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Simple Summary: The gut is able to “sense” nutrients and release gut hormones to regulate diges-
tive processes. Accordingly, various gastrointestinal cell types possess transient receptor potential
channels, cation channels involved in somatosensation, thermoregulation and the sensing of pungent
and spicy substances. Recent research shows that both channels are expressed in enteroendocrine
cell types responsible for the release of gut peptide hormones such as Cholecystokinin (CCK) and
Glucagon-like Peptide-1 (GLP-1). A large array of herbal compounds, used in pig nutrition mostly for
their antibacterial and antioxidant properties, are able to activate these channels. Cinnamaldehyde,
occurring in the bark of cinnamon trees, acts as an agonist of Transient Receptor Potential Ankyrin 1
(TRPA1)-channel. Capsaicin, the active component of chili peppers, acts as an agonist of Transient
Receptor Potential Vanilloid 1 (TRPV1)-channel. This study explored the ability of both compounds
to stimulate the release of CCK and GLP-1, and whether this response was mediated by TRP channels,
using an ex-vivo intestinal segment model. Results showed mainly the potential of cinnamaldehyde
to interact with TRPA1 and trigger CCK and GLP-1 release, while yet being dependent on the location
in the small intestine.

Abstract: Cinnamaldehyde and capsaicin have been reported to exert effects on the gastric function,
mediated by the interaction with transient receptor potential ankyrin channel 1 (TRPA1) and transient
receptor potential vanilloid channel 1 (TRPV1), respectively. This study examined whether these
compounds could trigger the release of cholecystokinin (CCK) and/or glucagon-like peptide 1
(GLP-1) in the pig’s gut in a porcine ex-vivo intestinal segment model. Furthermore, it was verified
whether this response was mediated by TRPA1 or TRPV1 by using the channel’s antagonist. These
gut peptides play a key role in the “intestinal brake”, a feedback mechanism that influences the
function of proximal parts of the gut. Structural analogues of cinnamaldehyde were screened as well,
to explore structure-dependent activation. Results showed a significant effect of capsaicin on GLP-1
release in the proximal small intestine, TRPV1 independent. TRPA1 showed to be strongly activated
by cinnamaldehyde, both in proximal and distal small intestine, evidenced by the release of CCK
and GLP-1, respectively. Out of all structural derivates, cinnamaldehyde showed the highest affinity
for TRPA1, which elucidates the importance of the α,β-unsaturated aldehyde moiety. In conclusion,
cinnamaldehyde as a TRPA1 agonist, is a promising candidate to modulate gastric function, by
activating intestinal brake mechanisms.
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1. Introduction

