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ABSTRACT
Cerebral edema following chimeric antigen receptor (CAR) 
T- cell therapy can be fatal. ZUMA-2 is a pivotal phase 2, 
multicenter study evaluating KTE- X19, an autologous anti- 
CD19 CAR T- cell therapy, in relapsed/refractory mantle cell 
lymphoma. We describe a 65- year- old patient in ZUMA-2 
who developed cerebral edema following CAR T- cell 
therapy and had complete recovery after multimodality 
clinical intervention including rabbit antithymocyte globulin 
(ATG). Biomarker results show early and robust CAR 
T- cell expansion and related induction of inflammatory 
cytokines, followed by rapid declines in CAR T- cell and 
proinflammatory cytokine levels after ATG administration. 
This clinical profile highlights a potential relevance of ATG 
in treating severe CAR T- cell- related neurotoxicity.

BACKGROUND
Chimeric antigen receptor (CAR) T- cell ther-
apies targeting CD19 have demonstrated 
impressive efficacy in relapsed/refractory 
B- cell malignancies.1–4 However, neurologic 
events (NE) are serious toxicities commonly 
observed with CAR T- cell therapy and remain 
a therapeutic challenge.5 6 Although low- 
grade NE are generally reversible, grade 4 NE 
can be fatal and are typically associated with 
cytokine release syndrome (CRS), increased 
blood- brain- barrier permeability, endothelial 
activation, and poor survival.7–9 CAR T- cell 
expansion and associated rises in cytokine/
chemokine levels are associated with disease 
remission and treatment- related toxicity.4 10 
However, early and rapid expansion of CAR 
T cells and associated cytokine production 
have also been correlated with severe NE, 
including cerebral edema.11 12

ZUMA-2 is a phase 2, multicenter study eval-
uating KTE- X19, an autologous anti- CD19 
CAR T- cell therapy, in patients with relapsed/
refractory mantle cell lymphoma (MCL).4 
KTE- X19 uses a manufacturing process that 
removes circulating CD19- expressing cells for 
use in leukemic indications and MCL.4 13 We 

present the clinical management of a patient 
in ZUMA-2 who developed grade 4 NE with 
cerebral edema that resolved after treat-
ment with multimodality clinical interven-
tion including rabbit antithymocyte globulin 
(ATG), an immunosuppressant that depletes 
T lymphocytes in vivo.14

METHODS
As previously reported, patients in ZUMA-2 
had relapsed/refractory MCL with one to 
five prior therapies.4 Prior therapy must have 
included anthracycline or bendamustine- 
containing chemotherapy, an anti- CD20 
monoclonal antibody, and a Bruton tyrosine 
kinase inhibitor (ibrutinib or acalabrutinib). 
Induction plus consolidation/maintenance 
and/or all treatments occurring between 
sequential complete responses were counted 
as one regimen. All patients provided written, 
informed consent, and the protocol was 
approved by the Institutional Review Board at 
each site. The ZUMA-2 study was conducted 
in accordance with the principles of the Decla-
ration of Helsinki. The trial was registered at  
ClinicalTrials. gov Registry; NCT02601313.

Patients underwent leukapheresis with 
optional bridging therapy, followed by condi-
tioning chemotherapy (cyclophosphamide 
500 mg/m2/day; fludarabine 30 mg/m2/day) 
on days −5 to −3, as previously reported.4 KTE- 
X19 was infused at a target dose of 2×106 CAR 
T cells/kg on day 0.4 CRS was graded per Lee 
et al.15 National Cancer Institute Common 
Terminology Criteria for Adverse Events, 
V.4.03, was used to grade the severity of 
adverse events, including NE and symptoms 
of CRS.4 A validated quantitative PCR (qPCR) 
assay was used to measure the expansion 
and persistence of anti- CD19 CAR T cells 
in blood at baseline (prior to conditioning 
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chemotherapy (negative control)) and prior to KTE- X19 
administration; and at days 7, 14, 28 and in the long- term 
follow- up as described in the study protocol.10 11 16–18 The 
limit of detection of the assay was 1 CAR T cell in 100 000 
peripheral mononuclear cells measured in blood. Serum 
collected at baseline and days 0 (postconditioning and 
prior to KTE- X19), and at days 3, 7, 14, and 28 was assessed 
for levels of 44 cytokines, chemokines, circulating angio-
genic factors, immune effector molecules, and markers 
of macrophage activating syndrome using previously 
reported methods.10 16 17 A qualified flow cytometry assay 
was performed on immune cells isolated from cerebro-
spinal fluid (CSF) and other standard immune markers 
for the identification of T and myeloid lineage cells. 
All measurements described above were derived from 
central laboratory assessments. Although the patient 
was enrolled in ZUMA-2, for comparison in this report 
with the broader ZUMA-2 population, this patient was 
excluded from the ZUMA-2 cohort medians and assess-
ments reported herein.

