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Objective: To assess the levels of glycoprotein GPIV (CD36) expression on peripheral blood monocyte
subsets, in a mouse model of glucose intolerance. Moreover, to determine the effect of; low-dose aspirin
(LDA) alone, LDA combined with metformin, or clopidogrel alone, on the expression of CD36 on subsets
of circulating monocytes.
Method: The study consisted of two experimental phases. In experiment one, the mice (n = 14) were
randomised to receive a low-fat diet (LFD) or a high-fat diet (HFD) for eight weeks. Whereas the sec-
ondary phase of the experiment, comprised of twenty-four HFD-fed mice treated with LDA alone (3 mg/
kg), or in combination with metformin (150 mg/kg), or clopidogrel alone (10 mg/kg) for six weeks. The
surface expression of CD36 on monocytes was measured using flow cytometry.
Result: The levels of CD36 expression on monocytes were upregulated in the HFD-fed compared to LFD-
fed group (p < 0.05). In addition, HFD group showed; no significant changes in body weight (p = 0.3848),
however, blood glucose (p = 0.0002) and insulin (p = 0.0360) levels were markedly increased following
HFD-feeding. Interestingly, all treatments reduced the expression of CD36 on monocytes, decreased
fasting blood glucose levels (p = 0.0024) and increased circulating monocyte levels (p = 0.0217) when
compared to the untreated HFD group. Moreover, treatment with LDA alone increased basophils levels
(p = 0.0272), while when combined with metformin showed an improved effect in enhancing eosinophil
levels (p = 0.0302).
Conclusion: HFD-feeding increased the expression of CD36 on monocyte subsets. LDA as a monotherapy
or combined with metformin was as effective as clopidogrel monotherapy, in downregulating the
expression of CD36 on monocyte subsets. These treatments may be of relevance in preventing cardio-
vascular complications associated with impaired glucose tolerance.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

monocyte chemoattractant protein 1 (MCP-1) plays a pivotal role in
the recruitment of monocytes in response to atherogenic stimuli

Chronic inflammation and the persistent activation of periph-
eral monocytes and neutrophils are associated with the patho-
genesis of type 2 diabetes mellitus (T2DM). Activated monocytes
can further initiate atherosclerosis and increase the risk of com-
plications in people living with T2DM [1—3]. For example, the
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such as hyperglycaemia and dyslipidaemia [4]. The efficacy of low-
dose aspirin (LDA) in combination with clopidogrel in the second-
ary prevention of cardiovascular disease (CVD) has been reported
[5,6]. In addition, the pleiotropic properties of metformin, a widely
used first-therapy drug in patients with T2DM, include both anti-
inflammatory and anti-thrombotic properties [7]. Metformin has
also been shown to suppress the production of tumour necrosis
factor-alpha (TNF)-a and reactive oxygen species (ROS), while also
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downregulating the expression of the membrane glycoprotein IV
(CD36) [8]. Importantly, CD36 is a class B scavenger receptor that
plays a crucial role in innate immune responses [9,10], including the
modulation of lipid metabolism and inflammation [9,11].

The ligation of CD36 by oxidised low-density lipoprotein (oxLDL)
initiates the formation of foam cells with the subsequent formation
of an atherosclerotic plaque [12]. In such a case, CD36 plays an
essential role in the development of atherosclerosis [1]. Notably, in
hyperglycaemic states, activated monocytes can upregulate the
expression of CD36 [9], which has a high affinity for oxLDL and
apoptotic cell surfaces [13,14], as well as advanced glycation end
products (AGEs) [15]. Furthermore, the levels of the soluble form of
CD36 (sCD36) are increased in patients living with T2DM, and can
also accelerate the risk of CVD in these patients [16,17]. Currently, the
use of low-dose aspirin (LDA) in the primary prevention of cardio-
vascular events in patients living with T2DM remains controversial
[18]. Interestingly, LDA has been shown to partially downregulate
sCD36 levels, consistent with reduction of platelet activation in pa-
tients with T2DM [9]. Furthermore, a recently published preclinical
study showed beneficial effects of LDA in suppressing vascular
inflammation and maintaining atherosclerotic plaques stability in
LDL receptor—deficient mice [19].

