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7 Endocrinology and Diabetes Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 39-unstranslated region of the DMPK gene, which encodes
a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been
associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin
action. DMPK-deficient (dmpk2/2) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver,
tissues in which DMPK is not expressed. Dmpk2/2 mice display metabolic derangements such as abnormal glucose tolerance,
reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that
DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the
molecular and metabolic phenotype of dmpk2/2 mice. Taken together, these findings indicate that reduced DMPK expression
may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for
susceptibility to type 2-diabetes.
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INTRODUCTION
Type 2 diabetes is a heterogeneous disease and a major international

public health threat. It is widely accepted that type 2 diabetes results

from a combination of genetic susceptibility and other risk factors

including obesity, increased age, hypertension, and lifestyle [1].

Insulin resistance, which is a major factor in the development of type

2 diabetes [2], is a common metabolic feature in myotonic dystrophy

1 (DM1), an autosomal dominant neuromuscular disorder [3]. DM1

patients frequently exhibit normal basal insulin levels but excessive

insulin release after a glucose load, indicating a compensatory beta-

cell response to tissue insulin insensitivity [4,5]. Whole-body glucose

disposal in DM1 patients is reduced by 15225% following insulin

infusion [6] and experiments with forearm muscle indicate a 70%

decrease in insulin sensitivity in skeletal muscle [7]. The DM1

mutation has been identified as the expansion of an unstable CTG-

repeat in the 39-untranslated region of a gene encoding DMPK

(myotonic dystrophy protein kinase) [8,9]. Insulin resistance in DM1

has been associated with aberrant splicing of the insulin receptor

RNA due to a toxic effect of the CUG-expanded repeats, which are

transcribed from the mutated dmpk gene but are retained in the

nucleus altering the normal metabolism of RNAs [10,11]. However,

whether the entire endocrine pathology of DM1 is caused by

alterations in RNA processing remains to be seen. Indeed, DM1

patients show a 50% decrease in DMPK expression [12] and studies

of dmpk knockout mice indicate that at least some of the features of

DM1 result from haploinsufficiency of DMPK [13–15]. Interesting-

ly, dmpk gene is located on chromosome 19q13, in which quantitative

trait loci (QTLs) for type 2 diabetes-associated phenotypes have been

identified by two independent genome-wide linkage scans among

large and multiple ethnicity populations [16,17].

DMPK is mainly expressed in muscle [18], which is a key target

tissue for insulin-dependent regulation of glucose metabolism [19].

Structurally, DMPK presents homology with protein kinases of the

Rho family (Rho-kinase), which have important roles in the

organization of the cytoskeleton and several cellular processes

including intracellular protein trafficking and metabolism [20,21].

Although little is known about the mechanisms that regulate DMPK

activity, it has been described that DMPK is activated in response to

G protein second messengers [22] and that the actin cytoskeleton-

linked GTPase Rac-1 binds to DMPK, promoting its transpho-

sphorylation activity in a GTP-sensitive manner [23]. Here we

examined the role of DMPK in the regulation of insulin action and

glucose homeostasis using a DMPK-deficient mouse model [13]. We

show that DMPK plays a role in the regulation of whole-body glucose

disposal and muscle insulin sensitivity through a mechanism that

involves the intracellular trafficking of insulin and IGF-1 receptors.

RESULTS

Dmpk2/2 mice exhibit insulin signaling defects in

skeletal and cardiac muscles
We used dmpk–null mice to explore the involvement of DMPK in

insulin action. We first analyzed cardiac and skeletal muscles, in

which DMPK is preferentially expressed [18]. Dmpk2/2 mice

showed normal expression of the insulin receptor and other
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components of the insulin signaling pathway, such as the protein

kinase Akt and glycogen synthase kinase 3b (GSK3-b) (Fig. 1 A).