RESULTS
Case report
A 65- year- old man with stage IV relapsed/refractory 
pleomorphic MCL (ibrutinib- refractory; online supple-
mental methods) was enrolled. There was no history of 
prior neurologic disease. Prior to KTE- X19 infusion, the 
patient had an Eastern Cooperative Oncology Group 
performance status score of 0, non- bulky disease, a Ki-67 
proliferation index of 80%–90%, and baseline lactate 
dehydrogenase levels of 410 IU/L. An initial MRI of the 
brain was unremarkable (online supplemental figure 
S1). Following leukapheresis, the patient received condi-
tioning chemotherapy followed by KTE- X19 infusion. 
Prior to infusion, prophylactic levetiracetam was initiated 
and there was no evidence of fever or infection. Serum 
cytokine levels assessed during and after lymphodeple-
tion were similar to those in other patients in ZUMA-2. 
KTE- X19 product characteristics were likewise similar to 
that of other patients. Figure 1 depicts a timeline of clin-
ical events, including imaging assessments and interven-
tions. Online supplemental table S1 provides the level of 
evidence behind the interventions used. Cytokine levels 
in serum and CSF and CAR T cell levels in blood and CSF 
are shown in table 1.

Twenty- four hours post- KTE- X19 infusion, the patient 
developed grade 1 CRS that was treated with tocilizumab 
8 mg/kg intravenously. Vancomycin and aztreonam (each 
1 g intravenously two times per day) were administered 
for non- neutropenic fever of 39.1°C. During this interval, 
the patient had delayed speech and thought processes, 
with memory deficit, handwriting changes and slight 
tremor, consistent with grade 2 encephalopathy.

By day 3, the patient presented with marginal leuko-
penia and a white cell count of 3.7 x 109/L (normal 
absolute neutrophil count) and CSF cultures were unre-
markable, but chest X- ray showed multifocal opacities. e 

received siltuximab 11 mg/kg intravenously to treat grade 
2 CRS, although this was not protocol- specified for CRS 
management. On day 4, methylprednisolone 500 mg 
intravenously two times per day was initiated. Some clin-
ical improvements occurred, but the patient’s condi-
tion deteriorated, and a second dose of tocilizumab was 
administered. He was transferred to intensive care unit 
for worsening aphasia, confusion, and obtundation and 
was intubated for airway protection. The patient had two 
tonic- clonic seizures. MRI showed diffuse gyral swelling 
and an electroencephalogram (EEG) showed triphasic 
waves and diffuse disturbances. MRI findings confirmed 
cerebral edema, and the patient was diagnosed with 
grade 4 encephalopathy. Mannitol 20% (0.25 mg/kg) 
every 6 hours was initiated along with steroids and cere-
bral edema management guidelines were followed.19

Despite these measures, there was no improvement by 
day 5, and the patient developed grade 3 transaminase 
elevation (figure 2A). CSF was clear with an increased 
opening pressure to 20 cm H2O, elevated CSF protein 
(6 µg/mm3) and glucose (1.06 µg/mm3) and cytology 
showing increased white blood cells (24 cells/mm3) 
and atypical and activated lymphocytes (mainly T cells) 
admixed with histiocytes and neutrophils (78%). Intra-
thecal hydrocortisone and ara- C were administered due 
to worsening neurological symptoms. On day 6, EEG 
showed bihemispheric cortical dysfunction, and MRI 
showed cerebral edema and sulcal hyperintensity (online 
supplemental figure S2). Neurosurgery placed an external 
ventricular drain to treat the cerebral edema. Prophy-
lactic acyclovir was initiated to mitigate risk of infection. 
Following no improvement, ATG (2 mg/kg/day intra-
venous) was administered along with increased methyl-
prednisolone (1 g two times per day) and a third dose of 
tocilizumab to dampen systemic cytokine storm. Rabbit 
ATG (Thymoglobulin) and not equine ATG was used due 
to availability, experience at our center, and the lower 
dose of ATG required to avoid exacerbation of concomi-
tant CRS. On day 7, an MRI showed stable changes, and 
a second dose of ATG was given. Reduction in transami-
nase elevation was noted (figure 2A). A third dose of ATG 
was given on day 8 after which the transaminase eleva-
tion was resolved. On day 11, the patient was extubated, 
and no further ATG doses were given. Over the next 11 
days, he received tapering doses of methylprednisolone 
with significant clinical improvement. The ventricular 
drain was removed on day 14 and the encephalopathy was 
resolved. An MRI on day 20 showed persistent but signifi-
cantly improved periventricular white matter T2 hyper-
intensity and resolution of abnormal signal in the dorsal 
brainstem/thalami (online supplemental figure S3). The 
patient was discharged to a rehabilitation facility with 
tapering doses of oral corticosteroids. Two months post- 
KTE- X19, brain MRI findings were completely resolved 
(online supplemental figure S4). The patient remains on 
study, and after 24 months follow- up, he is in complete 
remission with no persistent neurologic or cognitive 
deficits.