Although CD36 is highly expressed on monocytes and upregu-
lated in atherosclerosis and T2DM, it remains unclear whether the
levels of circulating monocyte subsets differentially express CD36
in a state of impaired glucose tolerance. To date, the differential
expression of CD36 expression on circulating monocyte subsets in a
state of impaired glucose metabolism remains unclear. The
enumeration and quantification of monocyte subsets in a state of
impaired glucose tolerance may allow for risk stratification of in-
dividuals at increased risk of atherosclerosis. In this study, short
term high-fat diet (HFD) was used to induce glucose intolerance in
C57BL/6 male mice, which is an important model to study com-
plications linked with early development of T2DM, as demon-
strated elsewhere [20,21]. Therefore, the current study reports on
the expression of CD36 on monocyte subsets in HFD fed mice with
glucose intolerance. Furthermore, we assessed whether treatment
with; low-dose aspirin (LDA) alone; LDA in combination with
metformin or clopidogrel alone could modulate the expression of
CD36 on monocyte subsets in glucose tolerance.

2. Materials and methods
2.1. Animal care and feeding

In this study, six-week-old male C57BL/6 mice (n = 36) were
purchased from the Biomedical Research Unit (BRU) at the Uni-
versity of KwaZulu-Natal, South Africa. The UKZN Animal Research
Ethics Committee (AREC) approved the animal experiments and
study procedures, complying with existing UKZN animal handling
standards which are in accordance to the principle and guidelines
of Canadian Council on Animal Care (protocol number: AREC/086/
016) and reported as per Animal Research Reporting In Vivo Ex-
periments (ARRIVE) guidelines (Supplementary doc 1). The animals
were housed in a temperature-regulated room (22 + 2 °C)ina 12-h
light and 12-h dark cycle (light was switched on from 06:00 p.m.-
06:00 a.m.). After a 1-week acclimatisation period, the mice were
assigned into two diet groups matched for macronutrient type and
source. These mice were enclosed in clean cages (n = 6/cage). In
addition, they had unlimited access to water, food pellets and fresh
air throughout the experiments.

2.1.1. The diet composition of a high and low-fat diet
Low-fat diet (LFD; D12450]) contained 20% kcal protein, 70% kcal
carbohydrate and 10 kcal% of fat. While the high-fat diet (HFD;

D12492]) contained 20% kcal protein, 20% kcal carbohydrates and
60 kcal% of fat.

2.2. Study design and experimental protocols

The experiments comprised of two phases (Fig. 1). The first
phase of the experiment included mice (n = 14) with six kept on a
low-fat diet (LFD), and eight mice kept on HFD for eight weeks
(Fig. 1A). The second phase of the experiment comprised of mice
(n = 24) kept on an HFD diet for eight weeks (Fig. 1B). In the second
phase of the study, the animals were randomly assigned into four
groups (n = 6/group) comprised of an untreated HFD group and
three treatment groups, following short-term six-week treatment.

Experimental phase 1: In the first phase of the experiment, we
measured peripheral blood monocyte subtypes and basal CD36
expression on classical and pro-inflammatory monocytes following
a short-term HFD-feeding. In this phase of the study, fourteen six-
week-old male C57BL/6 mice were assigned into two experimental
diet groups, the LFD (n = 6) and HFD (n = 8). The animals were kept
on the respective diets for eight weeks (Fig. 1A). We then measured
the haematological parameters using the AcT 5 diff haemo-analyser
(Beckman Coulter, Brea, CA, USA). Plasma insulin and glucose levels
were measured at experimental week 8, while body weights were
measured weekly. The oral glucose tolerance test (OGTT) was also
performed at experimental week 8, following previously described
methods [22]. All glucose measurements were performed using the
OneTouch® Select® handheld glucometer (LifeScan Inc., Milpitas,
CA, USA). While fasting serum insulin levels were determined
following, using an enzyme-linked immunosorbent assay (ELISA)
kit (Thermo Fisher, Massachusetts, U.S.A).

Experimental phase 2: To determine whether the anti-
inflammatory and antithrombotic drugs, modulate the expression
of CD36 on monocyte subsets in conditions of impaired glucose
tolerance. A total of 24 HFD-fed mice were randomly assigned into
four groups (n = 6/group); (i) untreated HFD; (ii) LDA alone (3 mg/
kg); (iii) LDA in combination with metformin (150 mg/kg); (iv)
clopidogrel alone (10 mg/kg) (Fig. 1B). All drugs were administered
daily, for six weeks via oral gavage. Blood was drawn after six weeks
of treatment, and the analysis of glycoprotein IV (CD36) was per-
formed using flow cytometry (Fig. 1 and S). The animals were then
euthanised using halothane.

