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Abstract

Background: Few, if any, protozoan parasites are reported to exhibit extreme organ tropism like the flagellate
Tritrichomonas foetus. In cattle, T. foetus infects the reproductive system causing abortion, whereas the infection in
cats results in chronic large bowel diarrhoea. In the absence of a T. foetus genome, we utilized a de novo approach
to assemble the transcriptome of the bovine and feline genotype to identify host-specific adaptations and virulence
factors specific to each genotype. Furthermore, a subset of orthologs was used to characterize putative druggable
targets and expose complications of in silico drug target mining in species with indefinite host-ranges.

Results: lllumina RNA-seq reads were assembled into two representative bovine and feline transcriptomes
containing 42,363 and 36,559 contigs, respectively. Coding and non-coding regions of the genome libraries
revealed striking similarities, with 24,620 shared homolog pairs reduced down to 7,547 coding orthologs between
the two genotypes. The transcriptomes were near identical in functional category distribution; with no indication
of selective pressure acting on orthologs despite differences in parasite origins/host. Orthologs formed a large
proportion of highly expressed transcripts in both genotypes (bovine genotype: 76%, feline genotype: 56%). Mining
the libraries for protease virulence factors revealed the cysteine proteases (CP) to be the most common. In total,
483 and 445 bovine and feline T. foetus transcripts were identified as putative proteases based on MEROPS
database, with 9 hits to putative protease inhibitors. In bovine T. foetus, CP8 is the preferentially transcribed CP while
in the feline genotype, transcription of CP7 showed higher abundance. In silico druggability analysis of the two
genotypes revealed that when host sequences are taken into account, drug targets are genotype-specific.

Conclusion: Gene discovery analysis based on RNA-seq data analysis revealed prominent similarities between the
bovine and feline T. foetus, suggesting recent adaptation to their respective host/niche. T. foetus represents a unique
case of a mammalian protozoan expanding its parasitic grasp across distantly related host lineages. Consequences
of the host-range for in silico drug targeting are exposed here, demonstrating that targets of the parasite in one
host are not necessarily ideal for the same parasite in another host.
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Background

The protozoan flagellate Tritrichomonas foetus belongs to
the phylum Parabasalia, which includes the human para-
site; Trichomonas vaginalis [1]. Originally described as a
nasal and gastrointestinal commensal of pigs, T foetus in-
fects the urogenital tract of cattle resulting in disease
known as trichomoniasis [2-4]. Transmission of the dis-
ease to female cows occurs during coitus with infected
bulls, which can result in abortion of the foetus [5-8]. Re-
cently, T. foetus has been identified as the etiological
agent of gastrointestinal infection of domestic cats,
where infection results in chronic large bowel diarrhoea
[9-11]. The disease in both hosts is very difficult to
treat. Bovine trichomoniasis is currently untreatable
and the only control measure available to farmers is to
cull infected bulls or remove them from the breeding
herd. Although treatment options for feline trichomon-
iasis do exist, they are becoming increasingly ineffective
due to evolving parasite drug resistance and issues asso-
ciated with host drug toxicity [12-14].

Tritrichomonas foetus represents an intriguing model
to study host-parasite interactions. There has been much
conjecture as to the origins of the bovine and feline iso-
lates. In particular, are they different parasites or merely
closely related genotypes? Given that both infections are
caused by T. foetus, it is not surprising that historically
they have been assumed to be the same parasite. The
adaptation of parasites to different hosts is nothing new,
however, the extreme host-organ tropism of the bovine
isolate (vagina) and feline isolate (gastrointestinal tract)
suggest that they are distinct genotypes that, over the
course of their respective evolutions, have preferentially
adapted to their respective host/niche [4,15]. Further evi-
dence as to their distinctiveness (albeit limited) has been
demonstrated experimentally when the bovine genotype is
introduced into the feline intestinal tract, and vice versa.
Although both genotypes are capable of establishing infec-
tion in their non-typical host, the pathology is markedly
less than on their preferred hosts [10,16]. Successful delin-
eation of the genotypes would enable a more precise esti-
mation of trichomonas species richness and permit a
better epidemiological understanding of the pathological
basis of these diseases. Currently, artificial insemination
and culling of infected animals ensures that a low infec-
tion level is maintained in intensively-managed cattle in-
dustries [17,18]. Infections, however, are still prevalent in
extensive farming systems [17,18]. Moreover, current
evaluation of the infection in domestic cats indicated a
high prevalence, especially in young (6—-12 month old)
pedigree catteries [19].

Although it has recently been established that the por-
cine T. foetus (formerly known as 7. suis) and the bovine
T. foetus are synonymous [2,4], the relationship between
the bovine and feline 7. foetus is proving harder to
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elucidate. Evidence of the limited genetic distinctness be-
tween the bovine and the feline isolates is apparent when
highly conserved species-level nucleotide sequences for the
internal transcribed spacer 2 (ITS2) and elongation factor
1 alpha (EF-la) of the two genotypes are compared
[4,15,20]. As the original diagnostic marker, a single nu-
cleotide polymorphism in ITS2 between the bovine and fe-
line T. foetus amounts to a sequence difference of only
0.3% [15,20]. More recent studies demonstrated genetic
difference between the two genotypes by analysing the
cysteine protease multigene family [4,21]. This family of
genes is known to play a key role in parasite virulence
[22-25]. It has been suggested, however, that these minor
sequence differences between genotypes may merely repre-
sent intraspecific variation and not have any significant
phenotypic consequences [26]. Nevertheless, ambiguity
arises when single gene assays are used in an attempt to
compare very closely related genotypes with broad host
ranges, such as the bovine and feline T. foetus.

