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Abstract

ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq
data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence
reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each
other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy
and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully
utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by
incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are
automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count
information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses
show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is
freely available.
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Introduction

One major goal of functional genomics is to comprehensively

characterize the regulatory circuitry behind coordinated spatial

and temporal gene activities. In order to achieve this goal, a

critical step is to monitor downstream regulatory programs of

various transcription factors (TFs). ChIP-seq [1,2], a technology

that couples chromatin immunoprecipitation with massively

parallel sequencing, is capable of mapping genome-wide tran-

scription factor binding sites (TFBSs), and is increasingly used by

scientists and nation-wide projects such as ENCODE [3] and

modENCODE [4] to annotate functional sequence elements in

human genome and genomes of model organisms. ChIP-seq data

grow rapidly. The first ChIP-seq studies were published in 2007.

Since then, several thousands studies have been performed and

data are available in public databases [5]. This highlights the

importance of continuous development of robust and powerful

ChIP-seq data analysis tools.

The raw data produced by a ChIP-seq experiment are tens of

millions of short (usually less than 100 base pairs) DNA sequences

called ‘‘reads’’. To identify TFBSs, the reads are first aligned to a

reference genome and the uniquely aligned reads are retained.

Next, the genome is scanned to identify ‘‘peaks’’, or regions

enriched in aligned sequence reads, which are the predicted TF

binding sites. Since 2007, a number of peak calling algorithms and

software tools have been developed. Examples include BayesPeak

[6], CisGenome [7], FindPeaks [8], GPS [9], Hpeak [10], MACS

[11], MOSAiCS [12], PeakSeq [13], PICS [14], QuEST [15],

SISSRs [16], T-PIC [17], etc. Several benchmark studies have

also been conducted to compare different peak calling tools

[18,19].

Early analyses revealed that ChIP-seq data for mapping TFBSs

have a characteristic pattern: surrounding each true binding site,

sequence reads aligned to the forward and reverse strands of the

reference genome are clustered into two distinct peaks that are

shifted away from each other, and the binding site is located in

between them (Figure 1). This phenomenon is caused by the

sequencing protocol which involves cutting chromatin into

fragments and reading the sequences from both ends of the TF

bound DNA fragments. The cutting points seldom fall within the

binding sites since the DNA is protected by the TF. As a result, in

most cases the binding sites sit within the DNA fragments, and

their flanking sequences are read out by the sequencer. Since the

machine reads the DNA sequences in a directional way, reads

from one end of the DNA fragments are always aligned to the

forward strand of the reference genome, and reads from the other

end are always aligned to the reverse strand. This creates the

bimodal peak pattern shown in Figure 1.

This pattern has been shown to be useful for improving TFBS

detection. For example, SISSRs [16] uses the sign change of the

forward and reverse strand read count difference along the

genome to identify the true binding sites. CisGenome [7] uses the

summits of the two coupled peaks to determine the boundaries of

binding sites. QuEST [15] and MACS [11] estimate the offset

between the forward and reverse strand peaks, and shift these two

peaks together based on the offset. They then merge signals from

both peaks to increase accuracy for identifying true binding
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location. While many state-of-the-art peak callers use the bimodal

pattern in their design, most methods only use the information

contained in the offset between the two coupled peaks. Few

method fully utilize the information contained in the peak shapes.

As pointed out in a recent publication [20], many false positive

TFBSs can be ‘‘filtered out by visual inspection on the peak sizes

and appearance’’. To demonstrate, Figure 1 shows three examples

of good binding sites along with an example of false positive. All

examples have large read counts in both strands with certain

offsets. Methods using the offset information alone would call all

examples as binding sites. However, the example in Figure 1(d) is

very likely to be sequencing artifacts. It does not contain DNA

motifs for the TF, and clearly has very different shapes from the

true binding sites. Thus if the peak shape information is used in the

inference, this false positive can be eliminated.