https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
https://dx.doi.org/10.1136/jitc-2020-001114
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Pharmacokinetics and pharmacodynamics
Peripheral blood CAR T- cell levels measured by qPCR 
were 431.3 cells/mm3 on day 7 and rapidly declined 
to <1 cell/mm3 after day 14 (post- ATG; figure 2B). By 
contrast, median CAR T- cell levels in other patients in 
the ZUMA-2 cohort with pharmacokinetic data available 
(N=66) were 8.9 cells/mm3 (IQR 1.3–57) at day 7 and 
74.5 cells/mm3 (IQR 12.5–192.7) at day 14. At 24 months, 
B- cell aplasia was maintained, and low levels of CAR T 
cells were detectable by qPCR.

Analysis of key serum biomarkers hypothesized to 
associate with increased risk for CAR T cell- related NE 
and CRS at baseline (preconditioning) and day 0 (pre- 
KTE- X19) was unremarkable (table 1).9–11 20–22 Serum 
C reactive protein, a biomarker of systemic inflamma-
tion, was 6.8 ng/mm3 at day 0, compared with a median 
of 30.5 ng/mm3 (IQR 15.1–63) in the broader cohort. 
Ferritin, an acute phase reactant, was 606.3 pg/mm3 at 

day 0 compared with a median of 502.4 pg/mm3 (IQR 
273.5–877.7) in the broader cohort.

IL-15, a homeostatic gamma chain cytokine implicated 
in CAR T- cell expansion and associated with cerebral 
edema, showed evidence of contributing to the robust 
expansion observed in this patient.9 22–24 At day 0, IL-15 
was 0.0291 pg/mm3 (cohort median, 0.0332 (IQR 0.0254–
0.048)) and continued to increase to 0.0561 pg/mm3 
(cohort median, 0.0353 (IQR 0.0214–0.0564)) by day 3. 
Post- ATG levels of IL-15 subsided to 0.0036 pg/mm3 at 
day 7 (cohort median, 0.0226 (IQR 0.015–0.0386)). Data 
indicate that rapidly rising IL-15 levels may have contrib-
uted to the robust CAR T- cell expansion observed and 
possibly to the cerebral edema.

IL-2, a homeostatic cytokine produced by activated 
CAR T cells, was measured in serum at 0.0167 pg/mm3 on 
day 3 and also likely contributed to the robust CAR T- cell 
expansion observed. The median at this same time point 

Neurologic Events and CRS MRI Findings Interventions

Day 1

• Grade 1 CRS
‒ Fever 39.1 °C

• Grade 2 encephalopathy
‒ Delayed speech, early 

aphasia

N/A • Tocilizumab 8 mg/kg IV
• Vancomycin and aztreonam (each 

1 gm IV twice daily)

Day 3

• Grade 2 CRS
‒ Fever 39.3 °C
‒ Grade 2 pyrexia

• Ongoing Grade 2 
encephalopathy

N/A • Siltuximab 11 mg/kg IV

Day 4

• Grade 4 encephalopathy and 
cerebral edema

• Tonic-clonic seizures

• Diffuse gyral swelling
• Increased T2 signal within 

subcortical white matter
• Involvement of deep gray nuclei

• Methylprednisolone 500 mg IV twice 
daily initiated

• 2nd dose tocilizumab
• Anti-seizure prophylaxis with 

levetiracetam 500 mg twice daily
• Intubation
• Mannitol 20% (0.25 mg/kg) every 

6 hours

Day 5

• Grade 3 transaminase elevation
‒ ALT 536 U/L
‒ AST 272 U/L

• Ongoing Grade 4 
encephalopathy and cerebral 
edema

• Persistent diffuse T2 signal 
abnormality within the subcortical 
white matter with cortical swelling