However, abnormalities were found in the activation of the insulin

signaling pathway in both cardiac and skeletal muscle. Insulin-

induced autophosphorylation of the insulin/IGF-I receptor

(Tyr1150/1151-InsR; Tyr1135/1136-IGF-1R) was substantially

decreased in dmpk2/2 mice after insulin treatment in vivo (54610%

decrease in cardiac muscle; 44610% decrease in skeletal muscle)

(Fig. 1 A). Phosphorylation of other components of the insulin

signaling pathway such as Ser473-Akt and Ser9-GSK3-b was also

Figure 1. DMPK regulates muscle insulin signaling. (A) Cardiac and skeletal muscles (soleus and gastrocnemius); (B) white adipose tissue; and (C)
liver homogenates from dmpk2/2 and wild type mice were analysed by Western blot. Caveolin 3, caveolin 1 and b-actin were used as loading
controls. Heart homogenate was loaded as positive control for DMPK expression in B and C. (D) C2C12 myoblasts transduced with recombinant
adenovirus for myc-DMPK or green fluorescent protein (GFP) as control were analyzed by Western blot. Caveolin 3 was used as loading control. Data
are means6SEM. *P,0.05 vs control values (n = 3-5).
doi:10.1371/journal.pone.0001134.g001
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severely reduced in cardiac muscle from dmpk2/2 mice (3965%

decrease in Akt phosphorylation; 6769% decrease in GSK3-

b phosphorylation) (Fig. 1 A). In contrast, insulin-induced autopho-

sphorylation of the insulin/IGF-I receptor and phosphorylation of

Ser473-Akt were preserved in adipose tissue and liver (Fig. 1 B and

C, respectively), in which DMPK is not expressed. These results

suggest that insulin signaling defects in dmpk2/2 mice are restricted

to DMPK-expressing tissues. A role of DMPK in muscle insulin

signaling was corroborated by overexpression of DMPK in C2C12

skeletal muscle cells. In myoblasts transduced with myc-tagged

wild-type DMPK-adenovirus, insulin-stimulated phosphorylation of

Ser473-Akt and Ser9-GSK3-b was increased 1.860.2- and 5.562.6-

fold, respectively, compared to control cells (Fig. 1 D).

Metabolic alterations in dmpk2/2 mice
To examine whether dmpk2/2 mice display muscle insulin resistance,

we first measured insulin-stimulated glucose transport in cardiac and

skeletal muscle. In myocytes isolated from left ventricles and soleus

muscles from dmpk2/2 mice, insulin-stimulated glucose transport

was decreased compared with wild-type mice (Fig. 2 A and C,

respectively). The alterations in glucose uptake were not due to

a decrease in the insulin receptor or the glucose transporter GLUT4

expression levels (Fig. 2 B and D). Moreover, expression of caveolin

3, a specific muscular marker of caveolae that is altered in other forms

of muscular dystrophies [24] and is required for insulin-stimulated

glucose uptake [25], was also normal in cardiac and skeletal muscles

from dmpk2/2 mice. We further studied the role of DMPK in muscle

insulin sensitivity by analyzing GLUT4 translocation, a critical

muscle response to insulin. We performed subcellular fractionations

of cardiac muscle membranes from wild-type and dmpk2/2 mice.

Endosomes and sarcolemmal membrane fractions were separated by

successive spins of homogenates (Fig. 2 E). Low density microsome

(LDM) fractions were enriched in GLUT4 and contained very low

levels of Na+/K+-ATPase, indicating that such fractions were mostly

devoid of plasma membrane. In wild-type mice, GLUT4 content in

plasma membrane (PM) fraction was increased 51615% by insulin

injection, at the expense of the LDM pool of GLUT4, which showed

2364% reduction upon insulin treatment. Insulin-induced trans-

location of GLUT4 from LDM to PM was not detected in dmpk2/2

mice (Fig. 2 F).

Glucose tolerance tests performed at 4 weeks of age were

similar for dmpk2/2 and wild-type mice (Fig. 3 A). In contrast, at

8–10 weeks of age glucose tolerance in both male and female

dmpk2/2 mice was altered (Fig. 3 B and C, respectively). Plasma

insulin levels measured during glucose tolerance tests were also

elevated in dmpk2/2 as compared to wild-type mice (Fig. 3 D).