There are two existing methods fully incorporate the peak shape

information in a rigorous statistical framework. PICS [14] uses two

t-distributions with shifted centers to jointly model the positions of

forward and reverse reads. A limitation of this approach is that it

assumes that the peak shapes can be described by scaled t-

distributions, which may not reflect the true peak shapes as they

could be asymmetric. GPS [9] implements a more flexible

approach to use an empirical distribution to characterize the peak

shapes. The estimation of the shapes and peak calling are iterated

until convergence. Both PICS and GPS are computationally

intensive, especially when the total read counts is large because

they model the position of all aligned reads. T-PIC [17] is another

method that partially uses the peak shape information by

summarizing it into a one-number statistic. However it only

reflects certain aspects of the peak shape and cannot capture the

full detail. Moreover, T-PIC does not treat the forward and

reverse strand reads separately and ignores the offset between

them.

In this article we propose a new method called PolyaPeak to

utilize the peak shape information for detecting TFBSs. PolyaPeak

models the read counts from equal sized bins around the binding

Figure 1. Illustration of peak shapes from three good binding sites (a, b, c) and one false positive (d). X-axis is genomic location
centered at the summit of each peak. Y-axis represents ChIP read counts in 10 bp genomic windows. For each peak, data from the IP sample in a
800 bp window surrounding the MACS peak summit is shown. Bars above the middle represent counts from forward strand, and bars below
represent the counts from reverse strand. The black rectangles illustrate the TF binding sites. (a) and (b) are two different binding sites from the same
ChIP-seq dataset, and (c) is a binding site from a different dataset. They illustrate that peak shapes at true TFBSs are similar but can vary across
binding sites and datasets.
doi:10.1371/journal.pone.0089694.g001
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sites and describes the peak shapes using a multivariate Pólya

distribution. It then uses a hierarchical model to integrate the peak

shape and the read count information to identify binding sites.

Compared with PICS and GPS, PolyaPeak models the bin counts

so it’s more computationally efficient and can be easily embedded

into MACS or CisGenome as a downstream peak ranking

algorithm. Therefore, PolyaPeak provides a more flexible and

efficient model for utilizing the peak shape information. Our

extensive real data analyses show that its performance is robustly

among the bests compare to several state-of-the-art peak callers.

Materials and Methods

We use a two-step procedure to detect binding sites. In the first

step, a simple and fast peak calling algorithm based on smoothing

is applied to roughly identify the locations and summits of

candidate peaks. In this article we use MACS as the first step peak

caller although one can easily replace MACS by other methods. In

the second step, the candidate peaks are scored and ranked by a

more sophisticated model which considers both the read count and

the peak shape information. Since the first step is based on existing

algorithms, this article focuses on the second step.

A hierarchical model for peak scoring
Assume there are P candidate peaks obtained from the first step

peak calling. For each peak, we take an L (L~800 by default) base

pair (bp) window centered at its summit. The window is divided

into equal sized non-overlapping bins of S bp long (S~50 by

default). The number of reads within each bin is obtained. Reads

aligned to the forward and reverse strands are counted separately.

Hereinafter, ‘‘peak’’ refers to the L bp window. For peak p, denote

the read counts on the forward and reverse strands in bin 0i and

sample j by Y
p
fij and Y

p
rij respectively. Here j~1 or 0 refers to IP or

control sample, and i~1,2, . . . ,L=S. Reads from replicate

samples are pooled together. Define Yp~fY p
fij ,Y

p
rij : i~1,2, . . . ,

L=S; j~0,1g to be read counts from all bins and all samples

for peak p. Let Tp be the total read count in peak p:

Tp~
P

i

P
j (Y

p
fijzY

p
rij).