There is the need for a more comprehensive cell-wide
approach to enable further elucidation of the relationship
between the bovine and feline T. foetus genotypes. This is
further confounded by a lack of T. foetus genome data
which has undoubtedly hindered our understanding of
host-switching and search for novel drug targets in these
parasites. Therefore, in the absence of a genome, we have
used RNA-seq to sequence the transcriptome of bovine
and feline 7. foetus genotypes in an attempt to provide a
blueprint of functional capacity of each of the host/niche
adapted T. foetus genotypes. This study represents the first
cell-wide comparative analysis of T. foetus genotypes, en-
abling us to determine the extent to which differences be-
tween host/niche is reflected in their transcriptomes. In
addition to investigating 7. foetus host-specific biological
and virulence mechanisms, we utilised our transcriptomic
libraries to explore the usefulness of in silico techniques
for the identification of potential parasite drug targets, tak-
ing into account their expanded host-range.

Results

Transcriptome

lllumina sequencing and transcriptome assembly

A total of 64,744,882 and 64,009,804 100 bp paired-end
[lumina reads were obtained following the sequencing of
total RNA isolated from bovine and feline Tritrichomonas
foetus isolates, respectively. Assessment of read quality by
FastQC revealed good quality reads (data not shown). Raw
reads were mapped onto a small, previously published bo-
vine T. foetus EST library and visually assessed to confirm
a non-biased and even distribution of sequenced reads.
Paired-end sequencing reads from each genotype were as-
sembled using Trinity [27] into two transcriptomes con-
sisting of 42,363 and 36,559 contigs representing the
bovine and feline genotypes respectively (Table 1). A mean



Morin-Adeline et al. BMC Genomics 2014, 15:955
http://www.biomedcentral.com/1471-2164/15/955

Table 1 Summary of sequenced reads and the assembled
transcriptomes

Feature Bovine T. foetus  Feline T. foetus
Total number of reads 64744882 64009804
Total base pairs (bp) 6539233082 6464990204
Average read length (bp) 101 101
Total number of contigs 42363 36559
Total assembled bases 37882427 29525551
Mean length of contigs (bp) 895.25 806.61
Median contig length (bp) 653 562
% GC content in transcriptome 3462 34.87
Minimum contig length (bp) 201 201
Maximum contig length (bp) 14314 17195
Contig N50 1259 1178

contig length of 895.2 bp was obtained in the bovine
T. foetus transcriptome, with minimum and maximum
contig lengths of 201 bp and 14,314 bp respectively. The
feline 7. foetus transcriptome had a mean contig length of
806.6 bp with a minimum length of 201 bp and a max-
imum of 17,195 bp in length.

Ortholog identification

Homologous transcript pairs between the bovine and the
feline genotypes were identified using a reciprocal blast.
This method identified 24,620 pairs of homologous tran-
scripts which were further subjected to a BlastX search
against the Swissport database (e-value 1 x 10°) to remove
putative paralogous genes [28,29]. Orthologous pairs of
coding regions were defined by comparing corresponding
sequence pairs originating from each genotype and only
those found to have identical top-hit in the BlastX results
were selected. A total of 7,547 transcript pairs were se-
lected using this method and were thus considered strong
orthologs of the bovine and feline T. foetus (Figure 1).

A local version of the full-lengther next (FLN) algorithm
[30] was implemented to identify putative coding regions
in the orthologs using the invertebrate database, as this re-
sulted in superior protein annotation results. Approxi-
mately 4,600 transcripts were protein annotated by the
algorithm, of which, 1,511 pairs of ortholog pairs were
found to be full length transcripts (i.e. the presence of
both a start and stop codon). The coding regions of the
1,511 ortholog pairs were isolated using bash scripting.

Functional annotation and highly transcribed genes

Functional annotation at the BlastX and Gene Ontol-
ogy level of the assembled transcriptomes were carried
out using a combination of locally implemented BlastX
searches and Blast2GO [28,31]. Whole transcriptome
annotations and annotations of only orthologs revealed
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7,547

shared
orthologs

Figure 1 Distribution of shared transcripts between the bovine
and feline T. foetus genotype. Venn diagram illustrating the
shared bovine and feline transcriptome obtained by de novo
assembly of lllumina RNA-seq sequenced data. A total of 7,547
transcripts were identified as true orthologs shared between the
two genotypes.

a similar distribution of functional categories between
the bovine and feline genotypes (Figures 2, 3). The differ-
ence in size of the two assembled transcriptomes can ac-
count for the slight variation in the number of transcripts
obtained per functional category. The absence of four
functional categories from the feline genotype that were
identified in the bovine genotype is solely a limitation of
the threshold of reported sequences set for presenting
GO categories.

To identify the top 100 transcribed genes from each
transcriptome, raw sequencing reads were mapped back
onto the assembled transcriptome of each genotype and
counts were normalized to RPKM (reads per kilobase per
million of mapped reads). The top 100 transcripts with the
highest RPKM values were selected from the bovine and
feline transcriptomes. The top 100 RKPM values for the
bovine genotype ranged from 21,107 to 1,119, whereas the
RPKM range for the top 100 transcribed genes in the fe-
line transcriptome was from 18,670 to 1,277. Blast annota-
tions obtained previously were used to extract the putative
functions of the top 100 bovine and feline transcripts.
Within this list, 56 feline transcripts and 76 bovine tran-
scripts were identified as ortholog genes (Figure 4), how-
ever, only 29 were orthologs pairs common to both
genotypes (Figure 5). The common ortholog genes included
mainly genes involved in metabolic activity, oxygen scaven-
ging and regulation of homeostasis; all of which are
expected in trichomonads. The remaining 24 and 44 non-
ortholog, but highly-expressed transcripts from the bovine
and feline genotypes were annotated as ribosomal-related
proteins (data not shown).