Herbs and spices have been used since ancient times to enhance the taste and flavour
of food and to stimulate digestive functions [1]. In addition, they are known for their
antibacterial and antioxidant properties. For these benefits, they are used in small amounts
in animal feed. These components are known to improve the animal’s overall health and
performance, yet the application in the feed is mostly motivated by the antimicrobial and
antioxidant properties they may have [2–4]. Interestingly, literature suggests improved di-
gestibility of energy and nutrients with the supplementation of essential oils. For example,
weaned pigs fed a diet supplemented with 0.01% of an essential oil product containing
thymol and cinnamaldehyde significantly improved apparent total tract digestibility of
dry matter and crude protein [5]. Ahmed et al. (2013) showed positive effects of a blend of
oregano, anise, orange peel and chicory essential oils on protein digestibility in weaned
piglets [6]. The same effect was shown in grower-finisher pigs fed a mixture of essential oils
(0.01%) [7]. The improved apparent digestibility could be attributed to the enhanced secre-
tion of bile acids and a stimulation of digestive enzyme activities. For example, curcumin,
capsaicin, piperine, ginger, fenugreek and asafoetida enhanced activities of pancreatic
lipase, pancreatic amylase, trypsin and chymotrypsin in rats [8]. Also, saline solutions
containing capsaicin (50–1000 µg kg−1 BW) progressively increased acid output in the
stomach of rats and could thus contribute to aid digestion by greater acidification which is
associated with increased protein hydrolysis in the gastric fraction [9,10]. A plant extract
mixture containing carvacrol, cinnamaldehyde and capsicum oleoresin, fed to weaned
pigs, increased stomach content concomitant to a higher dry matter percentage, suggesting
an increased gastric retention time [11]. Fledderus et al. (2007) showed that a 10% slower
gastric emptying rate caused by the inclusion of 1% carboxymethylcellulose, resulted in
an increased protein hydrolysis in the gastric fraction of the pig [12]. Modulating gastric
emptying could be especially of interest around the weaning period, as brush-border
enzyme activities and macronutrient digestion in the small intestine are reduced and more
undigested carbohydrates and proteins are expected to reach the distal GIT in the period
after weaning. It has been suggested that distal protein fermentation may selectively favor
the proliferation of ETEC and Clostridia in the large intestine and predispose the occur-
rence of post-weaning diarrhea [13,14]. Nevertheless, specific evidence about the mode of
action of phytogenic compounds to aid digestion is still scarce, particularly in the pig. The
gastrointestinal tract (GIT) is able to efficiently absorb nutrients implying the existence of a
luminal sensing mechanism of nutrients that has been referred to as the gut chemosensory
system [15]. A possible chemosensory mechanism for phytogenic compounds could be the
interaction with transient receptor potential (TRP) channels, cationic channels involved in a
range of physiological processes such as pain, inflammation and thermoregulation. Several
phytogenic compounds are known to activate these excitatory ion channels. As such, it
has been shown that pungent natural compounds present in cinnamon oil, wintergreen
oil, clove oil, mustard oil, and ginger all activate transient receptor potential ankyrin 1
(TRPA1) [16]. Being a member of the TRP family, TRPA1 is known to be involved in
chemesthesis, the chemosensory pathway associated with pungent ingredients [17]. As
such, Fothergill et al. (2016) showed that the increased transmucosal ion current in the
mouse duodenum and colon, caused by allyl isothiocyanate (AITC), was reduced by the
TRPA1 antagonist HC-030031 [18]. Transient receptor potential vanilloid 1 (TRPV1) was
shown to be activated by capsaicin in a concentration-dependent manner, and the evoked
response decreased by the addition of capsazepine, a TRPV1 antagonist [19]. Recent identi-
fication of TRPA1 expression in non-neuronal cells of the pig such as enteroendocrine cells,
was interpreted as evidence of additional functions including the ability to modulate gastric
function [20]. According to Nozawa et al. (2009), treatment of enterochromaffin cells with
TRPA1 agonist AITC (300 µmol L−1) and cinnamaldehyde (300 µmol L−1) resulted in the
release of serotonin [21]. Also, stimulation of STC-1 cells with AITC, increased intracellular
calcium and significantly stimulated cholecystokinin (CCK) secretion [22]. In a MGN3-1
cell line, a ghrelin secreting cell model, the incubation with cinnamaldehyde (100 µmol L−1)
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upregulated the expression of TRPA1 and insulin receptor genes. Furthermore, stimula-
tion with this compound resulted in a decrease in ghrelin secretion, which was partially
recovered by the inhibition of TRPA1 with HC-030031 [23]. Emery et al. (2015) showed
that TRPA1 activation caused an increase in glucagon-like peptide 1 (GLP-1) secretion from
primary murine intestinal cultures and GLUTag cells [24]. Since compounds derived from
herbs and spices are exposed to the mucosal lining of the GIT and previous research has
shown that TRPA1 and TRPV1 are expressed on endocrine cell types in the pig’s stomach
and small intestine (SI), the interaction between a phytogenic compound and TRPA1 or
TRPV1 could enable the GIT to ‘sense’ spices and plant compounds and potentially to
orchestrate GIT motility and the release of gut hormones involved in the regulation of
digestive processes, energy and glucose homeostasis. The purpose of this study was to
investigate whether cinnamaldehyde (a TRPA1 agonist) and capsaicin (a TRPV1 agonist)
could induce a response to CCK and GLP-1 secretion, two key gut peptides in regulating
gastric function, and whether this response was mediated by TRP channels. The release of
these hormones results in decreased gastric emptying and activation of the intestinal brake
mechanism. The ability to trigger this physiological feedback mechanism by nutrients at a
specific location is poorly explored. Therefore, in the first experiment, the ability of both
phytogenic compounds to release these gut peptide hormones in the porcine proximal SI
was tested. Also, gene expression of TRPA1, TRPV1, GLP-1(encoded by the proglucagon
gene) and CCK (encoded by preprocholecystokinin) was carried out. A second experiment
was performed to validate whether cinnamaldehyde could trigger gut peptide secretion in
the distal SI, in comparison to the proximal SI. A final experiment was set up to explore
which structural features of cinnamaldehyde are important for the activation of TRPA1 in
the proximal SI, resulting in the release of CCK. For this purpose, we used the porcine ex
vivo intestinal segment model described by Ripken et al. (2014) and Voortman et al. (2012)
which enables a more high-throughput screening of different candidates and thus the
inclusion of more controls, to verify whether the response is TRP-channel specific [25,26].

2. Materials and Methods
2.1. Chemicals
2.1.1. First Experiment

Both agonist candidates (cinnamaldehyde, natural, ≥95%, Food grade; capsaicin,
≥95%) and their blockers (HC-030031, ≥98%, HPLC-grade; capsazepine, ≥98%, HPLC-
grade) were obtained from Sigma-Aldrich, Castle Hill, New South Wales, Australia.
Dimethyl sulfoxide (DMSO) and phenylmethanesulfonylfluoride (PMSF) were purchased
from Sigma-Aldrich (Castle Hill, New South Wales, Australia). Chemicals to make Krebs-
Ringer buffer (KRB) (D-glucose (1.8 g L−1), magnesium chloride (0.0468 g L−1), potassium
chloride (0.34 g L−1), sodium chloride (7.0 g L−1), sodium phosphate dibasic (0.1 g L−1),
sodium phosphate monobasic (0.18 g L−1), HEPES (5.957 g L−1)) were purchased from
Sigma-Aldrich (Castle Hill, New South Wales, Australia). The pH of the KRB buffer was
adjusted to pH 7.4 before use.

2.1.2. Second and Third Experiment

Agonist (cinnamaldehyde, natural, ≥95%, FG-grade) and the blocker (HC-030031,
≥98%, HPLC-grade) were obtained from Sigma-Aldrich, Overijse, Belgium. Derivates
(2-methoxycinamaldehyde, >96%, FG-grade; 4-methoxycinnamaldehyde, >96%, FG-grade;
hydrocinnamaldehyde, >90%, FCC-grade; cinnamic acid >99%) were obtained from Sigma-
Aldrich (Overijse, Belgium). Dimethyl sulfoxide (DMSO) and phenylmethanesulfonylflu-
oride (PMSF) were also purchased from Sigma-Aldrich (Overijse, Belgium) as well as.
Chemicals to make Krebs-Ringer buffer (KRB), as described in the previous section, were
purchased from the same company. Cytotoxicity detection kit (PLUS) LDH (Roche Diag-
nostics, Indianapolis, IN, USA) was also purchased from Sigma-Aldrich.
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2.2. First Experiment
2.2.1. Animals and Sampling Procedures