Let Zp indicate whether peak p is a true binding site ( = 1) or not

( = 0). We assume that a priori, the probability for a candidate peak

being a true binding site is q, or P(Zp~1)~q. Then the observed

bin-level read counts Yp for each peak are assumed to be

generated hierarchically. First, a total read count Tp is drawn from

certain distribution. Second, the Tp reads are randomly allocated

to different bins based on a probability distribution that specifies

the peak shape.

The distributions for generating Tp conditioned on Zp are:

TpDZp~1*Unif ½a,b�, TpDZp~0*(1{ )NB(a,b)z Unif ½a,b� ð1Þ

In other words, if Zp~1, the candidate peak p is a true binding

site and Tp is assumed to follow a uniform distribution. If Zp~0,

the candidate peak p represents background noise and Tp is

assumed to follow a mixture of a negative binomial distribution

and a uniform distribution. Negative binomial distribution is a

popular choice for modeling the background read counts [7,12].

Compared with Poisson, it allows over-dispersion and provides

better fit to the data. Our choice of using a mixture of negative

binomial and uniform for background is motivated by real data

observation. It implies that for most background regions, the total

counts follow a negative binomial distribution. However, some

non-binding regions may have unusually large read counts due to

artifacts. These outliers are modeled by the uniform mixing

component. Technically, these model assumptions guarantee that

the likelihood ratio P(TpDZp~1)=P(TpDZp~0) increases mono-

tonically with Tp, but is bounded at 1= in interval ½a,b�. Thus the

inference will not be overly influenced by the outliers, and the

results will be more robust. In PolyaPeak, we set e to 0.001 and

treat it as fixed and known.

Given Tp, the bin counts Yp are assumed to follow multinomial

distributions with random bin level probabilities Hp:

YpDTp,Hp*MN(Tp,Hp). Here Hp~fhp
fij ,h

p
rij : i~1,2, . . . ,L=

S; j~0,1g, and
P

i

P
j (h

p
fijzh

p
rij)~1. Hp characterizes the peak

shape at peak p. We further assume that the peak-specific

multinomial probabilities Hp follow Dirichlet distributions with

different parameters at background and binding regions:

HpDZp~k*Dir(ak),k~0,1:

Here ak~fak
fij ,a

k
rij : i~1,2, . . . ,L=S; j~0,1; k~0,1g. Conceptu-

ally, at a true binding site the proportions of multinomial

distribution, e.g., Hp, describe the peak shape. Using a Dirichlet

prior for Hp is based on observation that peaks in real data vary in

widths, heights, and shapes, possibly due to various biological and

technical factors. The Dirichlet prior provides a flexible model to

allow the heterogeneity and variation in the peak shapes.

Integrating out the peak specific multinomial probabilities Hp,

one can obtain the marginal bin counts distribution conditional on

the total counts:

YpDTp,Zp~0*MP(Tp,a0), YpDTp,Zp~1*MP(Tp,a1) ð2Þ

Here MP represents multivariate Pólya distribution, also known as

Dirichlet-multinomial compound distribution which generalizes

the Beta-binomial distribution.

In the model above, the bin counts Yp from all candidate peaks

are the observed data. Unknown model parameters include q, a, b,

a, b, a0 and a1. These parameters can be either specified or

estimated from the data. Given the parameters, one can compute

the posterior probability for a candidate peak being a true binding

site. Such posterior probability can be decomposed into three

components:

P(ZpDYp)!P(Zp)|P(TpDZp)|P(YpDTp,Zp) ð3Þ

The first component is the prior probability for peak p to be a true

binding site. The second component is the information from the

total read count. The third component is the allocation of read

counts in different bins conditional on the total count. This

component characterizes the peak shape around the binding site

and was ignored by many existing peak callers. PolyaPeak first

determines the unknown parameters, then compute P(Zp~1DYp)

for each candidate peak and rank the candidate peaks accordingly.

Choice of parameters
Choosing a, b, a and b. Given a list of candidate peaks, the

distributional parameters in Equation 1 are determined as follows.