UTR analysis

Un-translated regions (UTRs) of mRNA flank either end
of the coding region and contain regulatory elements
that dictate translation of genes [32-34]. Only the 1,511
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Figure 2 Top ranked GO categories of the bovine and feline Tritrichomonas foetus whole transcriptomes. Functional characterisation of
the bovine (left) and feline (right) expressed genome based on Gene Ontology categories showing top ranked categories for cellular component,

molecular function and biological process. Categories presented represent a minimum threshold filter value of 100 sequences.
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Figure 3 Representative functional annotation of shared orthologs between the bovine and feline T. foetus genotypes. Representative
Gene Ontology functional categories of the bovine and feline shared orthologous gene pairs for cellular component, molecular function and

full-length ortholog transcripts were used to compare the
UTR lengths and regulatory content of the two T. foetus
genotypes. The average length of 5'UTRs were 64.2 and
73.3 nucleotides (nt) for the bovine and feline genotypes,
respectively. The longest bovine and feline 5'UTRs were
4,325 nt and 4,253 nt in length. The 1 — 25 nt length range
contained approximately 67% of 5"UTRs from both geno-
types (Figure 6). Longer 5'UTRs (>1,000 nt) were more
prominent in the feline genotype with an additional nine
feline sequences within this length category compared to
that of the bovine genotype. Length analysis of 3'UTRs re-
vealed that 41.8% and 38.2% of bovine and feline se-
quences, respectively, were found within the 51 — 200 nt
length range. On average, 3'UTRs were longer than 5’
UTRs with the mean length amounting to 77.7 nt for the
bovine T. foetus and 70 nt for the feline genotype. The max-
imum length of 3"UTRs were, however, shorter than the
longest 5'UTR with the lengths reaching to 1,360 nt and
1,331 nt for the bovine and feline genotypes, respectively.

To identify any patterns of correlation between the 3
UTR and 5'UTR length and the normalized expression
count (RPKM), the 1,511 orthologs were plotted in a scat-
ter plot (Figure 7). A non-linear model of regression was
used to calculate a weighted R* which takes into account
the uneven variance between points across the graph, en-
suring that all points contributed equally. In general, R* <
0.01, indicated no correlation between the transcript ex-
pression and the length of the UTRs.

Using the UTRscan algorithm [35] to search the UTR-
site database [36] for known UTR regulatory motifs, a
list of putative motifs were obtained for the two T. foetus
genotypes. Overall, 14 different motifs were annotated in

the UTR regions of 1,511 full-length orthologs between
the two genotypes (Figure 8).

All motif patterns in the UTRs were common to both ge-
notypes except for an alcohol dehydrogenase element asso-
ciated with the 3'UTR of the feline genotype (ADH_DRE)
(Figure 8). The most common motif in both genotypes was
annotated to the AU-rich class-2 element (ARE2). This
amounted to 28.2% and 30.6% of the number of unique hits
in the bovine and feline genotypes, respectively. Polyadeny-
lation signals (PAS) were found in 37.2% and 30.5% of the
bovine and feline unique hits obtained.

Discovery of new proteases and protease inhibitors

Being a strict extracellular parasite, the ability of 7. foetus
parasites to attach to host cells is an essential prerequisite
for the initiation and maintenance of infection [37]. Dur-
ing infection, the bovine host mounts a humoral defence
against T. foetus, however, it is not necessarily sufficient to
clear the infection [38]. The secretion of cysteine proteases
(CPs) is thought to be an important facet of T. foetus viru-
lence. CPs have been demonstrated to cleave and inacti-
vate host protective antibodies, enabling the parasite to
remain within the host [39]. To date, there have been 21
CPs identified in the bovine genotype, while only 8 CPs
have been identified within the feline genotype [4,21,40].
Blast annotation identified a total of 665 and 623 hits to
known proteases in the bovine and feline 7. foetus tran-
scriptomes, respectively. Both transcriptomes were also
found to contain 11 hits for protease inhibitors. A total of
389 and 346 CPs with a corresponding 3 and 2 CP inhibi-
tors were identified as belonging to the bovine and feline
T. foetus respectively.
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Figure 4 Annotation of the most highly expressed ortholog genes in the bovine and feline T. foetus. BlastX functional annotation of
ortholog transcripts present within the top 100 highly expressed transcripts in the bovine (left, A) and feline (right, B) T. foetus genotypes after
RPKM normalization of reads counts. The graphs show the 76 and 56 orthologous transcripts of the bovine and feline genotypes, respectively.
Non-orthologous transcripts are not shown. Green bars represent the orthologs pairs that are highly expressed in both genotypes.

The full list of proteases was used in a search against  obtained when the results were collapsed to show only
the MEROPS peptidase database enabling the further unique types of protease active sites per transcript
identification of true proteases [41]. Of the initial list ob-  (Table 2). The largest group detected was the cysteine pro-
tained through NCBI blast, only 483 and 445 bovine and  teases active site architecture, amounting to 52.8% in bo-
feline T. foetus transcripts received hits from the MER-  vine T. foetus and 50% in feline 7. foetus of the total hits
OPS database. Of these hits, 243 bovine transcripts pro-  obtained. No hits were obtained for glutamic or asparagine
duced hits to a single protease active site, compared to  proteases in either parasite transcriptomes. Similarly, the
253 feline transcripts with unique hits. Some sequences  same pipeline carried out on Trichomonas vaginalis coding
obtained hits to multiple active site domains. A total genes based on the draft genome produced 475 annotated
number of 539 bovine and 498 feline active sites were  “protease/peptidase/proteinase” related genes [42]. This
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Figure 5 Normalized expression values of 29 highly expressed orthologous transcripts. Normalized read counts (RPKM) and BlastX annotation
of 29 pairs of orthologous transcripts present within the top 100 highly expressed transcripts in the bovine and feline T. foetus genotypes.

comparably corresponded to 221 confirmed putative prote-  metalloprotease active site M20X of the MH clan
ases possessing cysteine-specific active sites in 7. vaginalis  (MEROPS Accession: MER001266) which was un-
found in the MEROPS database (data not shown). matched in the bovine T. foetus protease list.

