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A B S T R A C T   

Purpose: Comparison of deep learning algorithm, radiomics and subjective assessment of chest CT for predicting 
outcome (death or recovery) and intensive care unit (ICU) admission in patients with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection. 
Methods: The multicenter, ethical committee-approved, retrospective study included non-contrast-enhanced 
chest CT of 221 SARS-CoV-2 positive patients from Italy (n = 196 patients; mean age 64 ± 16 years) and 
Denmark (n = 25; mean age 69 ± 13 years). A thoracic radiologist graded presence, type and extent of pul
monary opacities and severity of motion artifacts in each lung lobe on all chest CTs. Thin-section CT images were 
processed with CT Pneumonia Analysis Prototype (Siemens Healthineers) which yielded segmentation masks 
from a deep learning (DL) algorithm to derive features of lung abnormalities such as opacity scores, mean HU, as 
well as volume and percentage of all-attenuation and high-attenuation (opacities >− 200 HU) opacities. Sepa
rately, whole lung radiomics were obtained for all CT exams. Analysis of variance and multiple logistic regression 
were performed for data analysis. 
Results: Moderate to severe respiratory motion artifacts affected nearly one-quarter of chest CTs in patients. 
Subjective severity assessment, DL-based features and radiomics predicted patient outcome (AUC 0.76 vs AUC 
0.88 vs AUC 0.83) and need for ICU admission (AUC 0.77 vs AUC 0.0.80 vs 0.82). Excluding chest CT with 
motion artifacts, the performance of DL-based and radiomics features improve for predicting ICU admission. 
Conclusion: DL-based and radiomics features of pulmonary opacities from chest CT were superior to subjective 
assessment for differentiating patients with favorable and adverse outcomes.   

1. Introduction 

Managing healthcare resources is crucial in a high prevalence 
communicable disease such as the ongoing severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) pandemic. It requires attention 
to several issues from screening and treatment to anticipation and 

management of hospital personnel and resources. Patients with severe 
disease often require hospitalization with intensive care unit (ICU) 
admission and mechanical ventilation and high demands of 
resources.1–3 Improved assessment of disease severity and prediction of 
ICU admission and outcome is warranted as it potentially could help 
anticipating need of hospital resources. 

Abbreviations: DL, Deep learning; ANOVA, Analysis or variance; RT-PCR, Reverse transcriptase-polymerase chain reaction; CXR, Chest X-ray; CT, Computed 
tomography. 
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Fig. 1. Transverse and coronal sections of a non-contrast chest CT with contours outlining lungs, lobes and parenchymal opacities in a 73-year-old male. The table summarizes the list of DL variables obtained from the 
prototype. The volume rendered image demonstrates (top right side) displays the involved lung parenchyma in red color. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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The current interpretation of radiology report in patients with or 
without SARS-CoV-2 is qualitative with semantic description of type and 
extent of distribution of findings as focal, multifocal, unilateral, bilat
eral, or diffuse. Some studies described a subjective severity scoring 
system based on chest CT images and reported good predictive value for 
outcome and need for mechanical ventilation or ICU admission.1–3 

Others redeployed Radiographic Assessment of Lung Edema (RALE) 
score for assessing severity of lung involvement in patients with SARS- 
CoV-2 infection on chest radiography.4 These subjective scoring sys
tems are time-consuming, inefficient, and likely prone to substantial 
inter- and intra-radiologist variations since they are not part of routine 
interpretation in most practices.6 To obtain quantitative data on the 
extent or severity of pulmonary involvement, investigators applied 
radiomics and deep learning (DL)-based algorithms in patients with 
SARS-CoV-2 infection.6–11 However, to the best of our knowledge, no 
prior studies have compared the performance of subjective severity 
scores and quantitative radiomics and DL algorithms for prediction of 
patient outcome and need for ICU admission. Likewise, it is unknown 
how individual performance of these methods varies in absence or 
presence of respiratory motion artifacts, which are common in often 
short of breath patients with SARS-CoV-2 infection.17 The purpose of our 
study was to compare deep learning algorithm, radiomics and subjective 
assessment of chest CT for predicting outcome and intensive care unit 
(ICU) admission in patients with SARS-CoV-2 infection. 