For each candidate peak, we obtain the total read count Tp. The

minimum and maximum of Tp from all candidate peaks are taken

as a and b for the uniform distribution.

To estimate the negative binomial parameters a and b, we first

obtain genomic regions not covered by candidate peaks. These

regions are cut into L bp non-overlapping windows and read

counts for each window are obtained. A large proportion of the

genome (e.g., the repetitive regions) is unmappable. As a result,

ð1Þ
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many background windows have zero count. In practice, if there

are five consecutive regions with zero count, we exclude these

regions from the analysis. The real data analyses show that the

counts from the remaining regions can be fitted well by a negative

binomial. Using these regions, we estimate a and b by a moment

estimator. A negative binomial random variable X*NB(a,b) has

E½X �~ab and Var(X )~abzab2. Let m and v be the sample

mean and variance for X , we get: âa~m2=(v{m) and

b̂b~(v{m)=m.

Choosing q. The first step peak calling algorithm provides a

FDR estimate for the candidate peaks. We simply estimate q by

(1{FDR) � Lb=Lg. Here Lb is the total length of the candidate

peaks, and Lg is the length of the genome after excluding the

unmappable regions. Since the FDR estimate provided by the

initial peak calling may be biased, the estimate of q may be

inaccurate. However, q only affects the value of the posterior

probability P(Zp~1DYp). It will not change the final peak ranking

provided by PolyaPeak. For this reason, we can tolerate the bias in

estimating q, since it does not compromise our main goal of

improving the peak ranking.

Estimating a0 and a1. The procedures for estimating the

parameters of multivariate Pólya distribution has been proposed

previously. Here we implement the MM algorithm (reviewed in

File S1) introduced by [21] to estimate a0 and a1.

For a0, we first randomly sample N (~1000 by default)

genomic intervals of L bps from the non-peak regions. Each

interval is divided into equal sized bins of S bps, and the bin read

counts are obtained. Using these counts as input, a0 can be

estimated via an MM algorithm. For a1, we first obtain N top

ranked candidate peaks from the initial peak calling. These high-

quality peaks are most likely to be true binding sites, and will be

used as the training data to learn peak shapes. For each of the N
top peaks, we obtain the bin read counts Yp. Using these bin

counts as data, a1 can be estimated using MM algorithm.

Ranking the peaks
With all parameters determined, PolyaPeak will compute

P(Zp~1DYp), the posterior probability that each candidate peak

is a true binding site, and use these posterior probabilities to rank

the peaks. Some peaks may have the same posterior probabilities

due to constraints of numerical precision. For these peaks, we use

the log likelihood ratio logfP(YpDZp~1)=P(YpDZp~0)g to break

the ties.

Implementation
The proposed method is implemented as an R package titled

‘‘PolyaPeak’’ for re-ranking a list of peaks reported from another

peak calling software. The computational intensive part (MM

algorithm) was implemented in C for efficiency. The software

package can be freely downloaded from

users/hwu30/polyaPeak.html.

Results

Data
We tested PolyaPeak on a large number of publicly available

datasets and obtained similar results. Here we present represen-

tative results using six datasets generated by three different labs.

The first two datasets were generated by [22] for mapping binding

sites of mouse TFs OCT4 (POU5F1) and MYCN in mouse

embryonic stem cells (mESC). The reads aligned to mouse genome

build mm8 were downloaded from the Gene Expression Omnibus

(GEO) (accession number GSE11431). The number of uniquely

aligned reads for each sample ranged from 3 to 9 million. Each

dataset contained one IP and one control sample. Datasets 3 and 4

were generated by Snyder lab at Yale/Stanford University for

mapping the binding sites of MYC and MAX TFs in human K562

cell line. The data were generated as part of the ENCODE

project. Sequence reads aligned to human genome build hg18

were downloaded from the ENCODE data coordination center.

Each dataset contained two IP and one Input control samples.