Two protease active sites were unique to either one of Raw reads were mapped back onto the putative protease
the parasite genotypes. In the bovine T. foetus, tran- and counts were normalized using RPKM revealing 148
script Bc12_comp23753_c0_seql produced a hit to the bovine and 113 feline T. foetus proteases being expressed
serine active site S51 of the PC clan (MEROPS acces- at an RPKM of 500 or greater. This RPKM threshold was
sion: MER001335) which was not present in the feline chosen to signify high expression of proteases. Of the
T. foetus protease list. Conversely, the feline transcript  highly expressed proteases, 42.3% of bovine and 39.9% of
G10_comp5459_c0_seql produced a unique hit to the feline transcripts contained CP active sites, with the
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MEROPS CO1A protease family represented in 65.08%
and 40.47% of bovine and feline highly expressed CPs,
respectively (Table 3, Additional file 1: Table S1 and
Additional file 2: Table S2). The putative T. foetus CP
sequences were aligned to previously published CP se-
quences to identify known CPs within our list [4,40,43].
Of the 20 bovine and 8 feline published CP sequences,
15 known bovine CPs were among the highly expressed
proteases (RPKM >500), whereas CP7 and CP8 were the
only known feline CPs with an RPKM above 500 in the fe-
line transcriptome. Interestingly, while CP8 was the most
transcribed protease in the bovine genotype, CP7 was
found to be highly transcribed in the feline genotype.

Of the 11 inhibitors initially found in the BlastX tran-
scriptome annotation, 9 feline 7. foetus transcripts obtained
a positive hit to an inhibitor active site from the MEROPS
database, compared to only 8 bovine 7. foetus transcripts
with known inhibitor active site hits. Using BlastN for pair-
wise alignments of the bovine and feline inhibitor se-
quences, all bovine sequences align to a feline sequence
with approx. 99% identity (Table 4). One putative feline
inhibitor sequence (G10_comp9648_c0_seql) did not
align to any bovine sequences and produced a match to

the MEROPS 104 protease family (MEROPS accession:
MER003981).

Analysis of sequence divergence
Pairwise codon-alignments of the 1,511 full-length ortholog
transcripts shared between the bovine and feline 7. foetus,
revealed that only 1,050 transcript pairs (69.5%) were suffi-
ciently divergent to allow for Ka/Ks calculation. The aligned
pairs of orthologs showed an average substitution of 10.6 nt
ranging from a minimum of 4 nt to a maximum of
167 nt substitutions. While strong sequence conserva-
tion (Ka/Ks: <0.1) was detected in 80.41% of the coding
orthologs analysed (Figure 9), weak purifying selection,
that is, a low rate of protein change denoted by a Ka/Ks
ratio within the 0.5 — 1.0 range was demonstrated by 14
orthologs pairs. A single ortholog pair had a Ka/Ks ratio
of approximately 1, signifying neutral selection (no se-
lective pressure), while only one other pair showed gene
divergence with a Ka/Ks ratio greater than 1.
Comparison of Gene Ontology (GO) terms between
highly conserved, less-conserved and the divergent group
of orthologs showed that “binding activity” is over-
represented in all 3 groups. This functional category is
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Tritrichomonas foetus UTR motifs
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Figure 8 Frequency of regulatory motifs within the untranslated regions (UTR) of full-length orthologous transcripts. Frequency of hits
to UTR motifs obtained through UTRscan searches of 1,511 full-length orthologous bovine and feline transcripts against the UTRsite of regulatory
motifs. Actual number of hits is presented above each bar. Abbreviations: UORF; upstream open reading frame, UNR-bs; UNR binding site, TOP;
terminal oligopyrimidine tract, SXL_BS; SXL bind site, MBE; Musashi binding element, K-Box; K-Box, GY-Box; GY-Box, BRD-Box; BRD-Box, ARE2;
AU-rich element, PAS; polyadenylation signal, IRES; internal ribosome entry site, CPE; cytoplasmic polyadenylation element, BRE; Bruno responsive
element, ADH_DRE; alcohol dehydrogenase down-regulation control element.
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represented by 66.5%, 50%, and 100% of orthologs belong-
ing to the high purifying, weak purifying and the divergent
ortholog set, respectively. Within the high purifying group
(Ka/Ks <0.5), 211 sequences were specifically involved in
ATP binding activity, while 13.5% of transcripts were meta-
bolically active transcripts. The divergent group of ortho-
logs presented hits to an unknown protein containing a
Myb-like binding domain (GO: 0003677, GO:0003682).

Other GO categories that were obtained included “Trans-
port activity” and “Translational activity” which were repre-
sented by 20% and 10% orthologs from the weak purifying
subset, respectively.

Table 2 Frequency of protease active site present within
the bovine and feline transcriptome

Functional type Bovine T. foetus Feline T. foetus

Cysteine 285 249
Serine 99 95
Glutamic 0 0
Metallo 88 88
Threonine 22 22
Aspartic 9 9
Inhibitors 35 34
Asparagine 0 0
Mixed 0 0
Unknown 1 1
Overall 539 498

Druggability

To explore in silico drug targeting pipelines between
T. foetus genotypes, only the 1,511 predicted full-length
orthologs were used for identification of potential drug
target, with an added level of search stringency aimed at
identifying non-host targets. Of the 1,511 ortholog pairs of
transcripts blasted to their respective host proteome, 123
bovine T. foetus and 105 feline T. foetus transcripts
were found to be unique to the parasite (i.e. not found
in their respective hosts). Approximately half of the
parasite-only transcripts obtained (bovine: 48/105; fe-
line: 59/123) produced positive results to one or more
druggable domains. From the feline BlastX results to
druggable domains, 49.1% (416/846) of the domains
adhere to the Lipinsky rule of 5 for small molecule
binding. This number was lowered to 43% (184/424) in
the bovine druggable transcripts (Additional file 3:
Table S3 and Additional file 4: Table S4).