Experimental procedures involving animals were approved by The University of
Queensland (AEC approval Number CNFS/587/16). Six 25 days old (d0) piglets (Do-
mestic Landrace × Large White, 3 males and 3 females) of 6.82 ± 0.85 kg were weaned
from Sunpork farm (Westbrook, Queensland, Australia) and moved into a stable with
environmental automatic control and plastic fully slatted floor pens at Herston Medical
Research Centre (HMRC) (Herston Campus, The University of Queensland, Australia).
Piglets were weighted, marked and assigned into 6 pens (1 pig/pen). Temperature was
set between 27–28 ◦C. Piglets had ad libitum access to water and a commercial starter diet.
On day 21 of the trial, piglets (13.99 ± 2.41 kg) were sacrificed by intravenous injection of
sodium pentobarbital (200 mg kg−1). GIT-tissue segments from duodenum (1 cm distal
from the pylorus), were collected within 10 min, stored in ice cold KRB/HEPES buffer
bubbled with O2/CO2 (95%/5%), to prevent ischemia, and transported within 20 min to
the lab to be used in a porcine intestinal segment model previously described by Voortman
et al. (2012) [26] and Ripken et al. (2014) [25] with some minor changes. In short, once
in the lab, tissues were immediately rinsed with cold KRB buffer, had their outer muscle
layer stripped off and were cut open longitudinally. Equally sized round tissue samples
of 12 mm in diameter (approximately 1.13 cm2) were punched out using a biopsy punch.
Each circular tissue sample was then transferred into a 24 well-plate with the apical side
upward, filled with 500 µL ice cold KRB/HEPES buffer at pH 7.4. The plates were brought
to room temperature within 20 min, followed by a pre-incubation at 37 ◦C for 1 h in a
humidified incubator, O2/CO2 (95%/5%). The KRB/HEPES buffer was then replaced by a
pre-warmed KRB/HEPES buffer (37 ◦C, 500 µL with pH 7.4) without glucose but contain-
ing one of treatments (CIN: 200 µmol L−1 cinnamaldehyde, CAP: 20 µmol L−1 capsaicin,
CIN-: 200 µmol L−1 cinnamaldehyde and 200 µmol L−1 HC-030031, CAP-: 20 µmol L−1

capsaicin and 20 µmol L−1 capsazepine) or a control (buffer, KRB) and incubated for an
additional 1 h at 37 ◦C, O2/CO2 (95%/5%). All treatments were tested in each animal in
triplicate, using a different 24-well plate per animal. Concentrations of test components
were based on literature [18,27–29]. Due to their low solubility in water, test compounds
were dissolved in KRB buffer containing less than 0.0125% DMSO. After incubation, the
media from each well were collected into tubes and 100 µmol L−1 of PMSF was added
to inactivate serine protease activity and avoid the cleavage of active GLP-1. In order to
check tissue viability, media samples were collected to measure lactate dehydrogenase
(LDH) activity (cytosolic enzyme released following cell abrasion). The collected media for
hormone analysis were stored at −80 ◦C, whereas media samples for LDH activity were
stored at 4 ◦C before analysis on the day itself. Tissue samples were stored in RNA-later in
−80 ◦C for gene expression studies.

2.2.2. Tissue Viability

Viability of tissues was monitored by measuring the intracellular LDH leakage into
the medium to make sure that the release of hormones is not secondary to cell lysis or
other nonspecific toxic effects. To determine the integrity of the intestinal tissue, enzyme
activity was first determined as the total intracellular LDH activity, by homogenizing
the tissue in ice cold KRB buffer using a tissue ruptor (Qiagen) for 5 min at 200 rpm
(positive control). Next, leakage for all 4 treatments was determined by assessing LDH in
supernatants and expressed as % of positive control. LDH activity was determined using a
Roche LDH reagent kit PLUS (Roche Diagnostics, Indianapolis, IN, USA) according to the
manufacturer’s instructions.

2.2.3. Hormone Analysis

GLP-1 and CCK hormone levels were analysed using commercially available ELISA
kits, according to the manufacturer’s instructions. Concentrations of CCK-58 were anal-
ysed using a Porcine Cholecystokinin ELISA kit from MyBioSource, Victoria, Australia
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(#MBS164396). Inter-assay coefficient of variation for the CCK kit was 7.5% and intra-assay
coefficient of variation was 3.2%. GLP-1 release was measured using a GLP-1 (Total) ELISA
kit from Millipore, Billerica, USA (EZGLPT1-36K). Inter-assay coefficient of variation for
the GLP-1 kit was 7.8% and intra-assay coefficient of variation was 2.1%. When neces-
sary, samples were diluted in assay buffer in order to obtain values within the detection
range of this kit. Both hormone levels were measured on a BMG FLUOstar OPTIMA
Microplate Reader.