• Intrathecal hydrocortisone and ara-C  

Day 6

• Ongoing Grade 3 transaminase 
elevation

• Ongoing Grade 4 
encephalopathy and cerebral 
edema

• Persistent diffuse hyperintensity 
in cerebral sulci on FLAIR MRI

• Persistent T2 hypersensitivity in 
the periventricular white matter

• Methylprednisolone was increased to 
1 g twice daily

• Placement of external ventricular 
drain

• 3rd dose tocilizumab
• ATG 2 mg/kg/d IV

Day 7

• Ongoing Grade 3 transaminase 
elevation
‒ ALT improved to 400 U/L
‒ AST improved to 150 U/L

• Ongoing Grade 4 
encephalopathy and cerebral 
edema

• Subtle improvement in cerebral 
edema

• 2nd dose of ATG
• Mannitol discontinued

Day 8

• Transaminase elevation 
resolved

• Ongoing Grade 4 
encephalopathy and cerebral 
edema

• Continued subtle improvement in 
cerebral edema

• 3rd dose of ATG

Days 
11 to 20

• Resolution of encephalopathy 
on Day 14 and edema on Day 
20

• Day 20: Persistent but improved 
periventricular white matter T2 
hyperintensity, resolution of 
abnormal signal in the dorsal 
brainstem/thalami 

• Day 11: Patient was extubated
• Day 14: Ventricular drain removed
• Day 20: Discharged to rehabilitation 

facility with tapering steroids

Figure 1 Timeline of clinical events and interventions in the patient treated with ATG. ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; ATG, antithymocyte globulin; BID, two times per day; CAR, chimeric antigen receptor; CRS, 
cytokine release syndrome; FLAIR, fluid- attenuated inversion recovery; N/A, not available.
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in the broader cohort was 0.0047 pg/mm3 (IQR 0.0022–
0.0100), demonstrating a 3.6- fold increase in this patient 
relative to others. Post- ATG (day 7), IL-2 was significantly 
suppressed (below limit of detection in the assay used), 
indicating a rapid and profound impact of ATG on anti- 
CD19 CAR T- cell T helper type 1 (Th1) activity. Additional 
serum biomarker analysis post- KTE- X19 demonstrated 
excessive CAR T cell and myeloid- related activity that were 
controlled through the toxicity management strategy 
reported here. Relative to the broader population, a 
marked decline between day 3 (post- KTE- X19) and day 
7 (post- ATG) in serum interferon (IFN)-γ was observed 
(figure 2C). In concert with early and elevated CAR 
T- cell levels, serum IFN-γ, a Th1 cytokine and hallmark 
of CAR T- cell activity, was 0.5844 pg/mm3 at day 3 and 
rapidly declined to 0.0075 pg/mm3 (lower limit of detec-
tion) at day 7 following ATG administration. By contrast, 
median IFN-γ in the broader cohort was 0.0978 pg/mm3 
(IQR 0.0244–0.2624) at day 3 and 0.1877 pg/mm3 (IQR 
0.020–1.2436) at day 7.

Monocyte chemoattractant protein 1 (MCP-1; CCL2), a 
marker of myeloid- related activity associated with CD19- 
directed CAR T- cell toxicity, was 1.500 pg/mm3 (above 
quantitation limit) at day 3 (cohort median, 0.7123 pg/
mm3 (IQR 0.5176–1.1424)), indicating the possibility 
of excessive myeloid activity postinfusion as a contrib-
uting factor (figure 2D).7 22 23 At day 7, serum MCP-1 was 
reduced to 0.0969 pg/mm3 (cohort median, 0.4638 (IQR 
0.2714–0.9541)), further demonstrating the impact of 
ATG in suppressing myeloid- related inflammation.

An analysis of cytokines in CSF taken on day 8 demon-
strated elevated levels of IFN-γ-induced protein 10 
(CXCL10) and MCP-1 compared with those measured in 
serum on day 7 as well as measurable levels of intercel-
lular adhesion molecule 1, IL-1 receptor antagonist and 
IL-2 receptor alpha (table 1, online supplemental file 1). 
Elevated levels of these cytokines in the CSF are consis-
tent with CAR T- cell activity and myeloid trafficking to 
the central nervous system (CNS). These results, possibly 
contributing to the NE, warrant further mechanistic 
evaluation.