2. Methods 

2.1. Ethical committee approvals and disclosures 

The retrospective study received approval from the respective 
human research ethical committees for analysis and sharing of de- 
identified data. We did not receive any research funding for the CT 
Pneumonia Analysis Prototype (Siemens Healthineers). One partici
pating hospital (Massachusetts General Hospital) received unrelated 
research funding from GE Healthcare, Lunit Inc., Riverain Tech, and 
Siemens Healthineers. MZ, FD, and MM are employees of Siemens 
Healthineers who did not participate in the study subject selection or 
data analysis. All coauthors had unrestricted access to the manuscript. 

2.2. Research subjects 

The inclusion criteria for our study were age greater than 18 years, 
thin-section, non-contrast-enhanced chest CT (≤2 mm section thick
ness), positive reverse transcription polymerase chain reaction (RT-PCR 
assay) for SARS-CoV-2 infection, information on ICU admission, 
outcome (death versus recovery from SARS-CoV-2 infection), and ability 
to process image datasets with the DL algorithm and radiomics. Chest CT 
images from three patients were excluded since these could not be 
processed with the DL algorithm and the radiomics software. 

Of the 221 consecutive patients who met the inclusion criteria at the 
two tertiary care hospitals there were 196 patients from Ospedale 
Maggiore della Carita’, Novara, Italy (Site 1) and 25 patients from 
Aarhus University Hospital, Aarhus, Denmark (Site 2). The respective 
mean (±standard deviation) ages of patients from Sites 1 and 2 were 64 
± 16.6 years and 69 ± 13.3 years. There were more male than female 
patients at both sites (Site 1: 122 males; 74 females; Site 2: 16 males, 9 
females). Details of patient age, gender, ICU admission for SARS-CoV-2 
infection, and outcome (death versus recovery) were recorded. 

2.3. Non-contrast-enhanced chest CT 

At both sites, all non-contrast chest CT examinations were performed 
using respective standard of care routine chest CT protocols. All CTs 
were clinically indicated and performed for assessing extent or severity 
or complications (non-vascular) of SARS-CoV-2 pneumonia. Only the 
index chest CT exam was included for each patient. 

Patients at both sites were instructed to lie supine and scanned 
during a breath-hold in full inspiration. At Site 1, all patients were 
scanned on a 128-slice multidetector-row CT (Philips Ingenuity Core, 
Philips Healthcare, Netherlands) with 120 kV, 225 mAs (using auto
matic exposure control technique – Z-DOM, Philips), 1.1:1 pitch factor, 
0.5-second gantry rotation time, and 64 * 0.625 mm detector configu
ration. Thin-section images were reconstructed at 1 mm thickness using 
a soft tissue reconstruction kernel (Filter B). 

All chest CTs at Site 2 were performed on a 16-slice, multidetector- 
row CT (Siemens SOMATOM Emotion 16, Siemens Healthineers, For
chheim, Germany) using the following scan parameters: 110–130 kV, 
30–50 mAs (with fixed tube current), 1.5:1 pitch, 1-second gantry 
rotation time, and 16 × 1.2 mm detector configuration. Images were 
reconstructed with 2-mm section thickness using B20f (standard soft 
tissue) kernel. 

All CT DICOM image data were de-identified, exported offline, and 
transferred to Site 3 (Massachusetts General Hospital) for subjective and 
quantitative analyses. 

2.4. Subjective assessment 

A thoracic subspecialty radiologist (MKK with 14-year experience in 
thoracic radiology) analyzed all chest CTs from both sites on a DICOM 
viewing application (RadiAnt Dicom Viewer, Medixant, Poznan, 
Poland). For subjective severity, the radiologist evaluated pulmonary 

Table 1 
Summary of DL-based features and subjective severity assessment scores in chest 
CT with different grades of respiratory motion artifacts (mild, moderate and 
severe). Both subjective severity assessment and DL-based features suggested 
extensive pulmonary opacities in patients with moderate to severe artifacts as 
compared to those with mild or no motion artifacts.  

