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Abstract

In cytometry analysis, a large number of markers is measured for thousands or mil-

lions of cells, resulting in high-dimensional datasets. During the measurement of

these samples, erroneous events can occur such as clogs, speed changes, slow uptake

of the sample etc., which can influence the downstream analysis and can even lead

to false discoveries. As these issues can be difficult to detect manually, an automated

approach is recommended. In order to filter these erroneous events out, we created

a novel quality control algorithm, Peak Extraction And Cleaning Oriented Quality

Control (PeacoQC), that allows for automated cleaning of cytometry data. The algo-

rithm will determine density peaks per channel on which it will remove low quality

events based on their position in the isolation tree and on their mean absolute devia-

tion distance to these density peaks. To evaluate PeacoQC's cleaning capability, it

was compared to three other existing quality control algorithms (flowAI, flowClean

and flowCut) on a wide variety of datasets. In comparison to the other algorithms,

PeacoQC was able to filter out all different types of anomalies in flow, mass and

spectral cytometry data, while the other methods struggled with at least one type. In

the quantitative comparison, PeacoQC obtained the highest median balanced accu-

racy and a similar running time compared to the other algorithms while having a bet-

ter scalability for large files. To ensure that the parameters chosen in the PeacoQC

algorithm are robust, the cleaning tool was run on 16 public datasets. After inspec-

tion, only one sample was found where the parameters should be further optimized.

The other 15 datasets were analyzed correctly indicating a robust parameter choice.

Overall, we present a fast and accurate quality control algorithm that outperforms

existing tools and ensures high-quality data that can be used for further downstream

analysis. An R implementation is available.
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1 | INTRODUCTION

Flow cytometry is becoming a standard approach in daily clinical prac-

tice [1] and in large clinical studies where the underlying biological

mechanisms of diseases are being investigated [2,3]. Because of the

technological advancements in these fields, more and more samples are

being measured and for each sample, traditional flow cytometry can

now measure up to 40 markers on millions of cells, whereas mass cyto-

metry can measure more than 45 markers on thousands of cells [4,5].

To ensure that the data measured for these samples is high qual-

ity and has little variation, standardization, calibration, and quality

control guidelines have been set up [6–8]. However, even when using

these procedures and taking care to have the instruments run in opti-

mal conditions, technical issues can still occur. These can affect the

quality of the cytometry data, influence the downstream analysis and

lead to false discoveries [9].

Examples of technical issues are clogs during acquisition, resulting

in abrupt signal changes for a short period of time, after which the sig-

nal typically returns to its original level, gradual signal intensity

changes during the startup of the acquisition, and changes of the

acquisition speed that can result in a signal shift that remains shifted

[10]. Because of the wide variety in aberrations, it is not straightfor-

ward to find one universal cleaning or quality control approach that

can identify and remove all of them.

Currently, there are four tools available to detect quality issues in

cytometry data. With flowQ [11], figures can be generated to assert

the quality of the samples visually, but it does not flag any anomalies

itself. flowClean [12] will track changes in population frequency over

time and flag problematic regions. Timepoints where the distribution

of the populations are aberrant are detected by changepoint analysis

and events during these timepoints get flagged by adding a new

parameter to the fcs file. flowAI [9] works on three levels: it tests the

stability of the flow rate by outlier detection analysis, the stability of

the signal measurement by changepoint analysis of the medians, and

the dynamic range by outlier detection. It automatically returns a

cleaned file, or, if requested, adds a new parameter to the fcs file. The

last algorithm, flowCut, will calculate summed density measures using

the mean, median, several percentiles, skewness, and variation of the

flow signal and will remove the erroneous measurements based on a

density curve analysis [13].

One of the drawbacks of these algorithms is finding consistent

parameter settings that are suitable for different datasets. Another

disadvantage is that they were all developed for usage in flow cyto-

metry analysis but not for mass cytometry. Due to the lower measure-

ment speed, the different time unit and the presence of many zero

values, alterations have to be made either in the implementation of

the algorithms or in the data itself. A last limitation is the disadvantage

of the changepoint analysis which only allows the selection of one

consecutive part of the data. Therefore, flowAI and flowClean cannot

select only a part in the middle of the file for removal, even when the

signal returns to its original value afterwards. Additionally, the differ-

ent approaches have not yet been extensively compared in the cur-

rent literature.

In this work, we present a new tool, called Peak Extraction And

Cleaning Oriented Quality Control (PeacoQC), that overcomes these

limitations and that can handle flow cytometry (FCM) and mass cyto-

metry data. To evaluate our tool, we quantitatively compare it to the

three algorithms described above that can flag anomalies.

2 | MATERIALS AND METHODS

2.1 | Proposed method

An overview of the proposed method is found in Figure 1. As input, the

algorithm needs a preprocessed (transformed and, if appropriate, com-

pensated or unmixed) fcs file. Then it starts with identifying density

peaks in the marker expressions and uses two steps to filter out the

peaks that have aberrant values, based on their position in an isolation

tree or based on their Mean Absolute Deviation (MAD) distance. This

results in cleaned data that can be used for further analysis.

2.1.1 | Peak detection

Before the filtering steps, the measurements are split in overlapping

bins over time where the second half of one bin will correspond to

the first half of its consecutive bin. For each of these bins, density

peaks are detected for every marker.

The number of events per bin are, by default, determined based

on the datatype of the input. If the data consists of FCM data, the

number of bins is determined by the number of measurements. The

algorithm will look for a number of events per bin that falls between a

default of 150 cells and a maximum that is determined by the total

number of events and a default of maximum 500 bins, rounded up to

a multiple of 500 events (Formula 1).

EventsPerBin¼ floor MaxEvents=500ð Þ�500ð Þþ500 ð1Þ

where MaxEvents¼ TotalEvents=MaxBinsð Þ�2 and floor rounds

down to an integer.

When mass cytometry data is measured, the determination of the

number of events per bin also takes into account the amount of zero

values present. The maximum number of bins is not taken by default

but is set to the number of nonzero values in the marker with the

most zero values, divided by 150, which is in most cases less than the

limit of 500. This is necessary to ensure enough nonzero values for a

robust peak detection.