However, dmpk2/2 mice showed normal fasting glucose and

glycemia returned to baseline 2 h after glucose injection in both

groups. Fasted dmpk2/2 mice showed normal insulin, triglyceride

and free fatty acid levels (Table 1) while these parameters in fed

animals were higher than those from control animals (Fig. 3 E). No

increases in fat-cell mass or fat-cell number were detected in

dmpk2/2 mice (Fig. 3 F). The glucose intolerant response of dmpk2/2

mice placed on a high-fat diet for 8 weeks was more severe than that

of dmpk2/2 mice on a standard chow diet. Indeed, this metabolic

stress significantly increased fasting blood glucose levels as well as

glycemia 2 h after the glucose overload in dmpk2/2 compared to

wild type mice (Fig. 3 G).

DMPK is required for insulin receptor targeting to

the plasma membrane
Regarding the molecular mechanism whereby DMPK activity

could influence insulin receptor signaling, previous observations

Figure 2. Decreased insulin-dependent glucose transport and
abnormal GLUT4 translocation in dmpk2/2 muscle. (A, C) Ex vivo
glucose uptake in myocytes isolated from left ventricles (n = 6 per
group) and soleus muscles (n = 3 per group), stimulated with or without
insulin (100 nM). (B, D) Insulin receptor, glucose transporter GLUT4,
caveolin 3 and DMPK protein contents were analyzed in cardiomyocytes
and soleus, respectively, from wild-type (WT) and dmpk2/2 (KO) mice
(n = 3). (E, F) Subcellular fractions were prepared from cardiac ventricles
of basal and insulin-treated mice. (E) Plasma membranes (PM) and low
density microsomes (LDM) were analysed by SDS-Page and Western
blot. Representative autoradiograms from 3 experiments are shown.
Equal amounts of membrane proteins (4 mg) from the different
fractions were laid on gels. (F) GLUT4 translocation was quantified
from 3 independent experiments. (Data are mean6SEM; *P,0.05 vs
unstimulated values)
doi:10.1371/journal.pone.0001134.g002
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led us to analyze the role of DMPK in stress fiber formation: (i)

DMPK function has been associated with the regulation of

cytoskeleton in lens cells [26], and (ii) it has recently been shown

that disruption of the actin cytoskeleton leads to alterations in

insulin receptor localization and signaling [27]. We used two

mutants of DMPK: myc-K110ADMPK, a kinase deficient form

mutated at the ATP-binding site [28], and myc-DMADMPK,

which lacks C-terminal residues 550-629 but retains kinase activity

[22]. HeLa cells were transiently transfected with wild-type myc-

DMPK, myc-K110ADMPK or myc-DMADMPK. Transfected

cells were analyzed after 3-h starvation to determine the stress

fiber content in steady state (Fig. 4 A and B). The stress fiber

pattern in cells expressing myc-WTDMPK was indistinguishable

from that of the surrounding untransfected cells (Fig. 4 A, a–c and

Figure 3. Metabolic parameters in dmpk2/2 mice. Glucose tolerance tests of (A) 4-week-old males; (B) 8–10-week-old males; (C) 8–10 week-old
females. (wild type , black squares; dmpk2/2 mice, white circles). (n = 5–8 mice per group) (D) Plasma insulin, during glucose tolerance test performed
on 16 h-fasted mice (n = 528 for each group). (E) Insulin, triglycerides, and free fatty acids (FFAs) concentrations in plasma from fed mice (n = 8–14 for
each group). (F) Glucose tolerance tests on 4-month-old males on high fat diet (n = 8 per group; wild type, black squares; dmpk2/2 mice, white
circles). Data are mean6SEM; *P,0.05; **P,0.001; ***P,0.0001 vs wild-type values.
doi:10.1371/journal.pone.0001134.g003
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Fig. 4 B). Expression of the kinase-dead mutant myc-