Variables No 
motion 
(n = 167) 

Mild 
(n =
1) 

Moderate 
(n = 36) 

Severe 
(n = 17) 

p- 
Value 

Volume of opacity 705 ±
726 

854 983 ± 768 1227 ±
707  

0.016 

Percentage of 
opacity 

18 ± 19 18 32 ± 26 42 ± 23  <0.001 

Mean HU of opacity − 534 ±
122 

− 430 − 458 ±
142 

− 466 ±
101  

0.004 

Subjective severity 
assessment 

12 ± 5 0 13 ± 6 15 ± 5  0.009  

Table 2 
Summary of patient demographics, subjective assessment, DL-based and radio
mics features based for need for ICU admission in patients with SARS-CoV-2 
pneumonia.   

Need for ICU admission 

With motion artifacts 
n = 221 

Without motion artifacts 
n = 167 

Mean age 
(years) 

65 ± 16.4 62 ± 16.4 

Gender M/F 138/83 106/61 

Subjective 
assessment 

Extent of opacity 
(AUC 0.768; p < 0.00001) 

Extent of opacity +
lymphadenopathy 
(AUC 0.805; p = 0.02) 

DL-based 
features 

Volume of opacity 
(AUC 0.772; p < 0.00001) 

Percentage of opacity 
(AUC 0.801; p value 
<0.0001) 

Radiomics 
Wavelet-LLL glszm Zone Entropy +
wavelet-HLH glcm MCC 
(AUC 0.784; p = 0.002) 

Wavelet-LLL glszm Zone 
Entropy 
(AUC 0.822; p < 0.0001) 

DL +
Radiomics 

Volume of opacity + wavelet-HHL 
glszm Zone Entropy + original glrlm 
Gray Level Variance + Mean HU of 
opacity 
(AUC 0.812; p = 0.01) 

Wavelet-LLL glszm Zone 
Entropy 
(AUC 0.822; p < 0.0001)  
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opacities for type (3-point score: 1 = ground-glass; 2 = consolidation; 3 
= mixed attenuation opacities which included a combination of 
groundglass opacities with consolidation, interlobular septal thickening, 

and/or nodules) and extent of lung lobe involved (5-point score, 1 =
<5%; 2 = 5–25%; 3 = 26–49%; 4 = 50–74%; 5 = >75%).12 Other 
recorded findings included presence of pleural effusion and mediastinal 
or hilar lymphadenopathy. Respiratory motion artifacts were graded as 
none, mild (affecting less than a lobe of the lung and without impaired 
evaluation), moderate (involving two or more lung lobes and with minor 
impairment in evaluation of lung findings), and severe (artifacts asso
ciated with substantially impaired evaluation of lung findings). 

2.5. DL-based CT Pneumonia Analysis Prototype 

The research software on CT Pneumonia Analysis Prototype 
(Siemens Healthineers) provides quantitative DL-features on the pres
ence and extent of pulmonary opacities related to SARS-CoV-2 pneu
monia in chest CT images. The prototype was trained on 1000 chest CT 
examinations for detection of SARS-CoV-2 pneumonia and on 1371 
chest CTs for quantification of pulmonary opacities. These did not 
belong to the three sites included in our study. As described in prior 
publications,13,14 the prototype automatically estimates presence and 
extent of pulmonary opacities in both lungs combined, and in each lung 
and lung lobe separately.15 The estimated DL-based features include a. 
presence or absence of pulmonary opacities; b. pulmonary opacity 
scores (score 1: <25%; score 2: 26–50%; score 3: 51–75%; score 4: 
>75% of lung lobe involvement); c. volume of pulmonary opacities (ml); 
d. percentage of lungs affected by opacities; e. mean Hounsfield units 
(HU) of pulmonary opacities; f. standard deviation of HU of pulmonary 
opacities; g. volume (ml) of high attenuation opacities with ≥− 200 HU; 
h. percentage of lungs affected by high attenuation opacities (Fig. 1). 