In each bin, peaks are determined per marker. A peak value is

defined as a marker expression value that has a higher density than its

previous and next expression value and that has a density value that

is higher than 1/3th of the maximum density found in the given

expression range. Peaks smaller than 1/3th of the maximum peak are

considered as potential noise and are thus not required to be stable

over time. Note that if mass cytometry data is given to the algorithm,

the zero values are not taken into account while determining the
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peaks. To ensure stable peaks over the entire measurement, a peak

selection step is performed where the medians of the peaks that are

represented in at least a default of 10% of the bins are calculated. If a

bin has multiple peaks, only those are kept that are closest to the

determined medians.

At the end of the peak detection step, a matrix is built where the

bins are represented in the rows and there is a column for each peak of

each marker. This peak matrix is used in the following filtering steps.

Note that we recommend to apply the peak detection on a trans-

formed and, when relevant, compensated or unmixed file, to improve

the accuracy of the peak detection.

2.1.2 | Filtering

A first filtering step is done by using an isolation tree, a method based

on the anomaly detection method Isolation Forest which isolates

every point in the data and classifies them as outliers if they are easily

separable [14]. The implementation of the isolation tree used in the

proposed algorithm is based on the IsolationForest package [15].

However, only one tree is used and no randomness is applied, as we

are not concerned about overfitting issues or the generation of a

model since the model only has to be used for this specific sample.

In this implementation, the tree is built by iteratively determining

the marker and peak (i.e., a column in the peak matrix) that could

produce the best split, grouping the bins (i.e., rows) with similar values.

At the end of the iterative process, the largest node is kept and is con-

sidered to have similar peak values for every marker in every bin. This

results in the removal of all bins that are not located in this one node

from the peak matrix. Evaluating the quality of a split is done by For-

mula 2. Pseudocode for building the isolation tree is shown below. By

grouping the bins by expression value rather than by time, we avoid

the effect of changepoint detection methods where only one consec-

utive part of the data can be selected. Only applying splits with a mini-

mal gain avoids unnecessary splits of similar values.

CalculateGain Xð Þ¼max s � Xð Þ sd Xð Þ� sd y j y > s,y�Xf gð Þþsd y j y ≤ s,y�Xf gð Þð Þ=2ð Þ
ð2Þ

with X all values in the column, computing the Gain as the maximum

difference in standard deviation and the SplitValue as the s which

maximizes this gain.

BuildIsolationTree(PeakMatrix, GainLimit = 0.6)

MaxDepth = Log2(nrows (PeakMatrix))

Root = node[ids=1:nrow(PeakMatrix),

depth=0]

IsolationTree.addChild(Root)

NodesToSplit = list()

NodesToSplit.add(Root)

WHILE (any(NodesToSplit)){

F IGURE 1 Schematic overview of the proposed method. The raw fcs files should first be preprocessed according to the suggested workflow
in the blue box, which can include the removal of margins, compensation, and transformation. The method itself starts with a preprocessed fcs
file. First, the sample is binned and density peaks are determined, clustered, and filtered per bin. The cleaning part of the method starts with the

usage of an isolation tree, then it will remove peaks based on their MAD distance and it ends by connecting disjointed removed regions. The
method returns a cleaned fcs file [Color figure can be viewed at wileyonlinelibrary.com]
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CurrentNode = NodesToSplit[1]

CurrentMatrix = PeakMatrix

[CurrentNode.ids, ]

BestGain=0

FOR (Column in CurrentMatrix){

Gain, SplitValue = CalculateGain

(CurrentMatrix[, Column])

IF (Gain > BestGain){

BestColumn = Column

BestGain = Gain

BestSplit = SplitValue

}

}

IF (BestGain > GainLimit) {

ids_l = currentNode.ids[CurrentMatrix[,

BestColumn] BestSplit]

ids_g = currentNode.ids[CurrentMatrix[,

BestColumn] > BestSplit]

DaughterNode1 = node[ids = ids_l,

depth = CurrentNode.depth+1]

DaughterNode2 = node[ids = ids_g,

depth = CurrentNode.depth+1]

CurrentNode.addChild(DaughterNode1)

CurrentNode.addChild(DaughterNode2)

GainLimit = BestGain

if(DaughterNode1.depth < MaxDepth)

NodesToSplit.add(DaughterNode1,

DaughterNode2)

}

NodesToSplit.remove(CurrentNode)

}

return IsolationTree

Note that the isolation tree can be sensitive to a low number of

bins and is by default not used when less than a default of 150 bins

were measured since it can remove too much of the data.

Since the isolation tree sometimes fails to find subtle changes in the

peak ranges, a second filtering step is applied. In this filtering step, the

noise is first removed by applying a smoothing spline to all peak ranges

individually. Then, a bin is filtered out when its smoothed value is further

than the default of six Median Absolute Deviations (MAD) away from

the median of the entire smoothed peak range for any of the peaks.

MAD Xð Þ¼median Xi� eX��� ���� �
withXi the individual values and eX

the median of all values

To avoid small regions being kept while the bins around them have

been filtered out, any remaining regions of only five consecutive bins or

less also get removed. This sometimes occurs when the algorithm is not

stringent enough and a bin in a noisy region appears quite similar to the

stable region in another part of the measurement (see Figure S3).

At the end of this process, cleaned data is returned where all the

measurements from the bins that have been filtered out in the isola-

tion tree or by the MAD detection method are removed.

2.1.3 | Checks

Next to the filtering steps, PeacoQC checks if none of the markers

have a monotonic increasing or decreasing signal since this can influ-

ence the further analysis of the data. This type of signal pattern can

occur due to, for example, DAPI contamination when the cytometer is

not properly cleaned between the measuring of different samples. If

this pattern occurs, the algorithm will provide a warning, but will not

filter out any cells based on this anomaly, as this issue is not specific

to a limited region in the data.

A warning will also be given if more than 70% of the measure-

ments are removed by the algorithm since this could indicate either a

bad quality sample or a wrong parameter setting in the algorithm for

this sample.