2.2.4. Gene Expression

Mucosal total RNA was isolated from the ex-vivo tissue samples kept in RNA later
(KRB, CIN and CAP), using the Invitrogen PureLinkTM RNA Mini Kit (Invitrogen, Carlsbad,
CA, USA). The concentration (ranging between 500 and 1200 ng mL−1) and purity (optical
density 260A/280A ranging between 1.95 and 2.25) were analysed with the NanoDrop
ND-1000 (NanoDrop Technologies, Thermo Scientific, Wilmington, DE, USA). The 18S
and 28S bands were evaluated by loading on a 0.8% agarose gel, in order to check the
RNA integrity. Sharp bands, including a background smear, were required to be visible.
QuantiTect Reverse Transcription Kit (QIAGEN, Hilden, Germany) was used according to
the manufacturer’s instructions for synthesizing cDNA. Briefly, 1 µg of RNA was mixed
with 2 µL of gDNA Wipeout buffer and reached to 14 µL volume by adding RNase-free
water. The mixture was incubated at 42 ◦C for 2 min to eliminate the genomic DNA in the
samples. The absence of gDNA contamination was verified by performing a minus reverse
transcription control using YWHAZ primers (Table 1). Then, 1 µg gDNA free RNA from
each sample was converted to cDNA by using the Quantitect Reverse Transcription (RT) kit
(Qiagen, Melbourne, Australia). The obtained cDNA was diluted 6 times with molecular
grade water. A cDNA pool was prepared and specificity of all the primers (Table 1) were
checked before real-time PCR. Finally, a verification of the reverse transcription reaction
was performed through a control PCR using 1 µL of the diluted cDNA and the same primer
as previously mentioned. Primers used for the target genes were designed using NCBI’s
PrimerBLAST, based on the common sequence which will amplify all the transcript variants
of the genes listed. The secondary structures in the target sequences were analysed using
mfold [30]. Total volume of 10 µL (1 µL cDNA, 1 µL primers (2 µmol L−1 each), 3 µL water,
and 5 µL SYBR green) was used for real-time PCR reactions. Samples were run in triplicate,
and three reference genes HPRT1, YWHAZ and GAPDH were used to normalize the data.
Positive controls for each gene using pooled cDNA with three technical replicates was
considered in all the plates. Plates were run on Applied Biosystems RT-qPCR instrument
(Applied Biosystems, Foster City, California, United States) with the following program:
50 ◦C for 2 min, 95 ◦C for 10 min, and 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. The
melt curve stage was done under the following conditions: 95 ◦C for 15 s, 60 ◦C for 1 min
with increment rate of 0.05 ◦C/s to reach 95 ◦C for 15 s. RT-qPCR data was analysed using
the method according to Vandesompele et al. (2002) [31]. To do so, the PCR efficiency of
each primer was calculated using delta Rn information which was calculated using the
LinRegPCR software [32]. The Cq values were transformed into quantities, by using the

delta-Cq formula;
(

1 + e f f iciency
100

)∆CT(highest−sample)
with the highest expression level set to

1. The relative expression for each target gene was expressed as a ratio of the transformed
Cq-value from the target gene to the geometric mean of the transformed Cq-values from
the three stable expressed reference genes. The selection of reference genes was done by
using three commonly used reference genes in pig stomach and small intestine: HPRT1,
YWHAZ and GADPH (Table 1) [33].
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Table 1. Primers used for real-time PCR, annealing temperature (Ta), and amplicon length.

Gene Symbol Accession
Number Nucleotide Sequence of Primers, 5′-3′ Ta (◦C) Product Length

(bp)

HPRT1 DQ178126 Forward: CCGAGGATTTGGAAAAGGT
Reverse: CTATTTCTGTTCAGTGCTTTGATGT 60 181

YWHAZ DQ178130 Forward: ATGCAACCAACACATCCTATC
Reverse: GCATTATTAGCGTGCTGTCTT 60 178

GADPH NM_001206359.1 Forward: TGGTGAAGGTCGGAGTGAAC
Reverse: GAAGGGGTCATTGATGGCGA 60 104

TRPA1 XM_021089237.1 Forward: GAATTTACTCATTGGTTTGGCAGTTGGTG
Reverse: CGGTGATGGATTTCTGATCGACCTTG 58 155

TRPV1 XM_013981216.2 Forward: GGACAGCGAGTTCAAAGACC
Reverse: CCGTTTTCCACCAGAAGTGT 63 240

CCK XM_021068544.1 Forward: CAGGCTCGAAAAGCACCTTC
Reverse: GCGGGGTCTTCTAGGAGGTA 60 157

GLP-1 XM_005671882.3 Forward: AGAACTCCGCCGCAGACA
Reverse: TAAAGTCTCGGGTGGCAAGATT 60 83

2.3. Second Experiment
2.3.1. Animals and Sampling Procedures

The second and third experiment were conducted in accordance with the ethical
standards and recommendations for the accommodation and care of laboratory animals,
covered by the European Directive 2010/63/EU on the protection of animals used for
scientific purposes and the Belgian Royal Decree KB29.05.13 on the use of animals for
experimental studies. No ethical approval was required for this trial according to local
legislation as animals were kept under farm practices without interventions causing harm
equivalent to, or higher than, that caused by the introduction of a needle in accordance with
good veterinary practice, and because animals were killed solely for the use of their organs
or tissues (2010/63/EU). Six 45-day-old (three weeks post weaning) piglets (Topigs Norsvin
× German Pietrain) with a mean body weight (BW) of 12.21 ± 1.32 kg were selected from
a commercial herd (Farm Van Kerschaver, Maldegem, Belgium) and housed in groups of
two per pen with full slated floors in the experimental facility of the Department of Animal
Sciences and Aquatic Ecology of Ghent University (Melle, Belgium). The stable had a
conventional ventilation scheme, ambient temperature at 24 ◦C, and an 18 light/6 dark
schedule. Piglets had ad libitum access to water and a commercial starter diet. Piglets
were humanely sacrificed by inducing electronarcosis, followed by exsanguination. To
investigate the effect of cinnamaldehyde on CCK and GLP-1 release in the distal SI, GIT-
tissue segments from duodenum (1 cm distal from the pylorus, same as first experiment)
and ileum (75% of total SI-length), were collected within 10 min. Tissue was stored in
ice cold KRB/HEPES buffer bubbled with O2/CO2 (95%/5%), to prevent ischemia, and
immediately transported to the lab to be used in a porcine intestinal segment model,
as previously described. Only treatments in the second incubation step were changed:
The KRB/HEPES buffer was then replaced by a pre-warmed KRB/HEPES buffer (37 ◦C,
500 µL with pH 7.4) without glucose but containing one of treatments (CIN: 200 µmol L−1

cinnamaldehyde, CIN-: 200 µmol L−1 cinnamaldehyde and 200 µmol L−1 HC-030031) or
a control (buffer, KRB) and incubated for an additional 1 h at 37 ◦C, O2/CO2 (95%/5%).
All treatments were tested in each animal in triplicate, using a different 24-well plate
per animal.