A study coinvestigator (CA with one-year post-doctoral research 
experience) processed 221 chest CT with the prototype. Two chest CT 
examinations could not be processed with the prototype and were 

Fig. 2. Chest CT images of two patients with RT-PCR 
positive COVID-19 pneumonia. (A, B) A 69-year-old 
male managed without ICU admission had multi
focal groundglass opacities in right lung and the left 
lower lobe on coronal multiplanar image (A), which 
is rendered in red color on the accompanying movie 
of volume rendered image dataset (B). (C, D) A 76- 
year-old-male who was admitted to the ICU and 
subsequently died from complications related to 
COVID-19 pneumonia. The patient had extensive 
consolidative opacities in the left lung and mixed 
attenuation opacities in the right lung on the coronal 
image (C) which are annotated in red color in the 
volume rendered movie (D). Incidentally, the patient 
had a cavitary nodule in the left apex which was 
concerning for lung cancer (no histopathology proof). 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   

Table 3 
Summary of patient demographics, subjective assessment, DL-based and radio
mics features in patients with different disease outcomes (death versus 
recovery).  

Disease outcome  

With motion artifacts 
n = 221 

Without motion artifacts 
n = 167 

Mean age 
(years) 

65 ± 16.4 62 ± 16.4 

Gender (M/ 
F) 

138/83 106/61 

Subjective 
assessment 

Extent of opacity 
(AUC 0.758; p < 0.0001) 

Lymphadenopathy + type of 
opacity + pleural effusion 
(AUC 0.864; p = 0.024) 

DL-based 
features 

Percentage of opacity +
standard deviation of opacity 
(AUC 0.841; p = 0.0154) 

Standard deviation + Volume of 
high opacity 
(AUC 0.883; p = 0.001) 

Radiomics 

Wavelet LLL gldm_Small 
Dependence High Gray Level 
Emphasis + wavelet-LHL 
glrlm High Gray Level Run 
Emphasis 
(AUC 0.827; p = 0.009) 

Wavelet-LLL ngtdm contrast +
wavelet-LHH gldm Large 
Dependence High Gray Level 
Emphasis+ original shape 
Spherical Disproportion 
(AUC 0.815; p = 0.009) 

DL +
Radiomics 

Wavelet-LLL gldm Small 
Dependence High Gray Level 
Emphasis + Volume of 
opacity 
(AUC 0.836; p < 0.001) 

Standard deviation 
(AUC 0.877; p < 0.0001)  
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excluded. These exams had either incomplete image datasets or cor
rupted DICOM headers. 

2.6. Radiomics 

On a separate prototype (Radiomics, Siemens Healthineers), a study 
coinvestigator (CA) processed thin-section images of 221 chest CTs to 
obtain radiomics for the entire lungs. The radiomics prototype performs 
automatic segments and estimates radiomics over bilateral lungs. 
Radiomics features are thoroughly described in accessed at https 
://pyradiomics.readthedocs.io/en/latest/features.html. The derived 
radiomics features include first-order, shape, gray level co-occurrence 
matrix, gray level run length matrix (GLRLM), gray level size zone 
matrix (GLSZM), neighboring gray tone difference matrix (NGTDM), 
and gray level dependence matrix features (GLDM).5 

2.7. Statistical analysis 

Statistical analysis for outcome prediction was limited to either the 
entire study sample (221 patients) or patients from Site 1 (196 patients). 
No separate statistical testing was performed for Site 2 since very few 
patients (n = 4–8) had adverse outcomes and ICU admission. 