Discussion

In this study, we characterized draft transcriptomes of two
genotypes of Tritrichomonas foetus; a trichomonad of
veterinary significance, secondary in prominence only to
the human Trichomonas vaginalis. In the absence of a
genome or sufficient background proteomics, a de novo
RNA-seq approach was used as an economical and high-
throughput cell-wide gene discovery technique. Currently,
only a small expressed sequence library of the bovine
T. foetus is available in the public domain [40]. Here,
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Table 3 Type distribution of highly expressed protease in
bovine and feline T. foetus

Protease type Bovine T. foetus Feline T. foetus

Cysteine 63 42
Metallo 34 26
Serine 26 16
Threonine 21 19
Aspartic 4 4
Total 148 13

existing expressed sequence data of the bovine T. foetus is
augmented and we leverage the field by providing the first
comprehensive expressed sequence library of a feline
T. foetus genotype. Gene discovery via RNA sequencing
projects provide an accurate representation of transcrip-
tionally active regions of the genome, thus proving an ac-
curate starting point for the unearthing of undiscovered
genes [44,45]. With the expression blueprints of the bo-
vine and feline T. foetus genotypes, the first cell-wide com-
parison of shared genes was undertaken and an in silico
novel drug target analysis was explored. A draft genome
has previously been published for the related human patho-
gen Trichomonas vaginalis [42]. However, phylogenetically,
T. vaginalis and T. foetus are significantly divergent, imped-
ing extension of molecular information between the two
parasites. Hence the sequence library we have con-
structed is currently the best depiction of the T. foetus
genome to date and will reinforce the platform for fu-
ture experimental studies on 7. foetus cell biology and
host-parasite interactions.

In general, the two T. foetus transcriptomes are compar-
able in size with a near identical GC content of approxi-
mately 35%. While this is equivalent to the GC content of
T. vaginalis, it is lower than the previously published
41.9% for bovine T. foetus, presumably owing to small
library-size bias of the latter [40,42]. Given the very
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distinct fundamental host requirements and the vastly dif-
ferent host niches occupied by these two genotypes, we
were interested to identify to what degree this would be
reflected in their respective gene profiles. We found no
biologically significant differences in the distribution of
functional annotations between the two T. foetus tran-
scriptomes, despite the slight variances in culture con-
ditions of the two genotypes in this study. This suggests
that the two genotypes possess remarkably similar basal
functioning. Resemblances in functional capacity in
transcriptome-wide studies of other protozoan groups
are not uncommon [46,47]. To our knowledge, this has
not been documented in flagellate protozoans extending
over a diverse host range such as 7. foetus. Limited hints
to host-origin were observed as approximately half of
the transcripts were flagged as homologs between the
genotypes, with 30% being orthologs shared from a com-
mon ancestor. As an alternative method of comparing the
two T. foetus genotypes, the 100 most highly transcribed
genes from each transcriptome were identified through
counts of uniquely-mapped sequencing reads. Unsurpris-
ingly, functional categories of highly expressed T. foetus
genes included nutrition-related genes, transcription fac-
tors and oxygen scavenging genes, with over 50% of the
sequences being identified as shared orthologs of the two
genotypes. Although minor loss of detail is imminent, dis-
carding multi-mapped reads for expression counts has
shown overall reliability in depiction of highly expressed
profiles from RNA-seq data [45,48]. Of the comparable
highly transcribed orthologs, the most notable was the 8-
fold difference in actin expression between the two iso-
lates. Actin is associated with a myriad of functions
including whole cell and intracellular vacuole movement
that contribute to parasite virulence [49-52]. Changes in
cell morphology and increased interaction with host cells
is associated with differential expression of actin in
T. vaginalis [53]. While potential culture artefacts cannot
be ruled out in the current study, the discrepancy of actin

Table 4 Summary of aligned protease inhibitors and their predicted MEROPS family

Feline transcript Bovine transcript

Alignment Identity Predicted

MEROPS accession number
protease family

G10_comp7804_cO_seql  Bcl12_comp9941_c0_seql 333/334 99%
G10_comp2876_c0_seql  Bc12_comp7451_cO_seq2  936/943 99%
G10_comp7790_cO_seql  Bcl12_comp7451_cO_seql 1139/1145 99%
G10_comp7405_cO_seql  Bc12_comp9915_cO0_seql  293/297 99%
G10_comp3687_cO0_seql  Bc12_comp3242_cO_seql 311/314 99%
G10_comp18864_c0_seql Bcl12_comp5569_c0_seql  394/401 98%
G10_comp17054_cO_seql Bc12_comp4109_cO_seql  899/903 99%
G10_comp12847_c0_seql Bcl12_comp13520_cO_seql 339/342 99%

1258 MER018186

104 MER018805, MER018695, MER023786 (bovine only)

104 MERO018805, MER016306 (feline only), MER018807
(feline only), MER027490 (feline only), MERO18695
(bovine only)

1258 MER018937, MER018172 (bovine only)

1258 MER018186

104 MER018805 (feline only), MER003223 (feline only),
MER018696 (bovine only), MERO16306 (bovine only)

104 MERO018698, MER023885 (bovine only)

1258 MER181466, MER166026
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Figure 9 Frequency of Ka/Ks values for full-length orthologous
transcripts between the bovine and feline genotype. Frequency
of orthologous transcript pairs producing Ka/Ks values within
various ranges.