2.3.2. Hormone Analysis

GLP-1 and CCK hormone levels were analysed using commercially available ELISA
kits, according to the manufacturer’s instructions. Concentrations of CCK-58 were anal-
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ysed using a Porcine Cholecystokinin ELISA kit from MyBioSource, San Diego, CA, USA
(#MBS264395). Inter-assay coefficient of variation for the CCK kit was 7.5% and intra-assay
coefficient of variation was 3.2%. GLP-1 release was measured using a Glucagon-Like
Peptide-1 (Total) ELISA kit from Millipore, Billerica, MA, USA (EZGLPT1-36K). Inter-assay
coefficient of variation for the GLP-1 kit was 7.8% and intra-assay coefficient of variation
was 2.1%. When necessary, samples were diluted in assay buffer in order to obtain values
within the detection range of this kit. Both hormone levels were measured on a TECAN
INFINITE M NANO Microplate Reader.

2.3.3. Tissue Viability

Viability of tissues was monitored as previously described, using a Roche LDH reagent
kit PLUS (Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer’s
instructions.

2.4. Third Experiment
2.4.1. Animals and Sampling Procedures

Six 38-day-old piglets (Topigs Norsvin × German Pietrain, two weeks post weaning)
with a mean body weight (BW) of 9.05 ± 0.42 kg were selected from a herd (Farm Van Ker-
schaver, Maldegem, Belgium) and housed in a group of two per pen with full slated floors.
The stable had a conventional ventilation scheme, ambient temperature at 24 ◦C, and an
18 light/6 dark schedule. Piglets had ad libitum access to water and a standard starter diet.
Piglets were humanely sacrificed by inducing electronarcosis followed by exsanguination.

To explore which structural features of cinnamaldehyde are important for the activa-
tion of TRPA1 in the duodenum of piglets, the effect on CCK release of cinnamaldehyde
next to four structural derivates was investigated in the duodenum of piglets. As such,
2-methoxy cinnamaldehyde (CIN2M), 4-methoxycinnamaldehyde (CIN4M) (both intro-
ducing an electron donating group on the aromatic ring of cinnamaldehyde), hydrocin-
namaldehyde (HCIN) (missing the α,β-unsaturated bond) and cinnamic acid (CINA)
(organic acid, lack of aldehyde function) were tested next to cinnamaldehyde and a control
(KRB). GIT-tissue segments from duodenum (1 cm distal from the pylorus) were collected
within 10 min and processed as previously described. Only treatments in the second incu-
bation step were changed: The KRB/HEPES buffer was then replaced by a pre-warmed
KRB/HEPES buffer (37 ◦C, 500 µL with pH 7.4) without glucose but containing one of
the treatments (CIN, CIN2M, CIN4M, HCIN, CINA: 200 µmol L−1) or a control (buffer,
KRB) and incubated for an additional 1 h at 37 ◦C, O2/CO2 (95%/5%). All treatments were
tested in each animal in triplicate, using a different 24-well plate per animal.

2.4.2. Hormone Analysis

CCK hormone levels were analysed as previously described in the second experiment.

2.5. Statistics

Normality of data and homogeneity of variance were tested using the Brown–Forsyth
test in SAS Enterprise Guide 6 (SAS Institute, Cary, NC, USA). Regarding experiment 1 and
experiment 3, data were analysed using a one-way ANOVA according to the GLM proce-
dure of SAS with a linear model that included effects of treatment (fixed) and pig (random).
Regarding experiment 2, statistical analysis was performed using two-way ANOVA with
the GLM procedure of SAS with a 2-level full factorial design: treatment, location in GIT,
and interaction, using pig as a random factor. Multiple comparisons were performed by a
Tukey test. Data were expressed as means and p < 0.05 was considered significant.



Animals 2021, 11, 2262 8 of 16

3. Results
3.1. First Experiment
3.1.1. Viability of Ex-Vivo Intestinal Tissue

LDH leakage for samples was on average 8.9 ± 0.2% for KRB, 9.0 ± 0.7% for CIN,
9.9 ± 0.2 for CAP, 9.0 ± 0.6 for CIN-, and 9.3 ± 0.2 for CAP-. Following the criteria stated
by Voortman et al. (2012) [26] and Ripken et al. (2014) [25] LDH leakage should not exceed
10%. Taking this into account, all intestinal samples were within the limit of LDH leakage
and treatment did not have a toxic effect.

3.1.2. Release of Gastrointestinal Hormones upon Exposure to Cinnamaldehyde
and Capsaicin

The basal secretion of CCK in duodenal tissue (KRB treatments) was higher than GLP-
1 secretion (38.6 ± 15.2 pg mL−1 and 15.9 ± 11.1 pg mL−1, respectively). Figure 1a shows
the effect of KRB, CIN, CAP, CIN- and CAP- on CCK secretion in the duodenum. Treatment
had an effect (p = 0.008) on CCK release. Compared to the control treatment only CIN
(94.4 ± 11.8 pg mL−1) stimulated CCK secretion (p < 0.05). CAP (35.6 ± 12.6 pg mL−1),
CIN- (44.34 ± 11.8 pg mL−1) and CAP- (47.04 ± 10.6 pg mL−1) did not change CCK
release as compared to the control, and no differences between these treatments were
observed. Compared to CIN, CIN- (cinnamaldehyde incubated together with antagonist)
CCK levels were almost 47% lower (p = 0.05), and at the same level as the basal CCK
secretion. Figure 1b shows the effect of KRB, CIN, CAP, CIN-, and CAP- on GLP-1 secretion
in the duodenum. Treatment had an effect (p = 0.007) on GLP-1 release. Compared to
the control treatment (KRB), CIN (27.8 ± 12.4 pg mL−1), CAP (29.3 ± 9.5 pg mL−1), CIN-
(27.9 ± 11.6 pg mL−1) and CAP- (30.3 ± 13.2 pg mL−1) significantly (p < 0.05) stimulated
GLP-1 secretion resulting in concentrations that were almost two times higher as compared
to control levels. No differences were observed between incubations with pure compounds
(CIN, CAP) and with their respective antagonist (CIN-, CAP-).