Data were analyzed with Microsoft EXCEL (Microsoft Inc., Redmond, 
Washington, USA) and SPSS Statistical software (SPSS Version 24, IBM 
Inc., Chicago, Illinois, USA). We used pivot tables within the EXCEL files 
to obtain descriptive statistics. Chi square test and analysis of variance 
(ANOVA) were performed with SSPS Statistics software to determine 
whether the differences in DL-based features among type and extent of 
pulmonary opacities were statistically significant. In addition, we used 
the R Statistical Computing (https://www.R-project.org, R Foundation 
for Statistical Computing, Vienna, Austria, accessed on 4.15.2020) built 
in the Radiomics prototype to perform multiple logistic regression for 
predicting patient outcome and ICU admission. Area under the curve 
(AUC with 95% confidence interval) was the output information for the 

Fig. 3. Chest CT images of two patients with RT-PCR 
positive COVID-19 pneumonia. (A, B) A 41-year-old 
male with full recovery. Coronal multiplanar image 
shows multifocal mixed opacities in left upper and 
bilateral lower lobes (right greater than left) which 
are displayed in red in the accompanying movie of 
volume rendered image dataset (B). (C, D) A 72-year- 
old-male who died from complications related to 
COVID-19 pneumonia. The patient had diffuse mixed 
attenuation opacities in bilateral lungs on coronal 
image (C) which are annotated in red color in the 
volume rendered movie (D). (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   

Table 4 
Summary of DL algorithm derived opacity scores as well as mean HU and standard deviations of opacities for groundglass, consolidative and mixed opacities on a lung- 
lobe basis (* all values in average/lobe are p < 0.0001).  

Type of opacity RUL RML RLL LUL LLL Average/lobe* 

Opacity score Groundglass 0.9 ± 0.8 0.9 ± 0.9 1.3 ± 1.1 0.7 ± 0.8 1.1 ± 0.9 1 ± 0.9 
Consolidation 1 ± 0.8 1.1 ± 0.7 2 ± 1 1.8 ± 1.2 2.2 ± 0.8 1.7 ± 1 
Mixed opacities 1.8 ± 1.1 1.7 ± 1 2.1 ± 1.1 1.7 ± 0.9 2 ± 1.1 1.9 ± 1.1 

Mean HU of opacity Groundglass − 586 ± 147 − 534 ± 208 − 562 ± 161 − 599 ± 167 − 736 ± 162 − 576 ± 170 
Consolidation − 410 ± 74 − 461 ± 36 − 403 ± 137 − 366 ± 111 − 355 ± 151 − 395 ± 118 
Mixed opacities − 500 ± 133 − 567 ± 114 − 468 ± 131 − 535 ± 124 − 472 ± 131 − 500 ± 132 

Standard deviation of opacity Groundglass 182 ± 76 168 ± 81 178 ± 75 163 ± 64 169 ± 65 172 ± 73 
Consolidation 210 ± 40 251 ± 39 239 ± 46 244 ± 27 249 ± 62 240 ± 47 
Mixed opacities 217 ± 58 201 ± 48 227 ± 47 207 ± 48 218 ± 50 216 ± 51  
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regression analysis. A p-value less than 0.05 was considered as statisti
cally significant difference. 

3. Results 

Of the 23/221 patients (10.4%) who passed away from SARS-CoV-2 
pneumonia, 20 patients died at Site 1 (20/196; 10.2%) and 3 patients at 
Site 2 (3/25; 12%). Forty-seven patients required ICU admission (Site 1: 
39/196 patients, 19.9%; Site 2: 8/25, 32%) while others had non-ICU 
hospital admission (174/221). 

Of the 221 chest CTs, there were respiratory motion artifacts in 
almost one-quarter of patients with following distribution: none (167/ 
221; 75.6%), mild (1/221; 0.4%), moderate (36/221; 16.3%), and se
vere (17/221; 7.7%). Chest CT with moderate to severe motion artifacts 
had more extensive pulmonary opacities as compared to those with no 
or mild motion artifacts (p < 0.016; Table 1) There were no significant 
differences in the severity of motion artifacts in patients with and 

without ICU admission (p = 0.148) and adverse outcomes (0.079). 

