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Review Article

inTrodUcTion

The rapid development of novel antiretroviral treatments 
has increased adherence to drug regimens and reduced 
the related toxicity,[1‑3] which has driven scientists to be 
interested in an HIV functional cure. Although many studies 
have tried to achieve functional cure, the persistence of the 
HIV reservoir is the main obstacle for the realization of 
this goal.[4] From biological aspect, HIV, as a retrovirus, 
has two typical steps in its viral replication cycle. The first 
step is reverse transcription, and the second is integration.[5] 
HIV DNA exists in the body in two major forms: integrated 
and unintegrated.[6] Precise assays to directly quantify 
cell‑associated integrated and unintegrated HIV DNA have 
facilitated the close monitoring of the capacity of HIV virus 
proliferation even when the virus is suppressed.[7‑10] The 
total HIV DNA level is an independent predictor of disease 
progression for primary HIV infection without treatment.
[11,12] Accumulating research suggests that even with the 
efficacy of current antiretroviral medicines, it is difficult 
to eradicate or even efficiently reduce HIV DNA to a very 
low level, especially in chronically infected patients with 
high HIV DNA at baseline.[13] The mechanisms of HIV 
persistence in the reservoir during successful antiretroviral 
therapy (ART) have been widely reported, including residual 

viremia, cell‑to‑cell transmission, and clonal proliferation 
of infected CD4+ T‑cells.[10,14,15]

Many factors influence the size of the HIV‑1 DNA pool 
and its decay. The size of the HIV‑1 DNA pool and its 
composition has great significance in clinical diagnosis 
and disease progression. Although there are many excellent 
reviews on the HIV‑1 reservoir, most focus on one aspect 
at the basic research level.[4,16‑21] Here, we described the 
relevant factors in a simplified way, focusing on the clinical 
research to make the information more intuitive to the 
clinician.

viral characTerisTics

The viral replicative capacity represents the virulence and 
predicts the speed of disease progress. The virulence of 
HIV variants is closely related with the viral set point and 
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the decline of CD4+ T‑cells.[22,23] Compared to the virus 
in the plasma which is more likely to represent recently 
produced viral particles, HIV DNA in the tissue, especially 
in the lymph node, often represents the sequences from 
the original ancestral virus.[24] However, considering the 
available sample resources, most quantification assays detect 
circular cell‑associated HIV DNA in the blood.[25] In the early 
stage of infection, unintegrated HIV DNA represents a large 
proportion of the total DNA. The level of unintegrated HIV 
DNA is associated with the efficiency of viral replication. 
Thus, in most studies, the viral load is positively correlated 
with the quantity of HIV DNA. Just like the set point viral 
load, the HIV DNA tends to remain at a stable level after 
peak viremia without ART intervention. Although many 
factors influence the set point viral load, with regard to 
viral characteristics, the number of transmitted viruses has 
been a recent focus of extensive research.[26] Considering 
the biological characteristics of retroviruses, which undergo 
reverse transcription and then integration, there is no reason 
to rule out the possibility that the number of transmitted 
founder viruses has no relationship with the overall quantity 
of HIV DNA.[27] More studies are needed to determine the 
relationship between the HIV DNA baseline level and the 
characteristics of the virus.

hosT immUne bacKgroUnd

In addition to virological factors, the host immune 
background is also associated with the clinical outcome. 
Sexual transmission pairs or mother–child pairs with known 
transmission relationships provide data about the significant 
role played by human leukocyte antigen (HLA) and the natural 
immune system in the control of disease progression.[28‑35] 
Under a similar immune background, the ratio and the count 
of T‑cell subsets are strongly associated with inflammation 
and HIV persistence.[36‑38] Although there have not been 
many reports about the relationship between the size of 
HIV reservoir and HLA genotype, elite controllers with a 
protective HLA type tend to have a lower HIV DNA level[39] 
and are more likely to have powerful immune responses. The 
initial HIV DNA baseline can be controlled by the breadth 
and magnitude of HIV‑1‑specific CD4+ T‑cells.[40‑42] This 
is also the reason why long‑term nonprogressors have very 
low levels of HIV DNA, outside of that from defective 
virus at the beginning of infection.[43,44] Antibody‑dependent 
cell‑mediated cytotoxicity is another factor that reduces or 
controls the quantity of cell‑associated HIV DNA.[45] The 
association between the HLA polymorphisms and HIV 
reservoir is not fully understood.[46‑48] More research about 
this field can provide information related to the mechanism of 
natural control and identify potential cytotoxic T‑lymphocyte 
epitopes for vaccine design.