2.1.4 | Parameter settings

In our experience, the default settings work in a wide range of

datasets, as demonstrated in the results section. However, if the user

would notice that the algorithm is more or less strict then required for

their specific application, a number of parameters can be changed

from their default value by the user to optimize the results. Three of

these parameters indicate the strictness of the method, three influ-

ence the bin size and one specifies whether the data is mass

cytometry data.

The gain limit of the isolation tree (IT_limit, default 0.6) indicates

how strong outlier datapoints influence the standard deviation evalu-

ated when building the tree, only making additional splits in the tree

(and thus removing the outliers) if the decrease in standard deviation

is sufficiently high. By lowering this limit, the algorithm will be more

strict and outliers will be removed sooner.

The number of MADs allowed (MAD, default 6) is evaluated after

the selection of the isolation tree to identify strong effects only pre-

sent in individual channels, which might be missed in the high-

dimensional space. The lower the number of MADs allowed, the more

strict the algorithm will be and more cells will be removed.

One of the strengths of our algorithm is that it can select dis-

jointed regions for removal, for example in the case where two small

blockages occur during the measurement. However, in some rare

cases, this also results in small regions being kept, while the bins

around them have been filtered out. In this case, the number of con-

secutive bins between regions of removed bins (consecutive_bins,

default 5) can be increased in order to make the method more strict.

The number of measurements per bin is by default calculated

based on the number of events of the entire sample. The minimal

number of events per bin (min_cells, default 150) and the maximum

number of bins (max_bins, default 500) can be chosen in this case.
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Increasing the minimal number of events per bin will improve the peak

detection, as the density estimation will be more accurate, but having

too few bins in total will make it more difficult to estimate whether a

signal is stable. When the number of events per bin is high, removal of

a single bin will also immediately have a big impact on the total num-

ber of cells remaining. The default values proposed present a good

trade off in most cases we observed. Alternatively, the user can

choose the exact number of events per bin. This can be relevant when

there is an exceptionally high or low number of events. It should be

kept in mind that increasing the number of bins will result in a longer

computation time, and in all experiments reported in our results the

number of bins is calculated by default.

As explained in the peak detection section, the zero events pre-

sent in mass cytometry data can make the peak detection unstable.

To indicate that the user is working with mass cytometry data, we rec-

ommend setting the remove_zeros parameter to TRUE.

2.1.5 | Visualization of the result

At the end of the quality assessment, a figure is generated when, by

default, more than 20% of the data is removed to allow for a visual

assessment of the cleaning on all the markers of the data. When mul-

tiple samples are cleaned, a heatmap can also be made to quickly visu-

alize how much each filter step removed for each sample and with

which parameters the quality control has been done.

2.1.6 | Availability

The proposed algorithm is implemented in the “PeacoQC” R package,

available on github at www.github.com/saeyslab/PeacoQC and dis-

tributed by the BioConductor platform at https://doi.org/10.18129/

B9.bioc.PeacoQC. As input, the user needs to provide a flowframe, a

class of the flowCore package [16], and the markers on which the

density peaks should be detected and cleaned. Optionally, the default

parameters that were previously described can also be altered.

The evaluation pipelines that were used to generate the results

for this manuscript are all coded in the R language and are available at

www.github.com/saeyslab/PeacoQC_evaluation. Figures S4 and S5

are available here as well in high resolution.

Four different datasets were used for the generation of the

results where PeacoQC is compared to three other algorithms. The

first dataset is an inhouse dataset where three different types of

anomalies were deliberately introduced during measurements on the

flow cytometer using four mice spleen samples. The second dataset

consists of one mass cytometry fcs file measured on human whole

blood while the third dataset consists of a spectral cytometry file mea-

sured on mouse spleen. The mass cytometry file was provided by the

GENYO institute. All donors signed an informed consent according to

the ethical protocol of the Andalusian Biobank. The protocol of the

project was approved by the Ethical Committee of Centro Granada

(CEI-Granada) according to the Helsinki declaration of 1975, as

revised in 2013. The mouse spleen data was provided by the Center

for Inflammation Research. Spleens were isolated from wild type

C57Bl/6 J mice that were housed in SPF conditions. All experiments

were performed in accordance with the ethical committee of the Fac-

ulty of Science of the VIB. The last dataset consists of 55 fcs files

from the FlowCAP IV challenge [17] that were manually annotated by

at least six different scientists. For each file, margin events were

removed and data was compensated and transformed. A subset of

10,000 cells was then displayed for the following markers: FSC-A,

SSC-A, IFNg, CD4, CD3, CD8. The figures were saved as svg files and

the scientists were asked to manually gate multiple files. The events

that were indicated as bad quality events and that should be removed

could then be retrieved and linked back to the original data. The first

three datasets are available at flowRepository ID FR-FCM-Z3YQ

together with the svg files of the fourth dataset and an overview of

which of the FlowCAP IV files were used. The FlowCAP IV files them-

selves can be accessed through flowRepository ID FR-FCM-ZZ99.

Additionally, we wanted to ensure that the default PeacoQC

parameter choices are suitable for a wide range of datasets. To evalu-

ate this, we selected all samples on flowRepository which fit the fol-

lowing criteria: the datasets had to be uploaded or updated in 2020,

the data had to be published in Cytometry Part A and could not

include data of other datasets, only samples that contained cells and

were fully stained were selected and the samples could not be altered

during their measurement since we expect a stable signal over time.

The information of the selected datasets can be found back in

Table S1. In total, we analyzed nine flow cytometry datasets, three

mass cytometry datasets, and four spectral cytometry datasets.

Note that all the files used in this work were first put through a

preprocessing pipeline that included the removal of margin events,

compensation and transformation where necessary.

2.2 | Comparison with other quality control
algorithms

We compared PeacoQC to three other quality control algorithms:

flowAI, flowClean and flowCut. The versions of the packages used in

the comparison can be found in Table S2. The default settings were

used for all the packages in all the experiments except for the runtime

experiment where the parameters for generating a figure, report and

fcs file were set to FALSE.