2.2.1. Biochemical and haematological analysis

Blood (200 pl) was drawn from the lateral tail vein into serum
separator (SST) and ethylenediaminetetraacetic acid (EDTA)
microtainer tubes (BD Bioscience, USA), as previously reported [23].
Haematological parameters were measured using the AcT 5 diff
haemo-analyser (Beckman Coulter, Brea, California, United States).

2.2.2. Monocytes isolation

For monocyte isolation, whole blood samples were incubated
with microbeads and then magnetic cell sorting (MACS) buffer at
4 °C for 15 min. MACS consisted of phosphate-buffered saline (PBS)
(Gibco BRL, Frederick, MD, USA) with bovine serum albumin
(Sigma-Aldrich, St Louis, MO, USA) and 2 mM of EDTA (VWR in-
ternational, Leuven, Belgium). MACS buffer was used at 4 °C for all
washing stages with centrifugation at 600 g for 5 min. Ice-cold LD
and MS MACS columns were kept at 4 °C, and air bubbles were
prevented during incubation and magnetic separation. Isolation
and characterisation of mouse monocytes were performed, as
explained previously [24].

2.2.3. Immunophenotyping of monocyte subsets
All data acquisition was carried out using the BD FACS CANTO II
flow cytometer (Becton Dickson, NJ, USA). In order to control for
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Fig. 1. Study design. The figure illustrates the two experimental phases. The first phase was used to establish the pathological state (A), where fourteen animals were randomly
allocated into a high-fat diet (HFD) (n = 8) or low-fat diet (LFD) (n = 6). The mice were kept on the respective diets for eight weeks. The oral glucose tolerance test (OGTT) was then
performed to determine glucose tolerance. In the second phase (B), twenty-four mice fed on HFD for eight weeks showing signs of impaired glucose tolerance and were then
randomised into four groups (n = 6/group); (i) untreated HFD group; (ii) Low-dose aspirin group (LDA); (iii) Low-dose aspirin in combination with metformin (LDA + Met); and (iv)
Clopidogrel group. The treatment was administered daily, through oral gavage for six weeks.

non-specific binding a fluorescence minus one (FMO) control was
used to control for non-specific binding. Antibody titrations were
also performed to determine the optimal antibody concentrations
used. The aantibody cocktail included CD11c-PE/Cy7 and CD36-PE
(BD Biosciences, San Diego, CA) (Table 1S). CD11c-PE/Cy7 anti-
body was used to identify monocytes, and the CD36 antibody was
used to measure the expression of glycoprotein IV (CD36) on
monocyte subsets. Briefly, 50 puL (50 ul) of isolated monocytes
sample were stained with titrated volumes (1:100) of the antibody
cocktail. For each sample, at least a 1000 events were acquired at a
medium flow rate. Monocyte subsets were identified by their
distinctive forward and side scatter properties and further classi-
fied as classic (CD11c") or pro-inflammatory (CD11¢**) monocytes.

2.3. Statistical analysis
Statistical analysis was performed using GraphPad Prism 8

version 8.2.1 (441) Software, (GraphPad Software Inc, San Diego,
CA, USA). For normality testing, Kolmogorov-Smirnov (KS)

normality test was performed. Differences between LFD and HFD
groups in normal distribution was assessed using a two-tailed
unpaired Student’s t-test, while the Mann-Whitney test was used
for nonparametric data. In instances of normally distributed data, a
one-way ANOVA was used with Tukey’s as a post hoc test while for
nonparametric data, the Kruskal-Wallis test was used followed by a
Dunn’s post-hoc test. A p-value of < 0.05 was considered statisti-
cally significant. The effect size was also calculated using Cohen’s D
method.

3. Results

Initially, we determined whether the HFD induced a state of
impaired glucose tolerance following short-term 8-week HFD-
feeding period. Blood glucose and insulin levels were determined
after animals were kept on their respective diets for eight weeks. As
anticipated, HFD-feeding resulted in impaired glucose tolerance
with a higher postprandial blood glucose level (6.75 (6.45—7.05)
when compared to the LFD-feed group [3.1 (3.0—3.85)], p = 0.0002

Table 1
Baseline metabolic and haematological characteristics of low-fat diet (LFD) and high-fat diet (HFD)-fed mice.