There were 10 to 20 million uniquely aligned reads in each

sample. Datasets 5 and 6 were generated by the HudsonAlpha

Institute, also for ENCODE project, for mapping the binding sites

of GABP and NRSF TFs in human HepG2 cell line (GEO

accession numbers GSM803343 for GABP and GSM803344 for

NRSF). We downloaded the raw sequence reads aligned to human

genome build hg19. Each dataset contained two IP and one Input

control samples. Each sample had 50 to 100 million uniquely

aligned sequence reads.

The diversity of the test data in terms of lab origin, cell type,

species, reference genome and sequencing depth demonstrates the

general applicability of PolyaPeak.

Exploratory analysis
First, we explored various characteristics of the real data.

Figure 2(a)–(c) shows histograms of background window read

counts Tp in the mESC OCT4, K562 MYC, and HepG2 GABP

data. In each plot, the density curve of a negative binomial

distribution with parameters estimated from the proposed method

of moment estimator is also shown. It shows that the background

total counts can be approximately modeled by a negative binomial

distribution, and the estimation procedure for choosing negative

binomial parameters works well.

Figure 2(d) shows the estimated peak shapes from the K562

MYC data. Plotted in the figure are the mean shapes for binding

sites, e.g., a1
fij=Da1D and a1

rij=Da1D for j~0,1. The estimated

parameters are able to capture the location shift between the

forward and reverse strand peaks, and the enrichment of IP

compared with control samples. Figure 2 are only representative

examples to illustrate key data characteristics. Analyses of the

other datasets produced similar results.

Comparison with other methods
Next, we compared PolyaPeak with several existing peak calling

methods: MACS, CisGenome, PICS, GPS and T-PIC. While a

number of peak calling methods have been developed, two

comprehensive and independent benchmark studies showed that

MACS robustly performs among the best in terms of peak calling

sensitivity and overall receiver operating characteristics [18,19].

For this reason, we used MACS as the baseline to benchmark our

method. CisGenome is another popular software tool for peak

calling with relatively high specificity. Currently, MACS and

CisGenome are the two most cited ChIP-seq peak calling tools

according to both the ISI Web of Science and Google Scholar

using ‘‘ChIP-seq’’ as the query keyword. PICS, GPS and T-PIC

are recently developed peak calling algorithms which attempt to

use the peak shape information. This makes them different from

other peak callers that do not fully utilize the shape information.

Since the main point of this paper is to use peak shape to improve

TFBS detection, we included PICS, GPS and T-PIC into our

comparisons to test the effectiveness of our model.

For each dataset and each peak calling method except T-PIC,

the analysis produced a ranked peak list. We compared different

methods based on the enrichment of DNA motifs in the reported

peaks. To avoid biases caused by peak lengths, we truncated or
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extended all peaks to make them having the same length (200 bps)

before the motif analysis. For each ranked peak list, we evaluated

the percentage of top N peaks containing at least one DNA motif

site for the TF. We then plotted this percentage as a function of N.

The DNA motif sites were obtained using the motif mapping

function matchPWM in the Biostrings packages in BioConductor.

The position weight matrices (PWMs) were obtained from

TRANSFAC [23].

Figure 3 compares the motif contents in peaks ranked by

different methods. The results show that top peaks reported by

PolyaPeak consistently have higher or comparable motif enrich-

ment level compared with peaks reported from MACS, CisGen-

ome or PICS, and the improvement could be substantial. For

example, in the HepG2 GABP data, 56% of of the top 1000 peaks

reported by PolyaPeak contained at least one GABP motif,

whereas the percentages was 40%, 38% and 40% for MACS,

CisGenome and PICS respectively. Thus PolyaPeak improved

MACS by 40%. Compared to GPS, PolyaPeak outperformed in

mESC OCT4 and MYCN, as well as K562 MAX data. GPS

outperformed PolyaPeak in K562 MYC and HepG2 GABP data.