K110ADMPK resulted in a disassembly of stress fibers (Fig. 4 A,

d–f and Fig. 4 B) while myc-DMADMPK induced a gross

condensation of actin filaments within the cell (Fig. 4 A, g–i and

Fig. 4 B). These results were consistent with those previously

reported for DMPK in lens cells and for the DMPK homolog

ROKa in HeLa cells [26,29]. Having verified the effect of DMPK

mutants in stress fiber formation in HeLa cells, we analyzed their

effect in the intracellular trafficking of the insulin receptor. HeLa

cells were transiently co-transfected with yellow fluorescent

protein-tagged InsR (YFP-InsR) along with myc-WTDMPK,

Table 1. Metabolic parameters in fasted dmpk2/2 mice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dmpk +/+ dmpk 2/2

Weight (g) 1861 1762

Blood glucose (mg/dl) 53.336 4.84 54.6062.16

Plasma insulin (ng/ml) 0.3460.08 0.3760.09

Plasma triglycerides (mM) 0.8560.06 0.7960.05

Data are means6SEM, ( n = 8-20)
doi:10.1371/journal.pone.0001134.t001..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Figure 4. Overexpression of DMPK mutants alters stress fiber formation in HeLa cells. (A) Stress fiber formation was analyzed by phalloidin
labeling. Cells were transfected with myc-WTDMPK (a–c), the kinase-dead myc-K110ADMPK mutant (d–f), and the C-terminal lacking myc-DMADMPK
mutant (g–i). Arrowheads indicate the transfected cells. Scale bar, 24 mm (applies to all panels). Representative images from 3 independent
experiments are shown. (B) Stress fiber formation was quantified using the Image J software as phalloidin intensity/cell area. Values for untransfected
cells were set as 100%. Means from three independent experiments with 20 cells analyzed per condition are shown. Data are mean6SEM;
***P,0.0001 vs unstransfected cells.
doi:10.1371/journal.pone.0001134.g004
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myc-K110ADMPK, myc-DMADMPK or empty vector as

control. Co-transfected cells were analyzed by confocal immuno-

fluorescence after 3-h starvation to determine the localization of

YFP-InsR in steady state. In cells expressing either empty vector or

myc-WTDMPK, YFP-InsR was targeted to the cell surface (Fig. 5 A,

a–d and e–h, respectively). Quantification analysis showed that the

overexpression of myc-WTDMPK induced a significant increase in

the receptor density at the plasma membrane compared to control

cells (Fig. 5 B). In contrast, in the presence of either myc-

K110ADMPK or myc-DMADMPK mutants, YFP-InsR was

retained in intracellular structures (Fig. 5 A, i–l and m–p,

respectively), with no evident co-localization with the DMPK

mutants (Fig. 5 A, k and o). For both mutants, the percentages of

YFP-InsR at the plasma membrane were significantly decreased

compared to control cells (Fig. 5 B). To identify the intracellular

compartments in which the YFP-InsR was retained, HeLa cells were

transfected with the vector encoding this protein and myc-

WTDMPK or myc-K110ADMPK and subjected to staining with

anti-myc antibody and a series of markers for different organelles.

Co-localization studies revealed that in the presence of myc-

K110ADMPK, the intracellularly retained receptor partially coin-

cides with the Golgi matrix protein GM130 (Fig. 6). No evidence of

co-localization was detected with early endosomes (EEA1) or to

recycling endosomes (transferrin receptor) (not shown).

Figure 5. DMPK is required for insulin receptor targeting to the plasma membrane. (A) HeLa cells were transiently co-transfected with YFP-InsR
along with control empty vector (a–d), myc-WTDMPK (e–h), myc-K110ADMPK (i–l) or myc-DMADMPK (m–p). Shown are representative images of 3
independent experiments. Scale bar, 24 mm (applies to all panels). (B) Receptor percentage at the cell surface was quantified by using Image J
software. Means from three independent experiments with 20 cells analyzed per condition are shown. Data are mean6SEM ; **P,0.001; ***P,0.0001
vs unstransfected cells.
doi:10.1371/journal.pone.0001134.g005
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To further analyze DMPK role in insulin receptor trafficking,