Parameters LFD (n = 6) HFD (n = 8) p-value
Weight (g) 2493 +1.91 25.81 + 1.98 03771
Insulin (pU/L) 4.63 +0.19 6.02 + 143 0.0465
2 HOUR POSTPRANDIAL GLUCOSE

Glucose (mmol/L*120 min) 3.1 (3.0-3.85) 6.75 (6.45—7.05) 0.0002
AUC (mmol/L* 120 min) 557.40 + 201.80 1032.00 + 194.10 0.0151
WABC (103/uL) 598 + 1.50 8.08 +2.99 0.1155
Monocytes (10°/uL) 0.08 + 0.04 0.09 + 0.06 0.8774
Neutrophils (103/uL) 042 +0.19 0.72 +0.29 0.0848
Lymphocytes (103/uL) 4.54 + 0.76 7.16 £2.73 0.1094
Basophils (10%/uL) 0.01 (0.01-0.01) 0.01 (0.00—-0.01) 0.3215
Eosinophils (10/uL) 0.01 (0.00—0.01) 0.01 (0.01—-0.01) 0.8852
RBC (106/uL) 6.56 + 1.01 593 + 141 0.3502
Hgb (g/dL) 25.43 + 3.33 19.04 + 4.13 0.0571
Hct (%) 28.68 + 4.25 22.01 + 5.56 0.0746
MCV (fl) 42.00 + 0.89 43.13 + 0.83 0.0016
MCH (pg) 48.00 + 1.31 38.44 + 10.60 0.1141
RDW (%) 10.53 + 0.63 10.38 + 0.42 0.6086
Platelets (103/uL) 671.0 (625.5—842.8) 739.0 (570.3—782.5) 1.0000

Significance (p < 0.05) shown in boldface. Data reported as mean + SD or median (IQR).
Abbreviations: LFD: low-fat diet; HFD: high-fat diet; AUC: area under the curve; WBC: white blood cell; RBC; red blood cell; Hgb: haemoglobin; Hct: haematocrit;
MCV: mean corpuscular volume; MCH: mean corpuscular haemoglobin; RDW: red cell distribution width.
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(Fig. 2B and C). Furthermore, the elevated levels of postprandial
blood glucose levels were associated with a 1.9-fold increase in the
area underneath the curve (AUC) compared to the LFD mice
(p = 0.0068) (Table 1). In a similar manner, insulin levels (pU/L)
were increased in HFD (6.02 + 1.43), p = 0.0360) compared to LFD-
fed mice (4.63 + 0.19) (Fig. 2B, Table 1). However, the animal
weights across both diet groups were comparable (p = 0.3848)
following the short-term diet feeding of 8 weeks (Table 1). There
were no adverse events observed in any of the experimental phases
of this study.

3.1. Changes in haematological indices following short-term HFD
compared to LFD

The haemoglobin concentration (g/dL) were comparable be-
tween the HFD group (19.04 + 4.13) when compared to the LFD
(2543 + 3.33), p = 0.0571 (Table 1). The haematocrit levels were
also comparable between the HFD (22.01 + 5.56) compared to the
LFD group (28.68 + 4.52), p = 0.0746. While the mean corpuscular
volume (MCV) was slightly increased in HFD group (43.13 + 0.83)
compared to LFD group (42.00 + 0.89), p = 0.0016 (Table 1). Lastly,
the levels of circulating monocytes, basophils and eosinophils were
comparable (p > 0.05) between the two groups. Whereas, neutro-
phils and lymphocytes were increased in the HFD compared to the
LFD Group, p < 0.05 (Table 1).

3.2. Short-term treatment with LDA alone, or in combination with
metformin improves glucose tolerance in HFD-fed mice

To assess the changes in the body weights, glucose and insulin
levels following short-term treatment. A one-way analysis of vari-
ance (ANOVA) was performed. There were significant changes in
the body weights following the short-term treatment with the
various drugs (F (3, 20) = 9.474, p = 0.0004). Tukey’s post hoc
analysis, showed a significant reduction in the body weights of
mice treated with LDA monotherapy (24.80 + 1.19), when
compared to those on HFD only (25.81 + 1.19), or when LDA was
used in combination with metformin (28.27 + 1.42), p < 0.05
(Table 2). In addition, the treatments also altered the blood glucose
levels (H = 18.38, p = 0.0024). The Dunn’s post-hoc analysis
showed a marked reduction in the blood glucose levels in;
LDA + metformin [3.7 (2.60—4.15)], and clopidogrel alone [2.45
(2.38—3.78)], treated groups compared to the untreated HFD group
[6.75 (6.45—7.05)], p = 0.0024. However, all treatments did not
affect insulin levels (F (3, 21) = 1.992, p = 0.1460) (Table 2, Fig. 3).