We used the in-house data to highlight how the quality control

algorithms handle some frequent recurring anomalies, as well as the

mass cytometry and spectral cytometry examples. The annotated

dataset from the FlowCAP IV challenge was used for a quantitative

comparison. To quantify the evaluation, balanced accuracies were cal-

culated for each method and each sample, as specified in Formula (3).

Balanced accuracy : SensitivityþSpecificityð Þ=2
Sensitivity : TP= TPþFNð Þ; Specificity : TN= TNþFPð Þ ð3Þ

where TP, true positives; FP, false positives; TN, true negatives; FN,

false negatives.
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For every cell, a vote was taken to decide the true label: a cell

was marked to be removed if the majority of the annotators labeled it

as such. A true positive then corresponds to a measurement that is

removed both by the algorithm and at least four scientists and a true

negative corresponds to a measurement that is kept by both the

majority of annotators and the algorithms. A false positive is a mea-

surement that is removed by an algorithm but not in the manual anno-

tation while a false negative is seen as a measurement that is kept by

an algorithm but removed in the manual annotation. In the end, the

balanced accuracy, sensitivity and specificity were calculated for the

algorithms compared in this work.

For easier interpretation of these values, we also created a baseline

by randomly removing the same amount of cells as was selected by the

manual annotation for each file. This gives us a baseline value of the

scores obtained by a method which works uncorrelated to the actual

regions of interest (while still removing the correct amount of cells).

To evaluate algorithm running times, we artificially created a set

of files ranging from 1000 to 3,000,000 cells, by concatenating file

010 of the flowCAPIV data five times and uniformly sampling the rele-

vant number of cells. This approach ensures that the amount of qual-

ity issues to detect stays similar for all files in this evaluation. The

duration that each quality control algorithm needed to clean the

subsampled data was timed three times with the system.time function

of the base R package and the average is reported.

All experiments described in this manuscript were run on a DELL

Precision 5530 with a Intel(R) Core(TM) i9-8950HK CPU processor

and 32GB of installed RAM.

3 | RESULTS

To illustrate the importance of quality control algorithms, we show an

example where the anomaly influenced the clustering of a specific

sample. Then, we show the robustness and precision of PeacoQC by

comparing it to three other existing quality control algorithms: flowAI,

flowCut, and flowClean. First, we compared the algorithms based on

how they handle different types of anomalies on different types of

data, and second, we compared their accuracy, precision and duration

in a quantitative way on a bigger dataset.

3.1 | Necessity of quality control algorithms

An often occurring issue is the signal increase during startup of the

acquisition of the sample. To illustrate the impact of this aberration,

we annotated a sample according to the time of acquisition (Figure 1).

During the startup, the signal is not stable yet and is increasing over

time for some channels, as indicated in red in Figure 2A. Independent

of the time, a FlowSOM clustering [18] was computed on the sample,

dividing the cells in small groups with similar marker expressions.

These clusters were then visualized as nodes in a minimal spanning

tree and colored by the time annotation, showing that the events that

fall in the startup period are clustering together, resulting in fully red

nodes (Figure 1B). We highlight two cluster subsets in Figure 2C

where we only color the cells of group 1, indicated in the red box in

Figure 2B, or group 2, indicated in the blue box. The cells contributing

to group 1 were only measured during the startup phase of the acqui-

sition, where the cells contributing to group 2 are spread during the

entire measurement, as would be expected when the cells are in sus-

pension. When this sample would be used for further analysis without

any cleaning, wrong assumptions could be made, based on the clus-

ters solely caused by a technical artifact.

3.2 | Different types of anomalies

We introduced three different types of anomalies on mouse cyto-

metry data to mimic those that we encounter in real experiments: a

permanent signal shift due to speed changes, a temporary shift in sig-

nal because of the slow uptake of a sample or a clog and the mono-

tonic increasing or decreasing effect on a signal because of

contaminations.

In two different samples, we introduced a speed change. The

increase of the setting from low to medium to high in the first sample,

caused no shifts in the signal medians (Figure 3A) which means that

no data cleaning is necessary. However, flowClean and flowAI did

remove a part of this sample that either corresponds to the first speed

setting or the last two speeds settings together while flowCut and

PeacoQC marked the file as clean.

In the second sample, when the speed setting was lowered, a

drop in signal can be observed until the setting was changed again

(Figure 3B). If this sample would not be cleaned, the downstream anal-

ysis could be influenced by these signal changes. The four methods all

took different approaches when cleaning this sample. flowClean did

not remove anything while flowAI almost deleted the entire sample.

The other two algorithms only removed a part of the sample. Where

flowCut filtered out the small transitional part of the data that corre-

sponds to the change to a lower speed setting, PeacoQC removed the

entire part where the signal is temporarily increased.

Another anomaly often observed is a temporary signal shift which

shows a small signal drop in some but not all of the markers

(Figure 4A). PeacoQC and flowClean both filtered out this part of the

data while flowAI removed a much larger portion corresponding to the

flow rate instability that occurred during the first part of the measure-

ment (top graph). flowCut does not remove anything from this sample.

To introduce a monotonic change in the marker signal, we

acquired data directly after measuring a sample stained with DAPI

without any cleaning procedures in between. This resulted in a con-

tamination of the DAPI staining in the new sample resulting in a

monotonic decrease, as displayed in Figure 4B. flowAI filtered out

large parts of the data while flowClean and flowCut kept the entire

sample. PeacoQC only removed a small part at the end of the data but

gave a warning that one or more channels showed a monotonic

increasing or decreasing trend.
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3.3 | Mass cytometry data and spectral flow
cytometry data

We also tested the four quality control algorithms to clean a mass and

a spectral cytometry file (Figure 5). Two of the four algorithms

(flowClean and flowAI) gave errors and could not be run on the mass

cytometry sample. On the other hand, flowCut and PeacoQC found

an aberration at the end of the measurement, corresponding with the

increase of the marker signal in certain channels, and removed it suc-

cessfully. However, flowCut needed 1 min and 44 s to run while

PeacoQC needed 14 s to analyze the sample with 409,222 events.