expression between the genotypes is worthy of further
characterization to better understand 7. foetus virulence.
Within their respective host niches, the bovine and feline
T. foetus genotypes are exposed to extreme environmental
constraints that place genes under selective pressure as an
adaptive mechanism. These responses are seen in se-
quences as a ratio of synonymous to non-synonymous sub-
stitutions (Ka/Ks), which relates to the ratio of silent
mutations to amino-acid changing mutations likely to alter
protein functionality [54,55]. Positive selective change was
apparent in two pairs of shared 7. foetus orthologs both,
producing hits to a Myb DNA-binding domain containing
protein. As one of the largest families of transcription fac-
tors, Myb domain-containing proteins act to regulate the
transcription of genes that control and implement import-
ant biological processes such as growth, encystation and
virulence [43,56,57]. Strong divergence of T. foetus tran-
scription factors could imply unique adjustments of gene
expression between the two genotypes according to their
hosts. A total of 445 and 461 bovine and feline Myb-like
proteins, respectively, were annotated in the transcrip-
tomes, suggesting an important role for these transcription
factors. In the related T. vaginalis, Myb-like nuclear pro-
teins act to regulate transcription of a gene family that en-
code surface cytoadhesives such as the AP65 protein
essential for the parasite adherence to host cells [58-61].
Taken together, the near identical transcriptomes and di-
versification of certain transcription factors suggest that
transcription and post-transcription regulation form a
major aspect of phenotypic host-specificity in T. foetus. It
would seem that perhaps the pressure imposed by the dif-
fering hosts/niche environments has not, as of yet, been
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sufficient to drive molecular diversification at the amino
acid level between these two genotypes. Alternatively, these
may not be evident in the absence of specific cues for the
host. The Myb-transcription factors present as ideal candi-
dates for initial investigations into the extreme versatility of
T. foetus that allows it to adapt rapidly to new, extreme en-
vironments presented by their non-original host.
Untranslated regions (UTRs) flanking either end of
mRNA coding regions contain inherent information, such
as motif sequences, that govern and regulate the down-
stream translation of a protein [32,33]. Under varying en-
vironmental conditions, UTRs have the capacity to permit
instantaneous phenotypic changes within the parasite to
permit rapid responses to biological and environmental
cues [32-34]. Here, we mined the untranslated regions
(UTRs) for translation regulatory features that may be act-
ing in the bovine and feline T. foetus genotypes. One such
feature is the length of the UTRs which has been associ-
ated with mRNA stability and translational efficiency [62].
A compilation of UTR lengths from UTR databases in-
dicates that across groups of living organisms, 3'UTR
are longer than 5'UTRs [63]. Indeed the mean length of
T. foetus UTRs in this study follows the same length
bias. The validity of comparing UTR length to determine
organism complexity, expression levels and breadth has
generated mixed results [64-67]. In the closely related
T. vaginalis, the length of the glycolytic glyceraldehydes-2-
phosphate dehydrogenase 3'UTR did not show correl-
ation to expression of the enzyme [65]. A more tangible
manner of UTR translational regulation is mediated
through binding of small mRNA-binding protein to cis-
elements in the UTR region of the target protein [34]. An-
notation of 5" and 3" UTRs to known patterns in this
study provide a glimpse of putative regulatory motifs at
play in T. foetus. Common motifs such as up-stream open
reading frames (WORF) [68], internal ribosomal entry sites
(IRES) [69] and AU-rich class 2 elements (ARE2) [70]
have been identified here in the UTRs of both T. foetus
genotypes. Functionality of several of the motifs found
in T. foetus have been described in protozoan and in fact,
in Plasmodium, uORF presents an interesting case as it
regulates a virulence-associated trait according to host
physiological factors [71]. The unique feline 7. foetus
genotype motif; ADH-DRE, has not been described in pro-
tozoans and is related to the down-regulation of the alco-
hol dehydrogenase gene [72,73]. Nevertheless, finding
common motif matches between 7. foetus and other organ-
isms in public databases confirms that the conserved nature
of motif patterns extend to 7. foetus. Here, we attempted to
by-pass the inherent transcription level limitation of RNA-
seq to provide an overview of putative translation-related
mechanisms in T. foetus. Bioinformatics tools, however, are
currently relatively un-reliable in determining true func-
tional regulatory motifs [74]. Experimental characterisation
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of these motifs in 7. foetus is required to elucidate regu-
latory relationships between regulators and the target in
these parasites.

Proteases are expressed by all organisms, playing a crit-
ical role in protein catabolism. In parasites, however, these
enzymes have evolved specialized functions and are dir-
ectly involved in numerous host-parasite interactions. Pro-
teases, also known as peptidases, can be classified into
seven functional categories based on the principal residue
occupying the active site: Aspartic, Cysteine, Glutamic,
Serine, Threonine, Metallo and Mixed [41,75,76]. Each of
these can be further divided into clans and families.
Trichomonad parasites also release soluble proteases
in vitro and in vivo; the best studied of these being the
cysteine proteases (CP). Proteases released into the host
milieu, as well as those on the surface of parasites, are im-
portant virulence factors involved in host-cell adherence,
evasion of host immunity and host cell cytotoxicity
[23-25,39]. Approximately half of the proteases found in
the transcriptomes in this study contained cysteine active
sites and these were over-represented within a subset of
highly expressed proteases. In bovine 7. foetus, the most
dominant CP family expressed was a papain type CP of
the CA clan (C01A); a large family of CPs involved in fa-
cilitating infection in protozoa (reviewed in: [22]). This
family is slightly less represented in the highest expressed
proteases of the feline 7. foetus. Regulation of the type of
CP secreted by parasites has important implications for
the extent of infection in the host. In the related T. vagi-
nalis, secreted CP fraction has been demonstrated to pro-
mote host-cell apoptosis. Host-cell specificity of CPs,
however, is apparent when incubation of T. vaginalis
CP30 with non-host bovine cells fails to induce the same
level of cellular destruction compared to the effect of bo-
vine 7. foetus CP8 on bovine cells [77,78]. Here, we con-
firm that CP8 is the most transcribed CP in the bovine
T. foetus as reported by Huang et al. [40]. To the contrary,
CP7 was found to be more transcribed than CP8 in feline
T. foetus suggesting that the increased expression of CP7
in feline genotype is a host-specific adapted virulence trait.
CPs are capable of inducing varying levels of cellular de-
struction depending on cell source and type. The differ-
ence in the major type of CP expressed between the
genotypes may explain the slightly varied pathology de-
scribed in experimental cross-infection of the hosts but
the significance of this has yet to be elucidated [10,16].
Our analysis revealed that the bovine transcriptome
contained more hits to proteases than the feline
T. foetus transcriptome which could be due to the frac-
tionally higher sequence reads obtained for the bovine
T. foetus. The significance of this finding will require
full genome sequencing and analysis.