3.3. The effect of short-term treatment on haematological
parameters in HFD-fed mice

The changes in the haematological indices following treatment
with the anti-inflammatory and anti-thrombotic drugs were
assessed. Treatment had a no effect on levels of circulating white
blood cells (WBC) (F (3, 22) = 0.2557, p = 0.8564) and red blood cells
(RBC) (F (3, 22) = 1417, p = 0.2644). Whereas all the treatment
altered the haemoglobin (F (3, 18y = 7.803, p = 0.0015); haematocrit
(F (3, 22) = 3.230, p = 0.0420) and mean corpuscular volume (MCV)
(F (3, 22) = 6.905, p = 0.0019), while other RBC indices remained
unchanged (p > 0.05) (Table 2). Notably, the haemoglobin levels
were increased following treatment with LDA alone (28.97 + 4.97,
p = 0.0090), or when combined with metformin (30.57 + 3.90,
p = 0.0025), in comparison to the untreated HFD group
(19.04 + 4.13) (Table 2). Moreover, a significant decrease in MCV
was observed in both LDA alone (41.50 + 0.55) and clopidogrel
(41.00 + 1.41) treatments when compared to the untreated HFD
group (43.13 + 0.83), p < 0.05 (Table 2). LDA + Met significantly
increased the haematocrit levels when compared to the untreated
HFD group (p = 0.041), (Table 2).

There were significant interactions between various treatments
and levels of circulating monocytes (F (3, 22) = 3.937, p = 0.0217).
While no interactions were observed between the treatment and
the levels of circulating lymphocytes (F (322) = 0.2769, p = 0.8414)
(Table 2). Unexpectedly, monocytes significantly increased in mice
treated with LDA alone (0.26 + 0.11) and in LDA + Met (0.26 + 0.10),
when compared to the untreated HFD group (0.09 + 0.06) (Table 2).
Treatment also altered the levels of circulating basophils and eo-
sinophils. Notably, treatment with LDA alone was effective at
increasing the levels of circulating basophils when compared to the
untreated HFD group (p = 0.0179). Whereas LDA + Met increased
the levels of circulating eosinophils when compared to clopidogrel
treated mice (p = 0.0177) (Table 2).

3.4. Pro-inflammatory monocytes (Mj) in HFD-fed mice express
elevated levels of CD36

Upregulation in the expression of CD36 is associated with an
increased risk of thrombosis. However, the cellular origins of CD36
in metabolic disease remain unclear. We measured the levels of
CD36 circulating classical (Mg) and pro-inflammatory (Mj)
monocytes following short-term HFD feeding. The levels of circu-
lating monocytes subsets were elevated in HFD compared to LFD
(p <0.05). As expected, the levels of CD36 expression on Mg and M
monocytes were also elevated in the HFD group when compared to
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Table 2
Haematological, and metabolic changes following the short-term treatment with low-dose aspirin (LDA); LDA + Met or clopidogrel.
Parameters HFD LDA LDA + Met Clopidogrel p-value
Weight (g) 25.81 + 1.98 24.80 + 1.19° 2827 + 1.42° 26.71 + 0.78¢ 0.0004
Glucose (mg/dL) 6.75 (6.45—7.05) 3.90 (3.05—4.45) 3.7 (2.6—4.15)¢ 2.45 (2.38—3.78)° 0.0024
Insulin (mmol/L) 6.02 + 143 4.95 + 0.79 6.19 + 2.33 7.28 +1.94 0.1460
WBC (103/uL) 8.08 +2.99 843 + 0.42 7.87 + 1.70 7.17 +3.76 0.8564
Monocytes (103/uL) 0.09 + 0.06 0.26 + 0.11° 0.26 + 0.10¢ 023 +0.17 0.0217
Neutrophils (10%/uL) 0.63 (0.98—0.51) 0.69 (0.79—0.60) 0.77 (1.3—0.59) 0.50 (0.68—0.40) 0.1959
Lymphocytes (103/uL) 7.16 + 2.73 7.45 + 0.29 6.64 + 1.34 6.35 + 3.45 0.8414
Basophils (103/uL) 0.01 (0.01-0.0) 0.02 (0.02—0.02) 0.01 (0.02—0.01) 0.01 (0.02—0.01) 0.0272
Eosinophils (103/uL) 0.01 (0.01—0.00) 0.01 (0.02—0.00) 0.02 (0.09—0.01)f 0.00 (0.0—0.00) 0.0302
RBC (10°%/uL) 6.55 + 1.77 6.99 + 1.13 721 + 0.89 6.23 + 1.71 0.2644
Hgb (g/dL) 19.04 + 4.13 28.97 + 497° 30.57 + 3.90¢ 21.73 + 8.00 0.0015
Hct (%) 22.01 +5.56 28.97 +4.97 30.57 + 3.90¢ 2555 +7.35 0.0420
MCV (fL) 43.13 + 0.83 41.50 + 0.55° 42.50 + 0.82 41.00 + 1.41° 0.0019
MCH (pg) 38.44 + 10.60 44.75 + 1.49 31.80 + 17.25 42.87 + 1.60 0.5504
RDW (%) 10.38 + 0.42 10.72 + 0.74 1095 + 1.14 11.20 + 1.35 0.4278
Platelets (103/ul) 739 (782.5—570.3) 839 (966.5—670.5) 820.5 (940.8—756.3) 756 (874—552.3) 0.4337