coinfecTion

HIV‑1‑infected patients are capable of being coinfected 
with other viral and bacterial pathogens.[49] Strong evidence 
has demonstrated that asymptomatic replication of human 

herpesvirus can mediate immune activation and is associated 
with higher levels of HIV DNA during ART.[50‑52] In addition, 
the presence of cytomegalovirus is positively correlated 
with the HIV DNA level in both treated and untreated 
individuals.[51] The probable reason for these might be as 
follows: The development of more activated, antigen‑specific 
CD4+ T‑cells provides new target cells for reseeding the 
HIV reservoir.[53] Increases in the levels of cytokines and 
chemokines would also stimulate inflammation and immune 
activation. The persistence of other viruses changes the 
immune environment and allows the HIV reservoir to 
become more diverse, which ultimately influences its decay.

imPacT of differenT combinaTion anTireTroviral 
TheraPy sTraTegies and sTimUlaTing agenTs on 
The hiv dna
Compared to early treatment at the acute stage, it is difficult 
to further reduce the reservoir of chronically infected patients 
with long‑term treatment. Most intensified treatments have 
no impact on the HIV‑1 reservoir compared to standard 
triple‑drug therapy.[54‑56] A switch to monotherapy from 
a standard regime in virally suppressed individuals has 
been investigated in several studies. Although there is 
no difference in viral control or CD4 count and even 
an improvement in lipometabolism with this strategy, 
long‑term studies of the changes in the homeostasis 
of HIV‑1 reservoir are needed.[57,58] Furthermore, new 
antiretroviral agents are urgently needed to act directly on 
the HIV‑1 reservoir. Among several strategies, “shock and 
kill” has been an actively studied method to eradicate the 
reservoir. However, the results have not been optimal with 
either master transcription factors or interleukins as the 
reactivating agent’s targets.[56,59,60] However, new evidence 
has demonstrated the persistence of activated subspecies 
of HIV DNA after long‑term effective ART, which might 
suggest the use of more caution with this strategy.[61‑63]

residUal viremia

The detection limit of clinical HIV assays is 50 copies/ml 
of plasma.[64] With the advent of highly sensitive real‑time 
polymerase chain reaction, which is capable of detecting 
single copies of HIV RNA in the plasma,[65] many studies 
have demonstrated the presence of residual viremia in 
some successfully suppressed individuals after many years 
of ART.[66,67] The copy number of residual viremia during 
the follow‑up was shown in some studies to be positively 
associated with the baseline level of HIV DNA and RNA.[68] In 
one cross‑sectional cohort study, 63% (80/127) of participants 
receiving ART for a median of 6.3 years had detectable viremia 
that was positively correlated with the level of HIV DNA 
present in the individual.[69] The mechanism of the existence 
of residual viremia is not clear. Drug‑resistant variants might 
be one reason, particularly considering the low penetrance of 
the ART drugs in the lymphoid tissue.[18,70] In most cases, the 
role of residual viremia has not been completely identified.[71,72] 
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The persistent low level of residual viremia caused by the 
activated latent reservoir has a role in replenishing the pool 
of HIV DNA.[73] The fact that HIV‑specific CD4+ T‑cells 
are preferentially infected by HIV‑1 at all stages of disease 
suggests the possibility that residual viremia continues to 
mediate the infection or stimulation of activated CD4+ T‑cells 
even under effective ART.[74] More studies are needed to 
compare the productive capacity of residual viremia among 
patients with different reservoir sizes.