Figure 1. Effect of control KRB buffer (KRB), cinnamaldehyde (200 µmol L−1, CIN), capsaicin (20 µmol L−1, CAP), cin-
namaldehyde (200 µmol L−1) + HC-030031(200 µmol L−1) (CIN-) and capsaicin (20 µmol L−1) + capsazepine (20 µmol L−1)
(CAP-) on CCK (a) and GLP-1 (b) release. Significant differences compared to KRB are indicated with asterisks: * p < 0.05,
number of replicates was n = 6, error bars express the SEM.

3.1.3. Gene Expression

The effect of CIN on the expression of several genes (TRPV1, TRPA1, CCK, and GLP-
1) was determined. Addition of 200 µmol L−1 cinnamaldehyde (CIN) upregulated the
expression of TRPA1 (p < 0.05) compared to KRB. The addition of 20 µmol L−1 capsaicin
(CAP) did not alter TRPA1 mRNA expression (Figure 2a). In the case of TRPV1, there was
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a trend (p = 0.091) towards higher mRNA expression in tissue incubated with 20 µmol L−1

capsaicin (CAP) as compared to control (KRB) (Figure 2b). Incubation with CIN and CAP
did not exhibit an effect on CCK and GLP-1 mRNA expression (Figure 2c,d).

Figure 2. Effect of control KRB buffer (KRB), cinnamaldehyde (200 µmol L−1, CIN) and capsaicin
(20 µmol L−1, CAP) on TRPA1 (a), TRPV1 (b), CCK (c) and GLP-1 (d) gene expression levels. Signifi-
cant differences compared to KRB are indicated with asterisks: * p < 0.05, number of replicates was
n = 6, error bars express the SEM.

3.2. Second Experiment
3.2.1. Viability of Ex-Vivo Intestinal Tissue

LDH leakage for duodenal samples was on average 8.4 ± 0.3% for KRB, 7.2 ± 0.3%
for CIN and 8.2 ± 0.7 CIN-. Ileum samples showed an LDH leakage of 8.7 ± 0.4% for KRB,
8.4 ± 0.3% for CIN and 8.5 ± 0.3 CIN-. All intestinal samples were within the limit of LDH
leakage and treatment did not have a toxic effect.

3.2.2. Release of Gastrointestinal Hormones upon Exposure to Cinnamaldehyde in
Duodenum and Ileum

Figure 3a shows the effect of KRB, CIN and CIN- on CCK secretion in both the
duodenum and ileum. Both treatment (p < 0.001) and the interaction (p < 0.001) have an
effect. Compared to KRB, CIN potently stimulated CCK release (KRB, 44.7 ± 11.4 pg mL−1,
CIN, 72.2 ± 11.1 pg mL−1, p < 0.01), in duodenal tissue (Figure 3). This response was
completely blocked by incubating cinnamaldehyde together with the antagonist (CIN-,
47.7 ± 14.1 pg mL−1). No differences were observed between control (KRB) and treatments
(CIN, CIN-) in the ileum regarding CCK release. Basal CCK secretion (KRB) in duodenum
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and ileum was around the same level (p = 0.995). Figure 3b shows the effect of KRB, CIN
and CIN- on GLP-1 secretion in both the duodenum and ileum. Treatment (p < 0.001), and
the interaction (p < 0.001) have an effect. Regarding GLP-1 in duodenal tissue (Figure 3),
cinnamaldehyde (CIN, 26.2 ± 4.1 pg mL−1) stimulated release compared to control (KRB,
2.9 ± 2.4 pg mL−1, p < 0.05). This response was not blocked by incubating together with
the antagonist (CIN-, 19.9 ± 6.4 pg mL−1). In ileal tissue, cinnamaldehyde evoked a
higher response (CIN, 63.69 ± 16.6 pg L−1) compared to control (KRB, 23.4 ± 6.7 pg L−1,
p < 0.001). This response was mostly blocked by incubating together with the antagonist
(CIN-, 33.4 ± 6.7 pg L−1). Basal GLP−1 secretion (KRB) in ileum was higher compared to
basal secretion in the duodenum (p < 0.05).

Figure 3. Effect of control KRB buffer (KRB), cinnamaldehyde (200 µmol L−1, CIN) and cinnamalde-
hyde (200 µmol L−1) + HC−030031(200 µmol L−1) (CIN-) on CCK (a) and GLP-1 (b) release. Sig-
nificant differences compared to control (KRB) within the same intestinal site are indicated with
asterisks: * p < 0.05, *** p < 0.001. Significant differences between intestinal sites within the same
treatment are indicated with a hash: # p < 0.05, ## p < 0.01. n = 6, error bars express the SEM.

3.3. Third Experiment
Release of CCK upon Exposure to Cinnamaldehyde in Duodenum

Figure 4 shows the effect of KRB, CIN, CIN2M, CIN4M, HCIN, and CINA on CCK se-
cretion in the duodenum. Treatment had an effect (p < 0.001) on CCK release. Compared to
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the control treatment (KRB, 23.4 ± 4.8 pg mL−1), all treatments (CIN: 53.87 ± 6.2 pg mL−1;
CIN2M: 39.7 ± 8.4 pg mL−1; CIN4M: 40.4 ± 8.4 pg mL−1; HCIN 41.2 ± 10.2 pg mL−1;
CINA: 43.5 ± 7.1 pg mL−1, p < 0.05), stimulated CCK release in duodenal tissue. Incu-
bation with cinnamaldehyde (CIN) stimulated CCK release more potently compared to
the derivates (p > 0.05); however, no differences were observed between incubation with
derivates (CIN2M, CIN4M, HCIN, and CINA).