Significant values are shown in boldface (p > 0.05).

Abbreviations: WBC: white blood cell; RBC: red blood cell; Hgb: haemoglobin; MCV: mean corpuscular volume; MCH: mean cell haemoglobin; RDW: red blood cell dis-

tribution width.
2 HFD vs LDA.
b LDA vs LDA + Metformin.
€ LDA vs clopidogrel.
4 HFD vs LDA + Metformin.
€ HFD vs clopidogrel.
f Clopidogrel vs LDA + metformin.
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Fig. 3. Changes in metabolic parameters following six-week treatment with low-dose aspirin (LDA) alone; LDA in combination with metformin (LDA + Met) or clopidogrel alone in
high-fat diet (HFD)-fed mice. Figure A, B, and C show the body weights, blood glucose and insulin levels in untreated HFD-fed mice versus treated group following a 6-week short

term treatment. Data are reported as mean + SEM, (n = 6/group), * p < 0.05, ** p < 0.005.

the LFD-fed group (p < 0.001) (Table 3).

Furthermore, we investigated the effects of treatment on the
mean differences of monocyte subsets (Mg and My ). Interestingly,
in comparison to the untreated HFD group (52.60 [95% CI:
35.57—69.62], p = 0.0005); treatment with; LDA alone (43.70 [95%
Cl: 23.87-63.53], p = 0.0024); LDA + Met (44.89 [95%CI:
26.86—62.91], p = 0.0014) or clopidogrel alone (51.42 [95%CI:

Table 3
Monocyte subsets and the expression of CD36 in the high-fat diet (HFD)-fed
compared to low-fat diet (LFD)-fed mice.

Parameter LFD (n = 6) HFD (n = 8) p-value
Monocyte subsets
Mo 72.29 + 26.06 79.70 + 12.95 0.0005
M, 6.75 + 5.54 10.25 + 8.50 0.0001
Mao/M; 15.78 + 8.35 20.33 + 18.96 0.5525
Monocyte-CD36 expression
Mo 39.72 + 14.50 4744 + 15.15 0.0002
M, 97.79 + 2.5 99.56 + 0.75 < 0.0001
Mo/M; 0.39 +£0.14 0.49 + 0.16 0.3053

Significant values are shown in boldface.
Mg - classical monocyte subset; M1-pro-inflammatory monocyte subset.

33.18—69.65], p = 0.0008) significantly reduced the mean differ-
ence of circulating monocyte subsets in the LDA only group (43.70
[95%Cl: 23.87—63.53], p = 0.0024); or when combined with
(Table 4).

3.4.1. The effect of treatment on the expression of CD36 on
monocytes subsets of HFD-fed mice

To determine which of the treatments induced a more signifi-
cant effect on the levels of circulating monocytes expressing CD36.
An effect size estimation was performed using Cohen’s d method
[25]. There was a larger reduction in the levels of M; monocytes
expressing CD36 following short-term treatment with LDA alone
(Cohen’s d (ds) = 0.71) and clopidogrel monotherapy (ds = 0.66),
compared to the dual therapy of LDA and metformin (ds = 0.3)
which showed smaller reduction in circulating M; monocytes
expressing CD36 (Table 5).