we measured the insulin binding activity in cardiomyocytes

isolated from dmpk2/2 and wild type mice. 125I-insulin binding

assays were carried out at 12uC on cells from 16-h fasted mice to

analyze cell surface binding in the absence of internalization. Cells

from dmpk2/2 mice showed a 3668% (n = 4, p,0.05) decrease in
125I-insulin binding at 0.033 nM insulin concentration compared

to controls (Table 2). This decrease was associated with a reduced

number of receptors at the cell surface with no apparent changes

in receptor affinity for the ligand as the percentage of 125I-insulin

displacement at saturating unlabeled insulin concentrations was

similar in both groups (58613% and 6268% displacement for

wild type and dmpk2/2 mice, respectively). To better understand

the metabolic phenotype of dmpk2/2 mice, we also analyzed the

impact of DMPK in the IGF1-receptor intracellular trafficking.

The results obtained by co-transfection of GFP-tagged IGF-1

receptor along with myc-WTDMPK, myc-K110ADMPK, myc-

DMADMPK or empty vector as control were similar to those

obtained for the insulin receptor (Fig. 7 A and B).

DISCUSSION
In this study, we addressed the molecular and metabolic function

of DMPK, a poorly characterized serine/threonine protein kinase.

Consistent with the preferential expression of DMPK in muscle

tissues [18], we show that dmpk2/2 mice exhibit insulin signaling

defects in cardiac and skeletal muscle. Our data indicate that

dmpk2/2 mice present a significant degree of metabolic alteration,

reflected in elevated glucose levels in glucose tolerance tests and

increased circulating fed insulin and lipid levels. As observed in

DM1 patients [4], dmpk2/2 mice show higher concentrations of

plasma insulin than wild-type mice in the glucose tolerance tests.

These mice exhibit impaired glucose uptake and GLUT4

translocation indicating that decreased insulin sensitivity in muscle

could be at the basis of the observed metabolic alterations. Indeed,

dmpk2/2 mice show normal adiposity and insulin signaling in

adipose tissue and liver, in which DMPK is not expressed.

Insulin-induced autophosphorylation of insulin/IGF1-R in

response to insulin is influenced by the number of receptors at

the cell surface. Correct intracellular trafficking of the InsR is

critical for insulin sensitivity and it has been shown that mutations

in the InsR gene that impair the transport of the receptor to the

plasma membrane lead to type 2 diabetes in humans [30]. After

insulin binding, InsR is rapidly internalized and either sent to

lysosomes for degradation, or recycled to the plasma membrane

Figure 6. Effect of kinase-deficient mutant DMPK (myc-K110ADMPK) on YFP-InsR subcellular distribution. HeLa cells were transiently co-
transfected with YFP-InsR along with myc-WTDMPK (upper panels) or myc-K110ADMPK (lower panels). Cellular distribution of YFP-InsR partially
coincides with that of Golgi complex protein GM130 in cells expressing myc-K110ADMPK (panel h). Dashed circles in b and f show the magnified
areas. Scale bar, 24 mm. Representative images of 3 independent experiments are shown.
doi:10.1371/journal.pone.0001134.g006

Table 2. Insulin binding to isolated cardiomyocytes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[insulin] nM
% insulin bound/105 cells

dmpk +/+ dmpk 2/2

0.033 6.060.5 3.860.4*

1 2.460.5 1.460.3

Results expressed as % of 125I-insulin specifically
bound at the indicated insulin concentration.
*P,0.05 vs. WT (n = 4)
doi:10.1371/journal.pone.0001134.t002..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
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for another round of binding, activation, and internalization [31].

Our results show that: (i) the insulin receptor expression levels in

dmpk2/2 mice are normal; (ii) the insulin binding to the plasma

membrane of dmpk2/2 cardiomyocytes is decreased; (iii) the

overexpression of kinase-deficient and C-terminal truncated

DMPK mutants leads to the retention of the InsR in intracellular

compartments; and (iv) the overexpression of wild-type myc-

DMPK increased the percentage of YFP-InsR at the cell surface.