The collection of expressed sequences from the bovine
and feline 7. foetus genotypes made available in this
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study presents an opportunity for low-cost in silico mining
of novel drug targets worthy of experimental follow-up.
With mounting reports of drug resistance and toxic host
side-effects, the treatment of choice for human and feline
trichomonad infections remains the 5-nitromidazoles drugs
[12,13,79]. To date, significant, yet non-model protozoan
species have been overlooked for in silico mining for drug-
gable targets. Computational pipelines for drug-target dis-
covery have been limited to the few high-profile protozoans
with a sequenced genome or focused on identifying drug-
gable features at the host-parasite interface [52,80,81]. Here
we explore drug target identification for a unique case of a
protozoan species with a broad, distantly-related host-
range. Novel drug targets for experimental follow-up have
to be compatible and non-toxic for the host-species under-
going treatment. In our analysis we intentionally only in-
cluded shared, full-length T. foetus sequences to gain
insights as to how the presence of endogenous host pro-
teins could affect strategies for drug target identification of
the same parasite species. By excluding similar host genes,
a maximum of 5% of the druggable parasite-unique genes
remained, the majority of which were not common be-
tween the two genotypes. While the list we generated from
our analysis is purposed to be more illustrative rather than
definitive; the findings stress the importance of taking dif-
ferent hosts into account as a part of target prioritization in
more generalist parasites like 7. foetus.

Conclusions

The expressed genes of the bovine and feline Tritricho-
monas foetus genotypes offer insights into the breadth
of both the T. foetus coding and non-coding genomes.
This parasite represents an interesting biological model as
it represents a unique case of a protozoan expanding its
parasitic foothold across distantly related mammalian
hosts. Despite extreme environmental conditions found be-
tween bovine urogenital tract and the feline digestive tract
inhabited by the two genotypes, they possess near identical
functional category distribution of expressed genes with no
indication of molecular-level divergence. This reinforces
the fact that taxonomically, the bovine and feline 7. foetus
represent two genotypes displaying intra-specific variation.
Host-specific adaptation strategies appear to be focused on
post-transcription regulation influenced by environmental
cues within the two host niches. In this manner, expression
patterns of virulence genes may differ in accordance to
their host. Although RNA-seq has provided insights into
expression patterns, proteomics studies need to be carried
out to examine the full extent of these patterns between the
genotypes. Nevertheless, the role of transcriptional and
post-transcriptional regulation in 7. foetus warrants consid-
eration to guide further research since studies on an
environmental-dependent gene in one genotype will not
necessarily be representative of the other genotype. Hence,
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host genes and biology have to be taken into account, par-
ticularly in the design of new drug strategies. While in silico
methods offer an ideal starting point for novel drug target
identification, here we highlight the importance of taking
both genotypes and their hosts into account to avoid down-
stream mis-identification of common drug targets. Taken
as a whole, the cell-wide gene library of the bovine and fe-
line T. foetus generated in this study is a useful platform to
guide trichomonad research.

Methods

Cultures

Two Tritrichomonas foetus genotypes were used for this
study; a genotype isolated from a bovine host and a feline
genotype originating from a feline host. The bovine geno-
type; Tritrichomonas foetus BP-4: Beltsville (ATCC® 30003™,
the American Type Culture Collection, Manassas, USA).
The feline genotype; Tritrichomonas foetus Sydney-G10/1
(cryopreserved in the culture collection at the Faculty of
Veterinary Science, The University of Sydney) [15]. Both
genotypes were axenically maintained at 37°C by 48 hour
passages in a trypticase, yeast extract and maltose (TYM)-
medium at pH 7.2. The media was supplemented with 10%
(v/v) heat-inactivated lamb serum. To ensure adequate
growth, media used for the bovine genotype was further
supplemented with 0.05% (w/v) bacterial agar. A mixture of
PenStrep and Fungizone was added at a final concentration
of 100 pg/ml to both media to safeguard against biological
contaminant growth.

Transcriptome

Sample preparation and RNA isolation

Bovine and feline 7. foetus cells at the mid-exponential
phase in culture were collected and 1 x 107 cells were pel-
leted at 3220 x g for 5 min. Cells were resuspended in
600 pl RTL buffer, according to the RNeasy Micro kit
(Qiagen) protocol and homogenisation was carried out in
a FastPrep® - 24 Instrument (MP Biomedicals, USA) for
30 seconds at 4 m/s. An in-column DNAase (Sigma-
Aldrich) treatment step was carried out with an incubation
time of 15 minutes at room temperature. RNA was eluted
in 30 pl of sterile water and assessed both qualitatively and
quantitatively using a 2100 Bioanalyzer (Agilent Technolo-
gies, Inc). Samples were then transferred into RNAstable®
tubes (Biometrica) and preserved by drying in a Savant
SpeedVac concentrator connected to a vapour trap for
1 hour, in accordance with the manufacturer’s instructions.
Paired-end RNA sequencing on Illumina HiSeq2000 was
performed at Macrogen (Seoul, Korea).

Transcriptome sequence analysis and assembly

Raw RNA sequenced reads were subjected to quality con-
trol analysis using FastQC (Babraham Bioinformatics). Se-
quenced reads were mapped onto a small indexed library
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of published T. foetus coding genes using a combination of
bowtie (version bowtie/2.1.0) and TopHat (version tophat/
2.0.8) and visualized using IGV (version igv/2.3.3-4G)
[40,82,83]. A de novo approach using default parameters in
Trinity, according to [27], was adopted for assembly of left
and right reads belonging to each genotype individually,
resulting in two libraries representing the feline and bovine
expressed genome.