3.1. ICU admission 

Subjective severity assessment had an AUC of 0.77 (95% CI 
0.77–0.79) on the entire dataset from both sites for predicting ICU 
admission; the AUC did not change when chest CTs with respiratory 
motion artifacts were excluded. Addition of lymphadenopathy to sub
jective severity assessment increased the AUC to 0.80 on chest CTs 
without motion artifacts (p < 0.001). 

Among the DL-based features, volume of pulmonary opacities had 
the best predictive value (AUC 0.77) for determining ICU admission in 
the entire dataset (Sites 1 and 2) (Table 2) (Fig. 2). Without the chest CTs 
with motion artifacts, a DL-based feature, percentage of opacities was 
the best predictor with an AUC of 0.80. As summarized in Table 1, 
higher order radiomics also had similar performance with 0.78 AUC for 
the entire dataset and 0.82 AUC for chest CTs without motion artifacts. 
When DL-based and radiomics features were combined in the multiple 
logistic regression analysis, the AUC for predicting ICU admission 
increased to 0.81 in the entire database (p = 0.01) and to 0.82 for chest 
CTs without severe motion artifacts (p = 0.006). 

Stratified analysis of Site 1 data for predicting ICU admission 
demonstrated no difference in performance of subjective severity 
assessment (AUC 0.80–0.81), DL-based features (AUC 0.76–0.79), and 
radiomics (AUC 0.77–0.78) for chest CTs with and without motion ar
tifacts (p > 0.5). 

3.2. Patient outcome 

The subjective severity assessment could predict patient outcome 
(death versus recovery) in the entire dataset of chest CTs from both sites 
with and without motion artifacts (AUC 0.76) at a threshold of 13 and 
higher for severity score (sensitivity = 82%, specificity = 60% for ICU 
admission and sensitivity = 95% and specificity = 57% for patient 
outcome). The AUC (0.86) of subjective severity assessment improved 
when combined with pleural effusion and intrathoracic lymphadenop
athy (p = 0.024), especially from chest CTs without motion artifacts. In 
the presence of lymphadenopathy and pleural effusions, a severity score 
of 16 and higher had the highest sensitivity of 89% and specificity of 
72% for prediction of ICU admission and 67% and 61% for disease 
outcome prediction. 

Both DL-based (AUC 0.84) and radiomics (AUC 0.83) features out
performed subjective severity assessment for predicting patient outcome 
when all chest CTs (Sites 1 and 2) with and without motion artifacts 
were included (p = 0.01–0.009) (Table 3) (Fig. 3). DL-based features 
(AUC 0.88) were superior to both subjective severity assessment (AUC 
0.86) and radiomics (AUC 0.82) when chest CTs with motion artifacts 
were excluded. Combined analysis of DL-based and radiomics (AUC 
0.84–0.87) features did not improve differentiation of patients with and 
without favorable outcome as compared to their separate performance 
(AUC 0.82–0.88). 

Upon stratified analysis of Site 1 data for outcome prediction, DL- 
based features (AUC 0.86 for chest CT with motion artifacts; AUC 0.91 
with exclusion of chest CT with motion artifacts) were superior to both 
subjective assessment (corresponding AUCs 0.79 and 0.84) and radio
mics (corresponding AUCs 0.78–0.80) (p < 0.001). 

Thresholds for DL and radiomic best features for ICU admission and 
disease outcome are summarized in Table 5 in Supplementary. 

3.3. Types and extent of pulmonary opacities 

There were significant differences between the opacities scores, 
mean HU of the lungs and mean HU of pulmonary opacities for 
groundglass, mixed, and consolidative opacities on chest CT examina
tions (p < 0.0001) (Table 4). 

There was a strong correlation between the subjective assessment of 

Fig. 4. Box whisker plots for percentage (A) (top graph: y-axis denotes per
centage of lung affected by opacities) and volume of opacities (B) (bottom 
graph: y-axis denotes absolute lung volume affected by opacities in mL). The 
different color boxes along the x-axis represent subjective severity assessment 
into different subjective percentage categories of lungs affected by opacities. 
The horizontal lines within each box represent median values whereas the 
upper and lower bounds of each box are first and third quartiles. The whiskers 
denote minimum and maximum values. The cross marks (x) represent the 
average values. 