4. Discussion

In this study, we evaluated the expression of glycoprotein IV
(CD36) on monocyte subsets in a mouse model of high-fat diet



6 K. Mokgalaboni et al. / Metabolism Open 7 (2020) 100047

Table 4

The effect of treatment on the expression of CD36 on monocyte subsets in the HFD-fed mice.
Groups Mo M; Mean difference (95% CI) p-value
HFD 43.29 + 14.08 95.89 + 3.66 52.60 (35.57—69.62) = 0.0005
LDA 54.39 + 19.80 98.09 + 2.11 43.70 (23.87—63.53) I 0.0024
LDA + Met 52.13 + 18.35 97.02 + 2.62 44.89 (26.86—62.91) “|‘ 0.0014
Clopidogrel 46.59 + 16.52 98.01 + 1.63 51.42 (33.18—-69.65) —"i 0.0008

I
—+
e ©om®

Significant values are shown in boldface (p < 0.05). HFD, high-fat-diet; LDA, low-dose aspirin; Met, metformin; Mg-classical monocyte subset; M;-pro-inflammatory

monocyte subset.

(HFD)-induced impaired glucose tolerance. Furthermore, we
assessed whether LDA alone; LDA + Met or clopidogrel alone, could
modulate the expression of CD36 on monocyte subsets. Our results
showed elevated pro-inflammatory monocytes (M) in a mouse
model of glucose intolerance and these levels of pro-inflammatory
(M) monocytes were associated with a high expression of glyco-
protein IV (CD36). Moreover, all treatments were able to reduce the
levels of CD36 expression on M; monocytes when compared to
classical monocytes (Mg) in HFD-fed mice. In this study, it was also
evident that the short-term exposure to HFD could induce glucose
intolerance and hyperinsulinemia, which were independent of
increased body weight. This has been described in previous studies,
where three major phases of HFD have been characterised, which
include an early, intermediate and late phase [26,27]. Notably, the
early phase occurs within three days of HFD and lasting until 12
weeks of HFD. The early phase is characterised by insulin insensi-
tivity and a fold increase in the glucose tolerance area underneath
the curve (AUC) without any marked changes in body weights [26].
Our findings point to the changes that occur in insulin sensitivity
and impaired glucose metabolism during the early phase of HFD-
feeding.

Interestingly, LDA as a monotherapy or in combination with
metformin improved glycaemic index and this was independent of
insulin. As, indicated by persistently elevated insulin levels even
during treatment with the anti-inflammatory (LDA alone,
LDA + Met) and antithrombotic drugs (clopidogrel) monotherapy.
In addition, short-term LDA treatment led to a reduction in animal
body weights, whereas a gradual increase in body weights of ani-
mals on LDA in combination with metformin and clopidogrel alone
was observed. Consistently, although short-term LDA treatment is
known to lower blood glucose levels [28], it provides no long-term
therapeutic benefit in the prevention of clinical T2DM [29]. The
administration of antithrombotic and anti-inflammatory drugs in
high-fat diet C57BL/6 model, has been shown to ameliorate states
of obesity and diabetes [30—32]. Moreover, impaired glucose
tolerance was associated with elevated neutrophil and lymphocyte
counts. This may further support the well-established association

Table 5
Mean difference in the expression of CD36 on Mg and M; subsets post treatment in
high fat diet-fed mice.

Groups Mo M, p-value
Mean Difference [95%CI]  Mean difference [95%CI]

LDA 11.10 (-8.34—30.54) 2.20 (-1.18-5.58) < 0.05

LDA + Met  8.84 (-9.67—27.35) 1.13 (-2.47-4.73) < 0.05

Clopidogrel ~ 3.30 (-14.07—20.67) 2.12 (-1.09-5.33) < 0.01

Significant values are shown in boldface (p < 0.05). HFD, high-fat-diet; LDA, low-
dose aspirin; Met, metformin; Mg - classical monocyte subset; M1-pro-inflamma-
tory monocyte subset.

between insulin insensitivity and increased risk of thrombosis. As
elevated neutrophils [33,34] and lymphocytes have been associated
with chronic inflammation and thrombosis [33]. The increased
levels of circulating neutrophils and lymphocytes persisted even
during treatment with LDA alone; LDA + Met or clopidogrel alone.
Notably, the monocyte, basophil, and eosinophil levels were also
increased following treatment with the various anti-inflammatory
and antithrombotic drugs in HFD-fed mice. Although the RBC was
normal, changes in the haemoglobin, haematocrit and mean
corpuscular volume were observed. Interleukin-6, an anti-
erythropoietic agent, alters the sensitivity of erythropoietin pro-
genitors resulting in the destruction of immature red blood cells
and a decreased concentration of haemoglobin [35—37].