Figure 4. Effect of control KRB buffer (KRB), cinnamaldehyde (200 µmol L−1, CIN), 2-
methoxycinnamaldehyde (200 µmol L−1, CIN2M), 4-methoxycinnamaldehyde (200 µmol L−1,
CIN4M), hydrocinnamaldehyde (200 µmol L−1, HCIN) and cinnamic acid (200 µmol L−1, CINA)
on CCK release in the duodenum. Significant differences compared to control (KRB) are indicated
with asterisks: * p < 0.05. Significant differences compared to all treatments are indicated with a hash:
# p < 0.05. Number of replicates was n = 6, error bars express the SEM.

4. Discussion

Our study confirmed the hypothesis that cinnamaldehyde and capsaicin have an
effect on GLP-1 and CCK release. As expected, basal CCK secretion in the proximal
SI was higher compared to basal GLP-1 secretion. Voortman et al. (2012), observed a
clear pattern of CCK, GLP-1, GLP-2 and PYY release along the porcine intestinal tract.
CCK levels were predominantly released in the proximal small intestine from I cells. In
contrast, tissue levels of GLP-1, known to be predominantly released from L cells in the
ileum, are higher in the distal small intestine [26]. Cinnamaldehyde increased CCK release
from the proximal small intestine. To our knowledge, this is the first report describing a
direct effect of cinnamaldehyde on CCK release in the pig. These findings are in line with
research performed by Purhonen et al. (2008), who showed a 6.7-fold higher secretion in
STC-1 cells after stimulation with AITC, also known as a TRPA1 agonist [22]. In contrast,
Bandell et al. (2004) showed that cinnamaldehyde had a higher affinity than AITC for
TRPA1 [16]. However, tissue and cell disruption are expected to be higher in the ex-vivo
intestinal model, which explains the smaller effect compared to control. Duodenal tissue
incubated with both cinnamaldehyde and HC-030031, a selective TRPA1 antagonist, did
not show a response in CCK release compared to the control indicating the mediating role
of TRPA1.

Capsaicin did not trigger CCK release from duodenal tissue cultures. This pungent
compound is known to stimulate TRPV1, which is expressed in the duodenum of the
pig [20]. Since we have previously shown that TRPV1 was significantly more expressed
in the distal small intestine of 28 days post weaning pigs [20], we suggest that targeting
TRPV1 with capsaicin in the duodenum does not contribute in the release of CCK. However,
previous results from our group showed a peak of expression of TRPV1 in the distal small
intestine in post-weaning pigs, suggesting there might be an association with L cells, the
most abundant cell type in this region [20]. L cells are responsible for GLP-1 release, which



Animals 2021, 11, 2262 12 of 16

was significantly released after incubation with capsaicin. Nevertheless, incubation of
duodenal tissue with capsaicin and the selective TRPV1 antagonist capsazepine, did not
inhibit the response indicating that TRPV1 was not the mediating sensor. While TRPV1
gene expression showed a trend for a higher expression after treatment with capsaicin, this
was not associated with GLP-1 release. Since the channel is expressed on enteroendocrine
subsets, as shown in our previous findings [20], we speculate that capsaicin might be
involved in the release of other gut hormones. In addition to capsaicin, cinnamaldehyde
stimulated the release of GLP-1, but the response did not seem to be mediated by TRPA1.
In contrast, Emery et al. (2015) showed an increase in GLP-1 secretion in GLUTag cells
after treatment with carvacrol, which was abolished in cultures from TRPA1 knockout mice
or pharmacological TRPA1 inhibition [24]. Instead of adding the agonist together with
the antagonist, performing a pre-incubation with the antagonists would probably have
been more effective. In this way the competitive antagonists capsazepine and HC-030031,
would have been able to block TRPV1 and TRPA1 before adding the test compounds [34].
However, an additional pre-incubation step was discarded because it could have negatively
affected tissue viability. The fact that the response triggered by cinnamaldehyde on CCK
release was completely dampened by HC-030031 indicates that incubating the compounds
together effectively blocks the channel.

Cinnamaldehyde upregulated TRPA1 mRNA expression, which highlights the molecule’s
ability to activate this ion channel. TRPV1 gene expression shows a trend for a higher ex-
pression after treatment with capsaicin. In a study performed by Toschi et al. (2020), feeding
28-day-old piglets for 14 days with different doses of thymol (ranging from 25.5 mg kg−1

to 510 mg kg−1 feed) resulted in higher TRPV1 mRNA abundance in both duodenum
and ileum [35]. Interestingly, thymol does not reach this part of the SI and gets quickly
absorbed in the stomach and proximal SI [36].

Upon stimulation, peptide hormones, packed into secretory vesicles, are transported
from the cytoplasm where they are synthesized to the secretion sites at the plasma mem-
brane. Our results showed that cinnamaldehyde does not affect CCK mRNA expression
level, yet stimulated CCK release mediated by TRPA1. Cinnamaldehyde-triggered activa-
tion of TRPA1 seems to play an important role in Ca2+ entry into the endocrine cells [18]. As
a result of changes in cytoplasmic calcium concentrations, CCK is released from secretory
granules by exocytosis. This process is characterized by cytoskeletal protein-mediated
migration of the granules toward the cell surface, followed by their fusion with the plasma
membrane and delivery of the hormones into the extracellular space [37]. As such, we pre-
sume that TRPA1 stimulation by cinnamaldehyde causes the docked peptidergic vesicles to
immediately fuse to the plasma membrane and release their contents into the extracellular
space. Based on the first experiment, cinnamaldehyde seems to be the most promising
candidate to trigger GLP-1 and CCK release in the duodenum in pigs. The results obtained
in the first experiment, confirmed the hypothesis that cinnamaldehyde triggers CCK release
in the proximal SI in a TRPA1 dependent pathway. This exocrine function in the duodenum
is part of the so called “duodenal break”, a negative feedback mechanism that influences
the function of the proximal parts of the gastrointestinal tract. Activation of this feedback
mechanism results in an enhanced and prolonged gastric distension, by inhibition of gastric
emptying [38].