C. Arru et al.                                                                                                                                                                                                                                     



Clinical Imaging 80 (2021) 58–66

64

pulmonary opacities and DL-based features on volume (r2 = 0.735) and 
percentage (r2 = 0.728) of pulmonary opacities. The distribution of 
volume and percentage of pulmonary opacities for different subjective 
severity assessment scores is summarized in Fig. 4. Some patients with 
extensive pulmonary opacities on subjective assessment (as well as low 
opacity and volume scores on analysis with the prototype) had adverse 
outcome, while a few patients with low subjective extent score died from 
complications related to SARS-CoV-2 pneumonia (Figs. 5 and 6). 

4. Discussion 

Almost one-quarter of chest CT examinations in patients with SARS- 
CoV-2 pneumonia had moderate or severe respiratory motion artifacts 
that limited evaluation of lung findings. The presence or absence of 
respiratory motions artifacts on chest CTs did not change the subjective 
severity assessment, likely due to non-subtle nature of pulmonary 
findings in the included patients or from the ability to interpret findings 
in presence of motion. However, prediction of ICU admission with both 
the DL-based and radiomics features was better in patients without than 
in those with motion artifacts on their chest CTs. Prediction of outcome 
(i.e. death versus recovery) from DL-based features also improved when 
chest CTs with respiratory motion artifacts were excluded. No prior 
studies have reported on the incidence of motion artifacts in patients 
with SARS-CoV-2, however, a pre- SARS-CoV-2 pandemic study 
described a high incidence of motion artifacts and expiratory phase 

scanning in about 1/3 of all chest CTs.16 Given the change in quantita
tive pixel values with motion artifacts, it is not surprising that exclusion 
of motion-impaired chest CTs improved performance of both DL-based 
and radiomics features. However, none of the described DL or radio
mics approaches including the ones used in our study check CT images 
for presence of motion artifacts. 

Prior studies describe separate use of DL algorithms, volume of dis
ease, and radiomics for diagnosis, disease severity, treatment response, 
outcome (death), oxygen supplement, intubation and ICU admission in 
patients with SARS-CoV-2 pneumonia.5,6,17–19 Although performance of 
our DL algorithm and radiomics approach is similar to prior reports, 
besides the influence of motion artifacts, we document both the 
comparative and additive value of DL-based and radiomics features in 
prediction of outcome and need for ICU admission. The previously re
ported subjective grading of disease extent in each lobe, a tedious and 
time-consuming process, we demonstrate that quantitative lung lobe- 
level information on volume and percentage of affected lungs is supe
rior for assessing disease severity and predicting patient outcome. Prior 
studies have also reported adverse outcomes in patients with mixed or 
consolidative opacities20,21; mean HU of opacities derived from DL al
gorithm in our study can discriminate between groundglass, mixed 
attenuation and consolidative opacities. 

The primary implication of our study is the relative superiority of 
both DL and radiomics, either alone or in combination, over subjective 
severity assessment of SARS-CoV-2 pneumonia. Given the semantic, 

Fig. 5. Volume rendered images and tabular summaries of DL variables in RT-PCR-positive SARS-Co-A infections in two patients with different outcomes (top row 
images from Patient A: 74-year-old man passed away; Patient B: 61-year-old woman survived). Examples demonstrate that some patients with extensive pulmonary 
involvement survive (patient B) while others (patient A) die with much less pulmonary opacities. 
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non-quantitative radiology reporting in most radiology practices, in
clusion of DL outputs can add quantitative information on the severity of 
lung involvement within each lung lobe. Besides the prognostic value of 
such information, it can provide an objective overview of both extent 
and attenuation of pulmonary findings in patients with SARS-CoV-2 
pneumonia. 