Furthermore, due to their importance in regulating immune
response [38], it was essential to explore the involvement and
regulation of peripheral blood M and M; monocytes in conditions
of impaired glucose tolerance. In the first phase of the study, we
showed increased levels of peripheral blood Mg and M1 monocytes
following short-term HFD. Elevated levels of M; monocytes have
been reported in patients living with T2DM [39]. Concomitantly,
increased levels of circulating monocytes were associated with
increased CD36 expression following HFD feeding. It is hypoth-
esised that CD36 is upregulated during the early phases of
atherosclerosis; this involves the differentiation of monocytes into
macrophages which subsequently engulf oxLDL and promote the
formation of foam cells [40,41]. Notably, the levels of sCD36 are
associated with an increased risk of insulin resistance and an
increased risk of T2DM [16]. Contradictory findings regarding the
role of CD36 in T2DM exist, with a clinical study reporting on
similar levels of sCD36 in patients with diabetes and healthy con-
trols [42]. The cellular origins of sCD36 in T2DM remain unclear
[43]. However, erythrocyte-derived micro-particles have been
described as a significant contributor to the levels of sCD36 in pa-
tients with T2DM [43].

In the second phase of our study, the short-term treatment with
either cyclooxygenase-1 (COX-1) dependent (LDA) or independent
(clopidogrel) antithrombotic drugs reduced the expression of CD36
on circulating M; and Mg monocytes. Interestingly, it has been
previously demonstrated that LDA can promote CD36 expression
on macrophage via peroxisome proliferator-activated-receptor
(PPAR) v independent pathways [44]. Moreover, it is known that
aspirin can be metabolised into its active form, salicylic acid, and in
the process, block the adhesion of monocytes to low-density-
lipoprotein activated endothelial cells through mechanisms
involving the inhibition of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kf) activity [45]. In T2DM,
advanced glycation end products are also known to activate the NF-
kB pathway, which promotes the polarisation of macrophages into
the M; phenotype [46]. Importantly, CD36 orchestrates the
patrolling of M; monocytes on the endothelium during the initial



K. Mokgalaboni et al. / Metabolism Open 7 (2020) 100047 7

stages of atherogenesis [47]. In addition, HFD feeding enhances the
ratio of pro-inflammatory monocytes involved in CD36-dependent
surveillance of peripheral blood vessels [47]. Elevated CD36 levels
are associated with macrophage trapping, impaired insulin sig-
nalling, and thrombosis [48]. Altogether, our findings may suggest
that an increased polarisation of monocytes accompanies the initial
phases of impaired glucose tolerance into M; monocytes that ex-
press elevated levels of CD36. Although this did not establish
mechanistic insights into the propensity of M; derived micropar-
ticles expressing CD36, our findings may suggest that M; mono-
cytes may be a source of sCD36 in patients with insulin resistance.
A limitation of the current study includes the lack of lipid
profiling and lipid-binding activity of monocyte subsets. However,
previous studies have associated the upregulation of CD36 with
increased oxLDL uptake and clearance of apoptotic cells [47,49]. In
conclusion, the current study reports on differential expression of
CD36 on classical and pro-inflammatory monocytes in a state of
impaired glucose tolerance. Moreover, pro-inflammatory mono-
cytes, express elevated levels of CD36, which may suggest that
basal CD36 expression on classical and pro-inflammatory mono-
cytes may enhance the formation of foam cells. Hence, the
enumeration and quantification of monocyte subsets in prediabetes
may allow for risk stratification of individuals at increased risk of
atherosclerosis. In this study, LDA and clopidogrel monotherapies
showed a more significant reduction in the levels of CD36 expres-
sion on circulating M;, as indicated by an effect size of > 0.6. While
LDA in combination with metformin showed a smaller effect in
reducing the levels of CD36 expression on circulating pro-
inflammatory monocytes. The discordance between the efficacy
of LDA compared to LDA combined with metformin could be due to
the reported effect of metformin of increasing free fatty acid (FFA)
uptake and reduced mitochondria oxidation [50] and thus modu-
lating the expression of CD36, which is also an FFA transporter.
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