For the spectral cytometry sample that consists out of 862,696

events, flowCut produced an error and flowClean was stopped after

2 h running time. While flowAI did run without errors, it marked part

of the file to be removed based on the flow rate, and the other part

based on the signal stability, resulting in all data being labeled as bad

quality. PeacoQC correctly identified the signal change during startup

and needed 20 s to run.

3.4 | Quantitative analysis

To quantitatively compare the different algorithms, different scientists

were asked to manually annotate a number of files and select the part

they would remove from the data. Then, these annotations were com-

pared to the outcome of the cleaning results of the different quality

F IGURE 2 Clustering of uncleaned sample with start-up aberration. (A) Scatterplots of channels G710-a and R780-a where the time
parameter is divided into 10 equal-sized parts. The first part, with the aberrant signal, is colored red while the other parts are colored in different
shades of blue. (B) FlowSOM analysis of the sample with 100 clusters. The pies are colored with the same color scheme as in A. (C) Scatter-
density plots of channels G710-a and R780-a for groups 1 and 2 indicated in B. The colored dots correspond to the events falling in the group
while the gray dots show a random sampling of all events. These plots were made for the compensated, transformed file 147 of the FlowCAPIV
dataset where the margin events were removed [Color figure can be viewed at wileyonlinelibrary.com]
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control algorithms and the balanced accuracy was calculated for each

algorithm and each file. As baseline values, we determined the bal-

anced accuracy for files where we randomly removed the same

amount of cells as was selected by the manual annotation for each file

(Random in Figure 6).

flowClean obtained a median balanced accuracy of 0.523, similar

to the random baseline approach. Although it has the highest median

specificity (1), its median sensitivity is low (0.046), due to the limited

removal of events in all files.

flowAI can clean the data from three different aspects (flow rate,

flow signal, and dynamic range) and while the default setting uses all

three, it also offers the option to make a selection of which aspects to

use. To accurately compare flowAI to the other algorithms, we com-

pared all possible settings. The results of the full comparison are dis-

played in Figure S1 while the best result is shown in Figure 6 together

with the default version. The result that obtained the highest balanced

accuracy (0.930) occurs when the data were cleaned based on the

flow signal and the dynamic range (FS & FM). It scores better than the

full flowAI algorithm (0.926) which is due to the fact that some

changes in the flow rate do not correspond to actual changes in the

signal, and those were thus not filtered out by the manual annotators.

Both versions of flowAI removed much less than the manual annota-

tors (2.6% or 2% vs. 6.6%).

PeacoQC and flowCut are the highest scoring algorithms and do

not have any significant differences on the quantitative measures

(Figure S2). PeacoQC does obtain a higher median balanced accuracy

(0.989 vs. 0.977) but they both remove approximately the same

amount of events for every file as the annotators (6.6% and 7.2%). If

we look at the sensitivity and specificity of the two algorithms,

PeacoQC obtains a lower specificity (0.997 vs. 1) since it sometimes

removed a small number of events that, according to the annotators,

should not have been filtered out. However, it does obtain a higher

median sensitivity (1 vs. 0.996) which indicates slightly better perfor-

mance in removing the full anomaly from the sample.

F IGURE 3 Cleaning of samples where speed changes were introduced. The top figure shows the flow rate of the sample and is followed by

two scatterplots where the marker signals measured on channels V450-a and Y780-a are displayed. The red lines on these plots are the medians
of the marker intensities determined in bins of 1000 events per bin. At the bottom, a heatmap is shown where the events are colored by whether
they are removed by one of the four algorithms. (A) In this sample, two speed changes were introduced (from a low to a medium and a high
setting) which do not seem to influence the signal intensities. (B) The speed setting was varied from high to low to high to low which did seem to
introduce a permanent signal increase or decrease [Color figure can be viewed at wileyonlinelibrary.com]
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To compare the different algorithms speed wise, one FCM file was

concatenated until it obtained 3,000,000 events and a different subset

of events were uniformly subsampled over time and supplied to the dif-

ferent quality control algorithms. The running time was then measured

three times and the mean result is displayed in Figure 7. It should be

noted that flowCut would not run on a file that only contained 1000

events and flowClean only started cleaning when more than 50,000

events were present in the file and needed much longer running times

than the other algorithms. The time measurement even ran out when

running flowClean on files that contained more than 1,000,000 events.

For small files, flowCut is the fastest until the file reaches a limit of

1,000,000 events after which its running time starts to gradually

increase over the running time of PeacoQC and the two flowAI ver-

sions. PeacoQC needs 1 or 2 s more than flowCut for small files, but

the gradual increase for larger files in running time is much slower than

the other quality control algorithms when the event number increases.

3.5 | Robustness of parameter choices

To ensure that PeacoQC can run on different types of datasets gener-

ated in different experiments without tweaking its parameters, we ran

the algorithm on the datasets described in Table S1. We compared its

results with the flowAI algorithm (Figure 8). Both algorithms were run

with their default parameters on the channels that had a description

and on, if present, the scatter channels. Coinciding with previous

results, PeacoQC could be run on all types of datasets while flowAI

threw an error when trying to run mass cytometry datasets

(Figure S4). For the flow cytometry datasets, PeacoQC and flowAI

removed a similar amount of measurements (less than 10% difference)

for 42 out of 49 samples. In three of these 42 samples, more than

10% was removed by both algorithms which could be validated after

visual inspection. In the seven samples where a larger difference in

percentage removal was obtained, flowAI removed more of the

F IGURE 4 Cleaning of samples with temporary shift in signal or a monotonic decrease in signal. The top figure shows the flow rate of the
sample and is followed by two scatterplots where the marker signals measured on channels V450-a and Y780-a are displayed. The red lines
represent the medians of the marker intensities determined in bins of 1000 events per bin. At the bottom, a heatmap is shown where the events
are colored whether they are removed by one of the four algorithms. The exclamation mark refers to the warning that PeacoQC gave due to the
monotonic increasing or decreasing effect. (A) In this sample, the speed was set to the highest setting possible, resulting in an uptake of the
sample with a lower amount of cells which influenced the signal intensity until a steady flow of events was reached. (B) A contamination was
ensured in this sample by not cleaning the flow cell after measuring a DAPI stained sample. Due to the DAPI contamination into the measured
sample, a monotonic increasing or decreasing effect was introduced in certain channels of the sample [Color figure can be viewed at

wileyonlinelibrary.com]
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measurements than PeacoQC in six samples while PeacoQC removed

more in one sample. Upon visual inspection, we noticed that flowAI

removed many measurements based on its flow rate step, even when

there was no impact on the signal stability. PeacoQC removed too

much in a single instance (FR-FCM-Z2EY) where the file had less than

5000 cells, making the peaks unstable (Figure S5). When applying

PeacoQC on such small samples, we recommend increasing the num-

ber of bins. flowAI also removed too much for 6 out of 10 spectral

cytometry samples based on its flow signal while no anomalies were

present while for one spectral dataset, flowAI and PeacoQC obtained

similar results (Figure S6).