Respiratory motion artifacts, present in a substantial proportion of 
chest CTs in patients with SARS-CoV-2 pneumonia, adversely affect 
performance of both radiomics and DL algorithm for assessing disease 
severity. Users must therefore ensure that the algorithms or radiologists 
perform a quality check on chest CTs before processing them with either 
technique since motion artifacts can confound results. Also, CT tech
nologists and radiologists must instruct or check patients to assess their 
compliance with breath-holding instructions. A fast scanning protocol 
must be used in patients unable to hold their breath for the duration of 
chest CT. It is also likely, though not specifically assessed in our study, 
that other artifacts such as beam hardening or metal streaking artifacts, 
which affect pixel values also impair performance of both DL and 
radiomics. 

Despite high AUCs of subjective assessment, DL-based and radiomics 
features, a few patients with low scores (less pulmonary opacities) had 
adverse outcomes. This finding may imply the need to include other 
clinical or imaging information which impact patient outcome beyond 
the extent and/or severity of pulmonary opacities. There are reports on 
prognostic importance of clinical information such as comorbid condi
tions as well as vital signs and laboratory values.5,6,8 Apart from incor
poration of the clinical markers, predictive power of DL-based 
algorithms such as the prototype used in our study may benefit from 
inclusion of other imaging findings on chest CT like pleural effusions and 
intrathoracic lymphadenopathy. 

The main limitation of our study is its retrospective nature which 

precludes determination of the impact of the prototype on prospective 
patient and resource management. We did not perform a power analysis 
to determine the needed sample size but included consecutive chest CTs 
in patients with SARS-CoV-2 pneumonia at both sites. The skewed dis
tribution of SARS-CoV-2 pneumonia at the two participating sites 
limited statistical analysis on data from Site 2 (n = 26 patients). 
Although this limits the evaluation of wider generalizability of our 
prototype, the results are encouraging given the fact that the prototype 
was neither trained nor validated with data from the three sites included 
in our study. We cannot fully explain why chest CTs from three patients 
could not be processed with the DL and radiomics prototypes. We did 
not have access to information related to onset of patient symptoms, 
comorbidities, vital signs, and laboratory data which could have served 
as additional predicates or improved the performance of subjective 
severity assessment, CT Pneumonia Analysis or radiomics prototypes to 
predict outcome or ICU admission. Chest CT appearance SARS-CoV-2 
pneumonia can vary based on the time difference between the onset 
of symptoms and chest CT examinations, as well as the presence of co
morbid conditions (such as cancer or autoimmune diseases); lack of 
these information can confound our data. 

We did not assess effect of other artifacts (such as beam hardening 
artifacts from arms by the side of the body or metallic prosthesis) on 
performance of the prototypes. A substantial number of patients with 
SARS-CoV-2 infection undergo contrast-enhanced chest CT to assess for 
complications such as pulmonary emboli. Since we do not acquire non- 
contrast phase images prior contrast-enhanced chest CT, we did not 
assess how contrast-enhancement influences performance of the pro
totypes. Also, we did not estimate variations in inter- and intra- 
radiologists as well as our deep learning models or radiomics with a 
washout period. However prior studies have documented that there is up 
to moderate interobserver agreement across radiologists with different 

Fig. 6. Coronal multiplanar and volume rendered images along with tabular summaries of DL variables in RT-PCR-positive SARS-Co-A infections in two patients with 
managed with (Top row images from patient A: 46-year-old man was admitted to the ICU and survived) without (bottom row images from patient B: 61-year-old 
woman was managed without ICU admission and survived) ICU admission. These examples demonstrate that some patients with extensive pulmonary involve
ment do not require ICU admission. 
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expertise levels.22 

In conclusion, both deep learning-based CT Pneumonia Analysis 
prototype and radiomics are superior to subjective severity assessment 
of SARS-CoV-2 pneumonia on chest CT in prediction of patient outcome 
and the need for ICU admission. In presence of motion artifacts, which 
are frequent in patients with pneumonia, the prototype outperformed 
both radiomics and subjective severity assessment. The deep learning- 
based features can also enable differentiation between different types 
of pulmonary opacities in patients with SARS-CoV-2 infection. 
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