The two performed similarly in HepG2 NRSF data. These results

showed that overall, the performance of PolyaPeak is slightly

better than GPS in terms of motif enrichment. Among all existing

methods, we found that overall GPS and PICS provides better

results than MACS and CisGenome, which is not surprising since

it has incorporated peak shape information. In all the data we have

tested, PolyaPeak robustly performed among the bests.

Figure 2. (a)–(c): histogram of total read counts in background regions from different datasets: (a) TF OCT4 in mouse ES cells; (b) TF
MYC in K562 cell line; and (c) TF GABP in HepG2 cell line. The black solid curve is the theoretical density for the negative binomial distribution
with parameters estimated from the method of moment procedure. It can be seen that the total counts in background regions can be approximated
well by a negative binomial distribution, and the method of moments for estimating negative binomial parameters works well. (d) Estimated peak
shape from polyaPeak for K562 MYC data.
doi:10.1371/journal.pone.0089694.g002
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The comparison to T-PIC was more difficult since T-PIC runs

very slow and usually reports larger number of peaks without

providing peak rankings. Therefore we were only able to roughly

compare the performance based on the overall motif contents of

all reported peaks. Details of this comparison are provided in File

S1, and the results show that PolyaPeak again performed better

than T-PIC.

The net gain by modeling peak shapes
The observed differences between PolyaPeak and the other

methods can be caused by many different factors, such as

differences in statistical models, parameter estimation methods,

or implementation details. MACS was used as the first step peak

caller for PolyaPeak. Even for the relatively well-controlled

comparison between PolyaPeak and MACS, the observed

differences could be due to differences in (1) modeling the total

read counts, i.e., P(TpDZp), or (2) using the peak shape

information, i.e., P(YpDTp,Zp). In order to determine whether

the peak shape information really played an important role in

improving the peak ranking performance, we developed a reduced

PolyaPeak model by removing the peak shape information, and

compared the reduced model with the original PolyaPeak that uses

the peak shapes. To develop the reduced PolyaPeak model, we did

not break peaks into L=S bins. Instead, for each peak we only

counted the number of IP and control reads in the L bp window

centered at the peak summit. As a result, we obtained two

numbers per peak: Yp~fY p
0 ,Y

p
1 g where Y

p
1 is the read count

from the IP sample, and Y
p
0 is the read count from the control

sample. Tp~Y
p
0 zY

p
1 is the total read counts. We then modeled

Yp similarly as in Formulas 1–3. However, rather than having

4 � L=S numbers per peak as the observed data, now we only have

two numbers per peak. The reduced model still allows one to use

the information from the IP and control read count differences,

but the peak shape information is lost. We fit the reduced model

and applied it to rank peaks in the same way as the original

PolyaPeak. Figure 3 shows that the original PolyaPeak consistently

outperformed the reduced model. This carefully controlled

comparison clearly demonstrates that incorporating the peak

shape information is able to substantially improve the accuracy for

detecting true binding sites.

The change of peak rankings
We further looked at the peaks with large rank changes between

the results from MACS and PolyaPeak. Figure 4 shows several

examples of MACS peaks from the K562 MYC data that are

down- or up-ranked by PolyaPeak. Figure 4 (a) and (b) show two

peaks with high ranks from MACS and low ranks from PolyaPeak.

This type of peaks often contain large read counts but do not have

a clear shape. None of the peaks shown here contained MYC

motif sites. Therefore the high read counts in these regions very

likely represent artifacts. Figure 4 (c) and (d) are two examples of

peaks up-ranked by PolyaPeak (ranked low from MACS but high

from PolyaPeak). Both of them have nice shapes, and contain

MYC motif.

Furthermore, it is found that the peaks ranked high in MACS

could have huge rank reduction in PolyaPeak. On the other hand,

the top ranked peaks from PolyaPeak usually are also ranked high

in MACS and seldom have dramatic rank reduction. These results

suggest that PolyaPeak mainly worked as a false positive filter to

down-rank low-quality MACS peaks. In general, MACS peaks

down-ranked by PolyaPeak have lower motif content. As a result,

the overall motif enrichment level is higher from PolyaPeak results,

as shown in Figure 3.