Altogether, these data indicate that DMPK is involved in InsR

intracellular trafficking. However, this molecular mechanism

cannot fully explain the metabolic alterations observed in

dmpk2/2 mice, especially considering the previous characterization

of the muscle-insulin receptor knockout (MIRKO) mice which do

not show glucose intolerance [32]. For this reason, we analyzed

whether DMPK also regulated the targeting of IGF-1 receptor to

the plasma membrane. Indeed, functional inactivation of the IGF-

1 and insulin receptors in skeletal muscle (MKR mice) leads to

type 2 diabetes phenotype [33]. Interestingly, the glucose tolerance

tests performed in 4-week-old MKR mice are very similar to those

observed in 8–10-week-old dmpk2/2 animals. However, in contrast

to MKR mice, older dmpk2/2 mice do not develop type 2 diabetes.

The milder phenotype of dmpk2/2 mice compared to MKR mice

Figure 7. DMPK is required for IGF-1 receptor targeting to the plasma membrane. (A) HeLa cells were transiently co-transfected with GFP-IGF-1
along with control empty vector (a–d), myc-WTDMPK (e–h), myc-K110ADMPK (i–l), or myc-DMADMPK- (m–p). Dotted arrows in panel k and l show
a cell which only incorporated the GFP-IGF-1 plasmid, expressing the receptor at the plasma membrane. In the same panels, neighboring cells co-
expressing the receptor and myc-K110ADMPK are indicated by continuous arrows; in these cells, the accumulation of the receptor in intracellular
compartments is observed. Shown are representative images of 3 independent experiments. Scale bar, 24 mm (applies to all panels). (B) Receptor
percentage at the cell surface was quantified by using Image J software. Means from three independent experiments with 20 cells analyzed per
condition are shown. Data are mean6SEM; **P,0.001; ***P,0.0001 vs unstransfected cells.
doi:10.1371/journal.pone.0001134.g007
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is consistent with a mechanism involving a reduction of InsR and

IGF-1R function rather than full inactivation of these receptors.

We show that the kinase and C-terminal domains in DMPK are

positive and negative regulators, respectively, of the cytoskeleton

reorganization. Similar functions were previously found for

DMPK in lens cells [26] and for homologous domains in Rho

kinase a [29]. Both kinase and C-terminal domain mutants of

DMPK alter insulin and IGF-1 receptor targeting to the plasma

membrane and stress-fiber formation; however, whether these

effects are functionally related remains to be determined. One

possibility is that DMPK could be involved in the biogenesis of

Golgi-derived transport carriers through regulation of actin

cytoskeleton dynamics. Indeed, when actin dynamics is impaired

by a variety of actin toxins that depolymerize or stabilize actin

filaments, the Golgi complex shows significant structural changes

[34]. Interestingly, we detected that the receptor intracellular

accumulation caused by DMPK kinase-deficient mutant partially

co-localizes with the Golgi matrix protein GM130.

In summary, our study provides in vivo and in vitro evidence for

the role of DMPK in the regulation of insulin action and glucose

homeostasis. Taken together, these findings indicate that reduced

DMPK expression may directly influence the onset of insulin-

resistance in myotonic dystrophy 1 patients and suggest that

DMPK could represent a susceptibility gene to type 2-diabetes.

MATERIALS AND METHODS

Mouse experiments
All animal studies were performed in accordance with the

guidelines and under approval of the Institutional Review

Committee for the Animal Care and Use of the University of

Barcelona and by the animal welfare regulations of the University

of California, San Diego. The dmpk2/+ heterozygous mice on

129SV background were generated by Reddy et al. [13]. These

mice were mated to produce littermates that were homozygous for

intact DMPK allele (WT) and homozygous for the null DMPK

allele (KO). Except when indicated, 3-month-old male mice were

used in experiments shown. Mice were backcrossed for at least 9

times maintaining the animals as congenic in the colony. Female

mice were also analyzed in most of the studies presented with

similar results.