4 | DISCUSSION

We developed a new quality control algorithm for cytometry data and

compared it to three other existing tools. In this work, we demon-

strate that PeacoQC can accurately remove different types of anoma-

lies that occur during the acquisition of samples. It does so by

detecting stable density peaks during the sample measurement and

filtering out the low quality events based on the usage of an isolation

tree and MAD distances.

The default PeacoQC parameter settings are optimized in such

a way that they work for most of the flow cytometry, mass cyto-

metry and spectral cytometry datasets we tested. We confirmed

this by running the algorithm on 16 different publicly available

datasets that included flow, mass and spectral cytometry. Compar-

ison with flowAI and visual inspection showed that the algorithm

was successfully run on all 164 samples of all datasets, except for

one case in which it removed too many measurements. This indi-

cates that the chosen parameter settings are stable for all datasets

and that not much tweaking needs to be done. However, if need

be, the parameters can be adapted in an intuitive way. To deter-

mine if parameter alterations are required, we recommend trying

the algorithm first on a subset of your dataset. By inspecting the

resulting figures, the user can ensure the parameter settings are

appropriate for the specific dataset, and then apply those settings

to all files.

F IGURE 5 Cleaning mass cytometry and spectral cytometry sample. The top figures show the flow rate of the samples and are followed by a
scatterplot where the marker signals measured on channels Y89Di (A) or Alexa Fluor 647 (B) are displayed. The red line on this plot indicates the
medians of the marker intensities determined in bins of 1000 events per bin. At the bottom, a heatmap is displayed, showing for every algorithm
which parts of the files were removed or kept, or whether the algorithm did not work at all [Color figure can be viewed at wileyonlinelibrary.com]
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To evaluate our work, we compared PeacoQC with three existing

quality control algorithms: flowAI, flowCut and flowClean.

First, a comparison was made on how the algorithms handle dif-

ferent types of anomalies often present in cytometry data, based on

in-house generated data. All algorithms divide the data into bins, but

they assess the stability across the bins by different measures.

flowClean uses population distributions, which is computationally

expensive and not very sensitive to signal changes in only a subset of

markers. The other algorithms check marker per marker to improve

this sensitivity. Where flowAI uses median values and flowCut uses a

combination of means, medians and several quantiles, PeacoQC

determines the high density peaks to check the stability. We opted to

use these peaks since we noticed that the stability of the medians and

quantiles will vary more during the measurement depending on the

F IGURE 6 Overview of balanced
accuracy and percentage removed of
manual annotated dataset. Fifty five
FlowCAPIV preprocessed files were
manually annotated by a number of
scientists based on six channels. The
results were compared to the output of
the different quality control algorithms
that are presented in the first five plots.

For each file, the sensitivity (blue),
specificity (green), and balanced accuracy
(red) were determined where a true
positive is defined as an event that is
removed by at least three scientists and
the quality control algorithm. The
percentage removed is displayed in
purple. The last plot represents baseline
values where the same amount of cells
was removed from each file as were
selected by the manual annotators, but
randomly sampled from the file. The
numbers displayed before each graph,
refer to the median of the quantitative
measure for that algorithm (FS & FM: for
this comparison, a quality control analysis
was done with the flowAI algorithm
where the flow rate was not taken into
account) [Color figure can be viewed at
wileyonlinelibrary.com]
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expression distribution, bin size and measurement speed. Especially in

cases where there is a bimodal distribution with about 50% positive

and 50% negative cells, the median can have high variance. In some

cases, artifacts could also influence only the background or only the

positive peak, in which cases the median is too limited. While flowCut

tries to resolve this by adding more quantiles, these still stay variable

if they fall in the region between two peaks. We hypothesized that

identifying the actual populations by peak detection would result in a

more robust characterization of the data, which is confirmed in our

evaluation: PeacoQC is indeed better in distinguishing the different

types of anomalies while the other algorithms always struggle with at

least one.

An additional limitation of applying flowAI with the default set-

tings, is how this algorithm evaluates the flow rate independently

from the signal stability. In some cases, this causes almost all data to

be removed, when one half is removed based on one criterium and

F IGURE 7 Running time analysis comparison of different quality control algorithms. The 010 file of the FlowCAPIV data was concatenated

five times. From this data, a number of events were uniformly for peer review subsampled over time and used for quality control by the different
quality control algorithms. The cleaning was done three times and timed by the system. Time function of the base R package. The mean of these
results is displayed (FS & FM: for this comparison, a quality control analysis was done with the flowAI algorithm where the flow rate was not
taken into account) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Comparison of PeacoQC and flowAI on flowRepository datasets. The PeacoQC and flowAI algorithms were both run with default
parameters on 16 datasets that were uploaded or updated on flowRepository in 2020 and on samples that contained cells and where a stable
signal was expected over time during the measurement. Each sample is represented as a line and the percentage of measurements removed is
displayed on the y-axis. If a value is NA, the algorithm failed to run the sample [Color figure can be viewed at wileyonlinelibrary.com]
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the other half on the other criterium. We consciously apply the differ-

ent filtering steps in the PeacoQC algorithm sequentially to avoid this

problem. The isolation tree allows for a disjointed filtering as well, in

contrast to the signal stability check in flowAI which will look for a sin-

gle stable region. This allows to remove small disturbances

(e.g., during a blockage), while keeping both the measurements before

and after the disturbance if they are sufficiently similar. However, this

can result in a pattern where some small regions, located in the middle

of a larger disturbance, seem similar to the good region. To avoid that

these small regions are kept, we provided the consecutive bin parame-

ter, ensuring that all the regions kept should contain a minimal amount

of bins.