Discussion

Previous benchmark studies have shown that MACS robustly

performs among the best compared to other peak callers. Our

results show that by fully utilizing the peak shape information,

PolyaPeak is able to robustly outperform MACS. Compared with

the other two packages that uses peak shape information (PICS

and GPS), PolyaPeak also outperforms based on our tests.

PolyaPeak is computationally efficient because it models the read

counts from equal sized bins, whereas both PICS and GPS model

the positions of all aligned reads so their computational burden

grows with total reads. While we deliver PolyaPeak as an R

package, the computation intensive parts were written in C. On a

computer with 2.6 GHz CPU and 32 GB RAM running Linux,

the total computation time (using MACS to call peaks then

PolyaPeak to rank peaks) for an experiment with 25 million total

aligned reads is around 15 minutes. As a comparison, GPS takes

over an hour and PICS takes more than two hours on a single

CPU.

The performance difference between PolyaPeak and other peak

callers can be caused by different factors. Even for the relatively

well-controlled comparison between PolyaPeak and MACS, we do

not have enough information to tell whether peak shape really

helps. For this reason, and also because MACS has already been

shown by others to have favorable performance, we did not

include more peak callers into our comparisons as these

comparisons will not produce generalizable principle for future

algorithm design. Instead, we performed a well-controlled

comparison between PolyaPeak and the reduced PolyaPeak. The

only difference is that the reduced PolyaPeak does not use the peak

shape information. This comparison is more informative than the

comparison between PolyaPeak and the other peak callers since it

clearly shows that peak shape information brings improvement.

This produces a generalizable principle which in the future may be

used together with other established principles (e.g., adjusting for

GC content [12]) to continually improve the peak calling

algorithms.

PolyaPeak is specifically designed to re-rank the peaks using the

shape information. It is important to point out that PolyaPeak does

not model the clustering of multiple peaks within a small region,

like in GPS and PICS. As a result, PolyaPeak could down rank

regions with several closely spaced peaks. Nevertheless we found

that overall the improvements overweigh the sacrifices as shown in

the real data results.

When modeling a shape, it is often helpful to encourage some

smoothness. In our model, this can be achieved by introducing

some regularization procedures such as to penalize the second-

order derivative of the parameter a1 with respect to the bin

locations. Such a model could potentially further improve the

results, especially when the peaks are wider. This is a research

topic worth exploring in the near future.

PolyaPeak is able to improve TFBS detection because there is

strong shape information at the true binding sites in TF ChIP-seq

Figure 3. Comparison of motif enrichment in top ranked peaks reported from different methods (PolyaPeak, reduced PolyaPeak
without peak shape information, MACS, CisGenome, PICS and GPS) for six public datasets. X-axis represents peak ranks. Y-axis
represents the percentage of reported peaks containing at least one DNA motif site.
doi:10.1371/journal.pone.0089694.g003
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experiments. Examples shown in Figure 4 shows that peaks

containing large number of reads but didn’t show the desired

pattern are often down-ranked. On the other hand, peaks

containing relatively less reads but showing strong pattern will

be up-ranked. ChIP-seq can also be used to study histone

modifications (HMs). However, HM ChIP-seq signals usually are

highly variable in terms of their widths and shapes. Therefore, a

future research topic is to explore whether peak shape is helpful for

analyzing HM ChIP-seq data as well.
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Figure 4. Examples of peaks showing large differences in ranks from MACS and PolyaPeak. (a) and (b): Peaks ranked high in MACS but
low in PolyaPeak. (c) and (d): Peaks ranked low in MACS but high in PolyaPeak.
doi:10.1371/journal.pone.0089694.g004
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