Physiological assays
The following measurements were performed on randomly fed or

on 16-h fasted animals when indicated. We measured blood

glucose levels on whole venous blood using an automatic glucose

monitor (One Touch Basic, Lifescan). Plasma insulin levels were

measured by ELISA, using rat insulin as a standard (Crystal

Chem). Free fatty acids and triglyceride levels were quantified

from plasma using kits from Wako (NEFA-C Ki and Triglyceride

L-Type, respectively). We performed glucose tolerance test on

16 h fasted mice injected intraperitoneally with D-glucose (2 g/kg

body weight, Sigma). For high-fat diet treatment, mice were

individually placed on a fat-adjusted diet (60 kcal% from fat,

Research Diets, Inc., New Brunswick, NJ) for 8 weeks.

Cardiomyocyte isolation and glucose uptake assays
Left ventricle myocytes from 3-month-old mice were prepared by

collagenase digestion as described previously [35] except that cells

were finally resuspended in D-glucose-free DMEM (Gibco)

supplemented with sodium pyruvate (0.22 mg/ml) and 0.2%

BSA. Cardiomyocyte suspensions at 10% cytocrit were incubated

with or without 100 nM insulin at 35uC for 30 min. The transport

assay was initiated by the addition of 2-deoxy-D-glucose (1 mM

final concentration, containing 0.5 mCi of 2-deoxy-D-[3H]glucose,

Amersham Pharmacia Biotech). Glucose uptake was terminated

after 20 min by transferring the cell suspension to microfuge tubes

and immediately centrifuged at 1006g for 30 s. Cell pellets were

washed 3 times in ice-cold 50 mM D-glucose in PBS. Background

activity was determined by measuring the transport in a solution

that contained 50 mM D-glucose. Cells were lysed with 1 ml of

ice-cold 0.1 N NaOH with 0.1% SDS and aliquots were taken for

determination of radioactivity and protein levels.

For skeletal muscle glucose uptake assays, mice were sacrificed

by cervical dislocation and soleus muscles were rapidly dissected.

Muscles were then allowed to recover for 15 min in flasks

containing 2 ml of incubation medium (D-glucose-free DMEM

(Gibco) supplemented with 0.22 mg/ml sodium pyruvate and

0.2% BSA), continuously oxygenated with 95% O2, 5% CO2 in

a shaking water bath (35uC). After recovery, glucose transport was

performed by adding 2-deoxy-D-[3H]glucose (1 mM, 1 mCi/ml)

and (14C)mannitol (19 mM, 0.3 mCi/ml) for 20 min and then,

muscles were frozen, weighed, and digested in 1 ml of 0.5 N

NaOH. Radioactivity was determined by liquid scintillation

counting for dual labels and the extracellular and intracellular

spaces were calculated as described [36].

Subcellular membrane fractionation
Separation of cardiac sarcolemmal and endosomal membranes

from mouse hearts was performed by differential centrifugation as

previously described [37]. Successive spins at 1006g, 5,0006g,

20,0006g, 50,0006g and 100,0006g were performed. Membranes

pelleting at 20,0006g [plasma membrane fraction, PM] were

enriched in the plasma membrane marker Na+/K+-ATPase. To

obtain a fraction containing the intracellular GLUT4 pool, the

20,000 g supernatant was centrifuged for 30 min at 50,0006g,

resulting in the separation of a high-density microsome fraction

[highly contaminated with plasma membranes] and a low-density

microsomes (LDM) fraction in the supernatant. This supernatant

was finally ultracentrifuged for 60 min at 100,0006g to obtain the

LDM pellet. Combining the quantitated signals from LDM and

PM fractions indicates that 8365% of Na+/K+ ATPase is found in

PM fraction, while 7762% of GLUT4 is in LDM (n = 3, p,0.05).

125I-insulin binding assays
Insulin binding in suspended cells was measured as described [38].

Human biosynthetic insulin was a kind gift from Eli Lilly Co.

(Indianapolis, IN). A14-125I-human insulin was purchased from

Perkin-Elmer (Boston, MA). Cells were exposed to a tracer

concentration of A14-125I-labeled human insulin and varying

concentrations of unlabeled human insulin for 4 hr at 12uC.