We also confirmed that PeacoQC performed well on mass cyto-

metry data, where the other algorithms failed (flowClean and flowAI)

or had a very slow running time (flowCut) and on spectral cytometry

data where flowCut and flowClean failed. This ensures our algorithm

is widely applicable.

Next, a more quantitative comparison was made. To overcome

the hurdle of subjectivity when manually annotating the low quality

regions, we set up a comparison where multiple scientists annotated

the same data and where an event was only seen as a bad quality

event when at least three scientists out of six or seven marked it to

be removed. When comparing the different quality control algorithms

to these results, PeacoQC obtained the highest median balanced

accuracy meaning that it resembles the manual annotation the most.

Overall, PeacoQC had similar running times to the other algorithms,

but, thanks to a variable bin size dependent on file size, it was the

fastest for larger files.

In summary, we propose a fast and accurate quality control algo-

rithm that is able to filter out many anomalies that can occur during

the measurement of flow and mass cytometry data, ensuring high-

quality data that can be further used in downstream analysis.

ACKNOWLEDGMENTS

We would like to thank the VIB Flow core for training, support and

access to the instrument park. This project has received funding

within the Grand Challenges Program of VIB. This VIB Program

received support from the Flemish Government under the Manage-

ment Agreement 2017–2021 (VR 2016 2312 Doc. 1521/4). SVG is an

ISAC Marylou Ingram Scholar and supported by an FWO postdoctoral

research grant (Research Foundation – Flanders). PR received support

from European Molecular Biology Organization (7966) short-term fel-

lowships and from Consejería de Salud de Junta de Andalucía (EF-

0091-2018) to perform 3 and 2 months internship respectively, at the

VIB-UGent. PR acknowledges support from the IMI2-JU project 3TR

(GA No. 831434).

CONFLICT OF INTEREST

The authors declare they have no conflict of interest.

AUTHOR CONTRIBUTIONS

Annelies Emmaneel: Conceptualization (equal); data curation (equal);

formal analysis (lead); investigation (lead); methodology (lead);

software (lead); visualization (lead); writing – original draft (lead); writ-

ing – review and editing (equal). Katrien Quintelier: Investigation

(supporting); methodology (supporting); validation (supporting); visual-

ization (supporting); writing – review and editing (equal). Dorine

Sichien: Data curation (equal); investigation (supporting); writing –

review and editing (supporting). Paulina Rybakowska: Data curation

(supporting); investigation (supporting); methodology (supporting);

writing – review and editing (supporting). Concepci�on Marañ�on:

Supervision (supporting). Marta E Alarc�on-Riquelme: Supervision

(supporting). Gert Van Isterdael: Data curation (equal); investigation

(supporting); supervision (equal); writing – review and editing

(supporting). Sofie Van Gassen: Conceptualization (equal); investiga-

tion (supporting); methodology (supporting); supervision (equal); writ-

ing – review and editing (equal).

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/cyto.a.24501.

ORCID

Annelies Emmaneel https://orcid.org/0000-0003-4569-2330

Katrien Quintelier https://orcid.org/0000-0001-5306-5615

Dorine Sichien https://orcid.org/0000-0002-7298-3005

Paulina Rybakowska https://orcid.org/0000-0002-4229-8242

Concepci�on Marañ�on https://orcid.org/0000-0002-7827-6301

Marta E. Alarc�on-Riquelme https://orcid.org/0000-0002-7632-

4154

Gert Van Isterdael https://orcid.org/0000-0001-6626-1316

Sofie Van Gassen https://orcid.org/0000-0002-7119-5330

Yvan Saeys https://orcid.org/0000-0002-0415-1506

REFERENCES

1. van der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-

Granados E, Blanco E, et al. The EuroFlow PID orientation tube for

flow cytometric diagnostic screening of primary Immunodeficiencies

of the lymphoid system. Front Immunol. 2019;10. https://doi.org/10.

3389/fimmu.2019.00246

2. Larbi A. Flow cytometry in multi-center and longitudinal studies. In:

Robinson JP, Cossarizza A, editors. Single cell analysis: contemporary

research and clinical applications. Singapore: Springer; 2017. p. 119–32.

3. Hartmann FJ, Babdor J, Gherardini PF, Amir EAD, Jones K, Sahaf B,

et al. Comprehensive immune monitoring of clinical trials to advance

human immunotherapy. Cell Rep. 2019;28(3):819–831.e4. https://

doi.org/10.1016/j.celrep.2019.06.049

4. Park LM, Lannigan J, Jaimes MC. OMIP-069: forty-color full Spectrum

flow cytometry panel for deep Immunophenotyping of major cell sub-

sets in human peripheral blood. Cytometry A. 2020;97(10):1044–51.
https://doi.org/10.1002/cyto.a.24213

5. Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM,

Galli E, et al. High-dimensional single-cell analysis reveals the immune

signature of narcolepsy. J Exp Med. 2016;213(12):2621–33. https://
doi.org/10.1084/jem.20160897

6. Kalina T, Flores-Montero J, Van Der Velden VH, Martin-Ayuso M,

Böttcher S, Ritgen M, et al. EuroFlow standardization of flow

cytometer instrument settings and immunophenotyping protocols.

Leukemia. 2012;26(9) Art. no. 9:1986–2010. https://doi.org/10.

