performed will be heralded here.

& First, the Arg219Leu variant of the 5-HT1A-R is associated
with major depression and may play a role in the patho-
genesis of depression (Haenisch et al. 2009).

& Second, occurrence of the Phe124Cys variant of the 5-
HT1B-R led to a more marked contraction of human ves-
sels to serotonin and may explain the increased liability of
some individuals to sumatriptan-induced vasospasm
(Verheggen et al. 2006).

The aforementioned examples are related to ligand-
gated and voltage-dependent cation channels, to presyn-
aptic receptors and to serotonin receptors, the classical
topics of Manfred Göthert, but one should not overlook
important clinical implications from another two areas of
his research.

& At the very beginning of his scientific career, Manfred
Göthert dealt with carbon monoxide toxicology. His
studies revealed that lowering of the general threshold
limit value (MAK) for CO from 100 to 50 ppm was
justified but that a special adjustment for Caisson
workers was not necessary (“Carbon monoxide toxi-
cology” section).

& Towards the end of his career, Manfred Göthert became
interested in agmatine. He was involved in studies in
which agmatine formation by bacteria in the human gas-
trointestinal tract, its handling by the human body (includ-
ing a special carrier), and its putative antiproliferative ef-
fect in human tissue was described (Fig. 8).

Personal remarks

Aspects apart from scientific issues have not been considered
here. Thus, Manfred Göthert served as highly estimated aca-
demic teacher or as dedicated Dean of the Medical Faculty of
the University of Bonn (1998-2002) and President of the
German Soc ie ty for Exper imenta l and Cl in ica l
Pharmacology and Toxicology (DGPT; 1997-1999) and the
Federation of European Pharmacological Societies (EPHAR;
2004-2006). Manfred Göthert excelled through all aspects of
his professional career. We remember him “as a constantly
smiling man, an eternal optimist, determined in his views,
kind, straightforward and spontaneous in dealing with other
people, who did not care about maintaining a distance be-
tween him as a boss and colleagues and for whom being a
scientist was not only a profession but a lifestyle” (obituary by
Malinowska et al. 2020). We dearly miss him.

Abbreviations 2-Methyl-5-HT, 2-Methyl-5-hydroxytryptamine; 5-CT,
5-Carboxamidotryptamine; 5-HT, 5-Hydroxytryptamine (serotonin);
5 , 6 -DHT , 5 , 6 -D i h y d r o x y t r y p t am i n e ; 5 , 7 -DHT , 5 , 7 -
Dihydroxytryptamine; 6-HT, 6-Hydroxytryptamine; 8-OH-DPAT, 8-
Hydroxy-2-(di-n-propylamino)tetralin; ACTH, Adrenocorticotropic hor-
mone; ACh, Acetylcholine; ADC, Arginine decarboxylase; AMPA, α-
Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AR,
Adrenoceptor; COS, Cells being CV-1 (simian) in origin, and carrying
the SV40 genetic material; CRC, Concentration-response curve; DAO,
Diamine oxidase; edg, Endothelial differentiation gene; GABA, γ-
Aminobutyric acid; GppNHp, Guanosine-5′-[β,γ-imido]triphosphate;
GTPγS, Guanosine-5′-[γ-thio]triphosphate; HEK, Human embryonic
kidney; i.v., Intravenous; LGIC, Ligand-gated ion channel; LPA,
Lysophosphatidic acid; MAC, Minimal alveolar concentration; mACh,
Muscarinic acetylcholine; MAK, Maximale Arbeitsplatzkonzentration
(maximum concentration in the work place); nACh, Nicotinic acetylcho-
line; NMDA, N-Methyl-D-aspartate; NMDG, N-Methyl-D-glucamine;
OCT, OCTN, Organic cation transporters; ODC, Ornithine decarboxyl-
ase; PC12, Pheochromocytoma 12; ppm, Parts per million; R, Receptor;
SEM, Standard error of the mean; SHR, Spontaneously hypertensive rat;
siRNA, Short interfering RNA; SNP, Single-nucleotide polymorphism;
SSRI, Selective serotonin re-uptake inhibitor; TM, Transmembrane do-
m a i n ; T M A , T e t r a m e t h y l a m m o n i u m ; T r i s ,
Tris(hydroxymethyl)aminomethane; TRPV , Transient receptor potential
vanilloid; UTR, Untranslated region; VDCC, Voltage-dependent calcium
channels; τOFF, Inactivation time constant; τON, Onset time constant
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