Reactions were terminated by layering duplicate aliquots of the

binding reaction over dibutyl phthalate in microcentrifuge tubes and

centrifuging at 14,0006g for 30 sec. The supernatant was aspirated

off and the radioactivity in cell pellets determined. Specific binding

was calculated by subtracting non-specific binding measured in the

presence of a large excess (1.67 mM) of unlabeled insulin.

Weight and DNA content of WAT
Perirenal, perigonadal and subcutaneous adipose tissues were

carefully dissected and weighed to determine the fat pad weight as

percentage of total body weight. To determine fat pad cell

number, perirenal adipose tissue was resected, weighed, and

immediately frozen in liquid nitrogen. About 50 mg of tissue were

homogenized, and genomic DNA was extracted using Quant-iT

PicoGreen (Invitrogen) as described by the manufacturer. DNA

was measured by fluorimetric method.
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Biochemical analyses
16-h fasted mice were injected intraperitoneally with D-glucose

(1 g/kg body weight) and 10 min later, with insulin (5 U/kg body

weight). After 10 min, heart, skeletal muscle, adipose tissue and

liver were rapidly extracted, freeze clamped in liquid nitrogen and

homogenized as described previously [28]. Control tissues from

untreated fasted mice were obtained in parallel. Immunoblotting

analyses were performed following standard procedures. Anti-

bodies to mouse DMPK were from Zymed Laboratories.

Antibodies to insulin receptor b-subunit, caveolin 3 and caveolin

1 were from BD Transduction Laboratories. All other antibodies

used were from Cell Signaling Technology. Immunoblots were

scanned and signals were quantified using HP Precisionscan Pro

and Syngene Gene Tools software. Shown are representative

immunoblot data from at least 3 independent experiments which

were quantified and expressed as the mean6SEM relative ratio of

phosphoprotein to total protein between untreated and insulin-

treated mice.
Gene transfer by adenovirus vectors Adenoviruses

expressing myc-tagged human DMPK were generated by

homologous recombination as described [28]. Subconfluent

C2C12 cells were infected for 2 h with 100 plaque-forming

units/cell of adenovirus vector encoding either myc-DMPK or

green fluorescent protein (GFP) before the addition of a suitable

volume of myogenic culture media (DMEM with 5% horse serum

and antibiotics). After 2 days, myotubes were treated with or

without 100 nM insulin for 30 min at 37uC, harvested, lysed and

analyzed by immunoblotting as described above.
Cell transfection and confocal microscopy For cell

transfection experiments, HeLa cells on coverslips were

transiently transfected using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Plasmids used

were: myc-tagged wtDMPK and myc-tagged DMADMPK [22];

myc-tagged K110ADMPK [28]; yellow fluorescent protein-tagged

insulin receptor (YFP-InsR) [39]; and green fluorescent protein-

tagged IGF-1 receptor (GFP-IGF-1) [40]. Thirty-six hours after

transfection, cells were serum starved for 3 h, then washed in PBS,

fixed for 30 minutes in 4% w/v paraformaldehyde and processed

for immunofluorescence as described above. Antibodies used were

anti-myc rabbit polyclonal antibody (Upstate), anti-myc mAb

9E10 (ATCC), mAb anti-GM130 [Amersham Biosciences], anti-

mouse Cy5-conjugated IgG (Jackson), anti-rabbit Alexa Fluor 555

IgG (Molecular Probes) and anti-mouse Alexa Fluor 594 IgG

[Molecular Probes]. For staining of actin filaments, the coverslips

were incubated with phalloidin conjugated to Alexa Fluor 594

(Molecular Probes). Cells were examined using a Zeiss LSM510

confocal laser microscope with an oil immersion 636/NA1.3

objective. Micrographs shown are representative optical sections

imaged through the centre of the cell. At least 20 cells for each

condition of 3 independent experiments were examined and

subjected to quantification analyses using Image J software.

Statistical analysis
Data are presented as mean6standard error. Statistical analysis

was performed using a two-tailed unpaired t-test. Two-way

analysis of variance (ANOVA) was applied for multiple compar-

isons, followed by the Bonferroni post hoc test. Values of P,0.05

were considered as statistically significant.
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