immUne acTivaTion

Although the immune activation phenotype is diverse, the 
frequency of T‑cells expressing HLA‑DR and CD38 has 
often been used. Based on the recent evidence, the total 
HIV DNA has a closer relationship with the number of 
HLA‑DR + CD38 ‑ cells containing the integrated HIV 
DNA than with the number of CD38+ memory T‑cells.
[63] Like the dynamic decay of HIV DNA with ART, the 
level of certain immune activation biomarkers tended to 
be stable after 1 year of viral suppression.[75] No matter the 

reason for the systemic immune activation during HIV‑1 
infection, it is an important factor associated with the size 
of the HIV reservoir in a long‑term plasma‑suppressed 
cohort lacking any viral blips under ART.[76,77] A consistent 
positive relationship has been demonstrated between T‑cell 
immune activation and cell‑associated DNA and RNA.[78] 
There is a possibility that activated immune cells stimulate 
the proliferation of the HIV reservoir.  However, Some elite 
controllers exhibit spontaneous viral suppression and a low 
level of HIV DNA but also have a high level of inflammatory 
markers and a high risk of clinical cardiovascular disease 
compared to those well‑controlled on ART.[39] Based on 
recent evidence, immune activation tends to be a sign of the 
effect of the immune response on the HIV reservoir besides 
a direct influence. The relationship among residual viremia, 
cellular HIV DNA, and immune activation remains further 
study.[69,79,80]

diversiTy of The hiv‑1 reservoir

Recent developments in technology and theory have 

Figure 1: The composition and development of the HIV‑1 DNA reservoir either in treated or untreated patients is determined by integrated mechanism 
comprising viral characteristics, immune system, and drugs.
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increased our knowledge of the diversity of the HIV‑1 
reservoir.[81‑83] The half‑life of HIV‑1 DNA in different 
subsets of memory T‑cell populations is different; it is 277, 
144, 133, and 88 months for stem‑like, central‑memory, 
transitional‑memory, and effector‑memory T‑cells, 
respectively.[84,85] Some special cell subsets, such as Th17 
and T follicular helper cells, play an important role in 
the persistence of the HIV‑1 reservoir in both untreated 
individuals and those receiving long‑term treatment.[86,87] 
Not only is the cell subset correlated with the rate of decay 
of the HIV‑1 reservoir, but also the tissue compartment also 
influences the destiny of tissue‑resident HIV‑1‑infected 
memory T‑cells.[16,88] The tissues are the largest reservoir 
for HIV; thus, the mechanism of HIV persistence and 
changes in HIV DNA subspecies during ART needs to be 
further evaluated using nonblood samples.[89] The limitations 
of HIV DNA detection in peripheral blood samples are 
made even more clear by the continuous reduction of 
Th17 cells in partial gut tissue from successfully treated 
individuals.[90,91] More studies are needed to investigate the 
cell composition and interaction of the HIV‑1 reservoir in 
long‑term successfully treated individuals. The results from 
these studies will improve the design of strategies to control 
homeostatic proliferation and stability.

conclUsions

The composition and development of the HIV‑1 DNA 
reservoir either in treated or untreated patients is determined 
by integrated mechanism comprising viral characteristics, 
immune system, and treatment strategies [Figure 1]. The 
immune system as a network might be altered in HIV infected 
patients receiving treatment compared to healthy controls.[92] 
A subtle balance between replication and homeostasis is 
required to keep the HIV reservoir at a constant level after the 
depletion of the actively replicating virus by ART.[93] During 
the period of long‑term suppression of replication, a lack 
of a robust HIV‑specific CD4+ T‑cell response to eliminate 
the residual reservoir in circulating blood cells and tissue 
means that the HIV‑1 reservoir remains a ticking time bomb.
[42,94] The residual viremia from the stochastic activation of 
the reservoir acts as the fuse, continuing to stimulate the 
immune system to maintain the activated microenvironment 
for the rebound of competent virus once treatment with 
ART is discontinued.[15,95,96] An optimized strategy should be 
developed through a combination of antiretroviral medicine, 
specific immunity, and latent activation agents.

In summary, the size of the HIV‑1 DNA pool and its 
composition has great significance in clinical treatment and 
disease progression.
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