1038/leu.2012.122

EMMANEEL ET AL. 337

https://publons.com/publon/10.1002/cyto.a.24501
https://publons.com/publon/10.1002/cyto.a.24501
https://orcid.org/0000-0003-4569-2330
https://orcid.org/0000-0003-4569-2330
https://orcid.org/0000-0001-5306-5615
https://orcid.org/0000-0001-5306-5615
https://orcid.org/0000-0002-7298-3005
https://orcid.org/0000-0002-7298-3005
https://orcid.org/0000-0002-4229-8242
https://orcid.org/0000-0002-4229-8242
https://orcid.org/0000-0002-7827-6301
https://orcid.org/0000-0002-7827-6301
https://orcid.org/0000-0002-7632-4154
https://orcid.org/0000-0002-7632-4154
https://orcid.org/0000-0002-7632-4154
https://orcid.org/0000-0001-6626-1316
https://orcid.org/0000-0001-6626-1316
https://orcid.org/0000-0002-7119-5330
https://orcid.org/0000-0002-7119-5330
https://orcid.org/0000-0002-0415-1506
https://orcid.org/0000-0002-0415-1506
https://doi.org/10.3389/fimmu.2019.00246
https://doi.org/10.3389/fimmu.2019.00246
https://doi.org/10.1016/j.celrep.2019.06.049
https://doi.org/10.1016/j.celrep.2019.06.049
https://doi.org/10.1002/cyto.a.24213
https://doi.org/10.1084/jem.20160897
https://doi.org/10.1084/jem.20160897
https://doi.org/10.1038/leu.2012.122
https://doi.org/10.1038/leu.2012.122


7. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, et al.

Standardizing flow cytometry Immunophenotyping analysis from the

human ImmunoPhenotyping consortium. Sci Rep. 2016;6(1) Art.

no. 1. https://doi.org/10.1038/srep20686

8. Mikes J, Olin A, Lakshmikanth T, Chen Y, Brodin P. Automated cell

processing for mass cytometry experiments. In: McGuire HM,

Ashhurst TM, editors. Mass cytometry: methods and protocols. New

York, NY: Springer; 2019. p. 111–23.
9. Monaco G, Chen H, Poidinger M, Chen J, de Magalh~aes JP, Larbi A.

flowAI: automatic and interactive anomaly discerning tools for flow

cytometry data. Bioinform Oxf Engl. 2016;32(16):2473–80. https://
doi.org/10.1093/bioinformatics/btw191

10. Wang S, Brinkman RR. Data-driven flow cytometry analysis. In:

McGuire HM, Ashhurst TM, editors. Mass Cytometry. Volume 1989.

New York, NY: Springer, New York; 2019. p. 245–65.
11. Le Meur N, Rossini A, Gasparetto M, Smith C, Brinkman RR,

Gentleman R. Data quality assessment of ungated flow cytometry

data in high throughput experiments. Cytom Part J Int Soc Anal Cytol.

2007;71(6):393–403. https://doi.org/10.1002/cyto.a.20396
12. Fletez-Brant K, Špidlen J, Brinkman RR, Roederer M,

Chattopadhyay PK. flowClean: automated identification and removal

of fluorescence anomalies in flow cytometry data. Cytom Part J Int

Soc Anal Cytol. 2016;89(5):461–71. https://doi.org/10.1002/cyto.a.
22837

13. Meskas J, Wang S, Brinkman R. flowCut—an R package for precise

and accurate automated removal of outlier events and flagging of files

based on time versus fluorescence analysis. bioRxiv. 2020;058545.

https://doi.org/10.1101/2020.04.23.058545

14. Liu FT, Ting KM, Zhou Z-H. Isolation forest. In: 2008 eighth IEEE

international conference on data mining. Pisa, Italy; 2008, p. 413–22.
https://doi.org/10.1109/ICDM.2008.17.

15. Yan Y. IsolationForest, 21; 2020. https://github.com/yanyachen/

IsolationForest. Accessed August 18, 2020.

16. Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, et al.

flowCore: a bioconductor package for high throughput flow cyto-

metry. BMC Bioinform. 2009;10(1):106. https://doi.org/10.1186/

1471-2105-10-106

17. Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, van

Gassen S, Kursa M, et al. A benchmark for evaluation of algorithms

for identification of cellular correlates of clinical outcomes. Cytom

Part J Int Soc Anal Cytol. 2016;89(1):16–21. https://doi.org/10.

1002/cyto.a.22732

18. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN,

Demeester P, Dhaene T, et al. FlowSOM: using self-organizing maps

for visualization and interpretation of cytometry data. Cytom Part J

Int Soc Anal Cytol. 2015;87(7):636–45. https://doi.org/10.1002/

cyto.a.22625

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Emmaneel A, Quintelier K, Sichien D,

Rybakowska P, Marañ�on C, Alarc�on-Riquelme ME, et al.

PeacoQC: Peak-based selection of high quality cytometry

data. Cytometry. 2022;101:325–38. https://doi.org/10.1002/

cyto.a.24501

338 EMMANEEL ET AL.

https://doi.org/10.1038/srep20686
https://doi.org/10.1093/bioinformatics/btw191
https://doi.org/10.1093/bioinformatics/btw191
https://doi.org/10.1002/cyto.a.20396
https://doi.org/10.1002/cyto.a.22837
https://doi.org/10.1002/cyto.a.22837
https://doi.org/10.1101/2020.04.23.058545
https://doi.org/10.1109/ICDM.2008.17
https://github.com/yanyachen/IsolationForest
https://github.com/yanyachen/IsolationForest
https://doi.org/10.1186/1471-2105-10-106
https://doi.org/10.1186/1471-2105-10-106
https://doi.org/10.1002/cyto.a.22732
https://doi.org/10.1002/cyto.a.22732
https://doi.org/10.1002/cyto.a.22625
https://doi.org/10.1002/cyto.a.22625
https://doi.org/10.1002/cyto.a.24501
https://doi.org/10.1002/cyto.a.24501

	PeacoQC: Peak-based selection of high quality cytometry data
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Proposed method
	2.1.1  Peak detection
	2.1.2  Filtering
	2.1.3  Checks
	2.1.4  Parameter settings
	2.1.5  Visualization of the result
	2.1.6  Availability

	2.2  Comparison with other quality control algorithms

	3  RESULTS
	3.1  Necessity of quality control algorithms
	3.2  Different types of anomalies
	3.3  Mass cytometry data and spectral flow cytometry data
	3.4  Quantitative analysis
	3.5  Robustness of parameter choices

	4  DISCUSSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  PEER REVIEW

	REFERENCES