Cinnamaldehyde also showed to trigger GLP-1 release in the proximal SI. The primary
site of expression of GLP-1 was found to be in the distal SI [26]. In addition, TRPA1
activation seems to play a role in the proximal feedback mechanism involved in the
regulation of gastric emptying. Consequently, a second experiment was performed to
confirm the previous findings. In this second experiment, cinnamaldehyde did not induce
the release of CCK in the ileum. In this part of the porcine gut, low levels of CCK were
observed [26]. Interestingly, the results obtained from the ileal tissue showed a significant
release of GLP-1, which was mostly blocked by adding the TRPA1 blocker.

GLP-1 is an incretin hormone known to be released from intestinal L-cells postpran-
dially. This gut derived peptide is able to normalize glycemia by promoting glucose
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dependent insulin secretion and inhibit glucagon secretion in the fasting state. However,
the properties of GLP-1 as an enterogastrone, defined as a factor that slows gastric empty-
ing and inhibits gastric acid secretion, have also been well described [39–41]. It has been
suggested that the effect of GLP-1 slowing gastric emptying and delaying the delivery of
nutrients into the small intestine, may outweigh its insulinotropic and glucagonostatic
effects. The rate of gastric emptying influences postprandial glycaemic excursions, the
fluctuations in blood sugar level, and vice versa [40]. In the distal part of the SI, the ileal
brake is a feedback mechanism that results in inhibition of proximal gastrointestinal motil-
ity and secretion [42]. Results of our second experiment showing that TRPA1 activation by
cinnamaldehyde results in the release of GLP-1, suggest the involvement of TRPA1 in this
ileal feedback mechanism.

Cinnamaldehyde seems to affect both small intestinal brake mechanisms. Only few
studies have been performed to compare the inhibitory effects of proximal (duodenal) and
distal (ileal) exposure of nutrients on gastrointestinal motility. A study performed by Mal-
jaars et al. (2007) showed that gastric emptying of a liquid meal was significantly delayed
after ileal fat perfusion compared to an equicaloric duodenal infusion in man [38]. In dogs,
gastric emptying and small intestinal motility was shown to be more strongly inhibited
by an ileal perfusion (carbohydrate and fat) compared to a duodenal perfusion [43]. This
suggests that access to the distal SI is necessary to obtain most potent inhibition of gastric
emptying and motility. However, delivery of volatile compounds such as cinnamaldehyde
to the distal small intestine is hard to tackle, due to their fast absorption in the stomach
and proximal SI [36].

Results obtained from the third experiment highlighted which structural features
are important to stimulate CCK release. TRPA1 contains ankyrin repeat motifs in the
intracellular N-terminal moiety which possess cysteine and lysine residues, essential
for activation by reactive agonists. TRPA1 could be activated by covalent binding of
electrophiles to these cysteine residues, since the nucleophilic mercapto-group of cysteines
is able to attack the α,β-unsaturated bond of cinnamaldehyde, via Michael addition [44].

To study the precise mechanism of covalent modification with unsaturated carbonyl-
containing compounds, Sadofsky et al. (2011) examined a range of compounds which can
undergo both conjugate and/or direct addition [45]. Results showed negligible TRPA1
activation with chemicals, only able to react with cysteines by conjugate addition such as
cinnamic acid, weakly electrophilic at the carbonyl carbon. In contrast, compounds able
to react via either conjugate or direct addition, such as cinnamaldehyde, showed a higher
concentration-dependent activation. It was hypothesised in our study that less reactive
derivates do not activate TRPA1 as potent as cinnamaldehyde, resulting in a decreased CCK
response. Results obtained from our study showed that cinnamic acid does not stimulate
CCK release as strongly as the aldehyde form. These results are in line with findings by
Lieder et al. (2020), who showed that a range of naturally occurring compounds structurally
related to cinnamaldehyde (cinnamyl alcohol, cinnamic acid, cinnamyl isobutyrate, and
2 methoxy-cinnamaldehyde) did not induce serotonin release to the same extent than
cinnamaldehyde, in both Caco-2 and QGP-1 cell lines, by interacting with TRPA1 [46]. The
aldehyde group seems more effective in activating TRPA1 compared to a carbonyl group,
due to the electronic and steric profile of the compounds, which makes aldehydes more
reactive toward nucleophilic substitutions. The introduction of an additional methoxy
group (2-methoxycinnamaldehyde and 4-methoxycinnamaldehyde) also largely reduced
the serotonin-releasing potential. A reason for this could lie in the change in the steric
profile of the compound. A study performed by Nakajima et al. (2014) demonstrated that
mono- and di- unsaturated aldehydes, but not saturated aldehydes, potently stimulate
CCK secretion in the murine enteroendocrine cell line STC-1 [47]. This lower affinity was
also seen in our study, since hydrocinnamaldehyde (missing the unsaturated bond) did not
induce CCK release as strongly as cinnamaldehyde.
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5. Conclusions

In conclusion, capsaicin stimulates GLP-1 release, but TRPV1 seemed not to be in-
volved. It was demonstrated that cinnamaldehyde potentiated CCK release in the duo-
denum and GLP-1 release in the ileum by activation of TRPA1. Moreover, our findings
elucidate that this compound, and not its structural derivatives missing the α,β-unsaturated
aldehyde moiety, is a promising candidate to modulate gastric function in the pig, improv-
ing digestion.
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