DISCUSSION
Optimal management and pathophysiology of NE asso-
ciated with CAR T- cell therapy are unclear. We present 
the first report of a patient with relapsed/refractory MCL 
treated with anti- CD19 CAR T- cell therapy who devel-
oped CAR T- cell therapy- associated grade 4 cerebral 
edema with concomitant CRS that resolved completely 
after multimodality clinical intervention including ATG 
administration. The patient experienced a full recovery 
with no neurological deficits and achieved a durable 
response. Considering the serious and dire condition of 
the patient, multimodality treatments including ventric-
ulostomy were quickly initiated, making it difficult to 
conclude that ATG administration was solely responsible 
for the amelioration of patient symptoms. However, the 
information available and the timeline of events suggest 
that ATG contributed to the patient’s improvement in 

Figure 2 Levels of transaminases, CAR T cells, and cytokines over time. (A) ALT levels in the patient with ATG across the 
first 17 days post- KTE- X19. (B) Levels of CAR T cells in blood by PCR over the first 6 months following KTE- X19 infusion. In 
the broader ZUMA-2 population, 66, 65, 59, 65, and 43 patients had data available at days 0 (pre- KTE- X19), 7, 14, 28, and 
180, respectively. Levels of IFN-γ (C) and MCP-1 (D) by ELISA over the first 28 days post- KTE- X19. In the broader ZUMA-2 
population, 65, 65, 62, 61, 60, and 64 patients had data available at days −4 (pre- conditioning), 0 (pre- KTE- X19), 7, 14, 28, 
and 180, respectively. ALT, alanine aminotransferase; ATG, anti- thymocyte globulin; CAR, chimeric antigen receptor; ELISA, 
enzyme- linked immunosorbent assay; IFN-γ, interferon gamma; IL-2, interleukin 2; LOD, limit of detection; MCP-1, monocyte 
chemoattractant protein 1.

https://dx.doi.org/10.1136/jitc-2020-001114
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neurologic symptoms while simultaneously dampening 
CAR T- cell levels in blood, cytokine storm, and elevated 
liver enzymes. Furthermore, pharmacokinetic and phar-
macodynamic results indicated that ATG might have 
contributed to the resolution of cerebral edema, along 
with other clinical interventions, including corticoste-
roids, IL-6 or IL-6 receptor blockade with siltuximab 
or tocilizumab, and a ventriculostomy. Therefore, we 
believe it is reasonable to suggest that ATG administra-
tion, in addition to other clinical interventions, bene-
fited this patient. The clinical profile of this patient, in 
part, supported revisions in the adverse event manage-
ment guidelines for NE and CRS in patients treated with 
CAR T- cell therapy, including the creation of KTE- X19- 
specific cerebral edema management guidelines (online 
supplemental table S3), the initiation of corticosteroids 
for grade 2 NE rather than grade 3, and the initiation 
of tocilizumab for NE only if occurring in the context 
of CRS or immune effector cell- associated neurotoxicity 
syndrome.

Commensurate with clinical observations, peak CAR 
T- cell expansion at day 7 in this patient was 48 times 
higher than the median expansion of other patients in 
ZUMA-2. This rapid and robust expansion alongside exac-
erbated CAR T- cell activity likely contributed to the severe 
NE observed. CAR T- cell levels rapidly declined after the 
administration of ATG to baseline levels, but persisted 
at low levels over time, with the patient achieving and 
remaining in complete response 24 months after treat-
ment. These results also support the hypothesis that high 
levels of CAR T cells and functional activity prior to day 
14 may be sufficient for inducing a rapid and durable 
response.

The rise in several cytokines by day 3 was more 
pronounced in this patient compared with the broader 
ZUMA-2 population and rapidly declined by day 7 
post- ATG administration. CAR T- cell IL-2 production 
was approximately fourfold higher relative to the cohort 
median and promptly downregulated after ATG adminis-
tration, following dramatic decreases in CAR T cell levels. 
Serum levels of IFN-γ were sixfold higher relative to the 
cohort median, indicative of excessive Th1 CAR- related 
activity and, similar to IL-2 levels, rapidly returned to 
baseline post- ATG administration. In addition, CXCL10 
and MCP-1 were elevated in the CSF on day 8 compared 
with levels measured in serum on day 7, pointing to an 
active myeloid inflammatory process in the CNS. Since 
there was no suspicion of CNS lymphoma, a baseline CSF 
sample was not collected. Lumbar puncture for CSF on 
day 3 was unsuccessful, precluding a comparison with 
CSF cytokines pre- ATG. Although a mechanistic rela-
tionship of ATG in resolving cerebral edema post- CAR 
T- cell therapy could not be established, a broader cyto-
kine dampening induced by ATG and other clinical inter-
vention modalities may have led to an improvement in 
clinical and laboratory parameters. This case highlights a 
potential utility of ATG alongside other clinical interven-
tions in managing cerebral edema after anti- CD19 CAR 

T- cell therapy through rapid control of CAR T- cell levels 
and immune function. Additional studies are needed to 
assess the role of ATG in ameliorating NE associated with 
CAR T- cell therapy before this approach can be used in 
routine clinical practice.
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