Ortholog prediction
To obtain a list of coding homologue pairs shared between
the two T. foetus genotypes, a reciprocal blast was per-
formed using the Galaxy platform with the assembled fe-
line and bovine 7. foetus transcriptomes [84-86]. Putative
paralogues were removed by blasting the homolog pairs
against the SwissProt database with an e-value cut-off
of < 1 x 10° Top blast hits for each transcript pairs were
collected and filtered using bash scripting to retrieve 7547
pairs of transcripts showing identical hits to the same pro-
tein, which were subsequently utilized as ortholog pairs.
The full-lengther Next algorithm [30] was imple-
mented on the list of 7547 ortholog pairs using the in-
vertebrate database and default parameters to identify
full-length transcripts. Based on the criterion that both
transcripts from each pair were full length (i.e. contained
both a start and stop codon), 1151 pairs of transcripts
were selected for further analysis. For each pair of full-
length orthologues, bash scripting was used to isolate all
coding regions, 5'UTR and 3'UTRs were extracted for
further analysis.

Functional annotation and identification of highly
expressed genes

The entire assembled transcriptomes and the two lists of
7547 orthologues were annotated through local BlastX
searches against the NCBI non-redundant (nr) database
abiding to a cut off e-value of 1 x 10® [28]. Gene Ontology
(GO) level annotation of the assembled sequences were
retrieved using default setting in Blast2GO using the re-
sults of the local NCBI BlastX [31]. Combined graphs
were generated for each analysis with a level 3 cut-off and
a minimum sequence threshold of 100 per category.

To identify the top 100 highly expressed genes between
the bovine and feline T. foetus, a bash script was written to
create .gtf files for each transcriptome. The assembled tran-
scriptomes were indexed using Bowtie (version bowtie/
2.1.0) and raw sequenced reads were mapped back onto the
assembled transcriptomes using default TopHat (version
tophat/2.0.8) settings [82,83]. Qualimap compute-counts
(version qualimap/0.7.1) [87] were subsequently used with
the ‘uniquely-mapped-reads’ algorithm to count the num-
ber of raw reads that successfully mapped back onto each
assembled transcriptome. Counts were normalized to tran-
script length using RPKM (reads per kilobase per million of
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reads). BlastX results of transcripts with the top 100 RPKM
were extracted from the whole transcriptome blast against
the NCBI nr database blast for comparison.

UTR extraction and annotation

Upon identification of the 1,511 full-length orthologous
transcripts, the 5" and 3" UTRs were isolated based on
identification of the start and stop codon predicted by the
full-lengther Next algorithm [30]. Scripting enabled calcula-
tion of the lengths of the UTRs and comparative graphs
were created. Scatter plots to compare the length of the 3
UTR and 5'UTRs to the normalized transcript expression
counts (RPKM) were created and the sum of least square,
straight line regression model was adopted in GraphPad
Prime 6 (California, USA). A non-linear weighted R*
(weighted by 1/Y72) was chosen to minimize the sum of
the squares of the relative distance of the points from the
line. A local version of Patsearch [88] was implemented
with the UTRscan algorithm [35] to search for known motif
patterns from UTRsite [36]. The UTR regions were ex-
tracted and only motifs annotated to within these regions
were isolated.

Discovery of new proteases and protease inhibitors

The BlastX annotations of both the feline and the bovine
transcriptomes were used to search for the synonymous
terms; “protease”, “peptidase” and “proteinase”. Positive
search hits to any of the terms were extracted creating
two genotype-specific lists of predicated proteases. The
lists were further mined for the term “inhibitor”, and all
positive matches were removed and used to create separ-
ate lists of putative protease inhibitors from the bovine
and feline T. foetus. Tritrichomonas foetus transcript IDs
were used to retrieve corresponding nucleotide sequences
from their respective assembled transcriptome ending
with 665 bovine and 623 feline putative protease tran-
scripts. These transcripts were submitted to the available
online batch blasting tool on MEROPS peptidase database
to search for similarities to known protease active sites
[41,75]. Similarly, the protease inhibitor sequences were
subjected to the online blast search against the MEROPS
inhibitor database. The resulting feline and bovine inhibi-
tor nucleotide sequences were compared by pairwise
alignment using a 2-sequence BlastN [28]. Tritrichomonas
foetus transcripts with a positive hit against a MEROPS
entry were considered a putative protease. As a compara-
tive control for the proteases, identical searches were im-
plemented on a list of 59,672 annotated Trichomonas
vaginalis coding genes downloaded from TrichDB [89].

In order to identify which putative sequences in the
two transcriptomes match to published T. foetus cysteine
protease (CP) sequences, a 2-sequence BlastN pairwise
nucleotide alignment between the MEROPS-confirmed
bovine proteases and published bovine CP sequences from

Page 14 of 17

Huang et al. [40] and Slapeta et al. [4] were carried out.
Similarly, the BlastN was carried out between the MEROP-
confirmed feline sequences and published feline CP se-
quences from Slapeta et al. [4]. Qualimap compute-counts
with the proportional algorithm was used to count the num-
ber of raw sequencing reads that mapped back onto the pu-
tative proteases [87]. Resultant expression count values were
normalized to transcript length using RPKM and all tran-
scripts with normalized expression values of 500 or greater
were selected for comparison between the two genotypes.

Analysis of sequence divergence

Pairs of orthologous coding sequences were translated
into protein sequences using a local version of Transla-
torX and pairwise alignments of each pair were generated
using ClustralW2 through an array bash scripting [90].
Pairwise proteins alignments were translated into codon
alignments using Pal2Nal (v14) and the perl parseFastaln-
toAXT.pl script which is distributed with kaks-calculator
converted the resulting alignment file into the required
format [91,92]. The codon alignments were subsequently
used to calculate substitution rates for non-synonymous
(Ka) and synonymous (Ks) sites using a 14-model aver-
aging method implemented in KaKs_Calculator2.0 [92].

Druggability

A host database of bovine protein sequences (the full offi-
cial gene set v2 protein sequences) was retrieved from Bovi-
neGenome.org and the complete peptide database for the
domestic cat was retrieved from ENSEMBL (release 6.2.74)
[93]. The list of 1,511 ortholog pairs belonging to the bo-
vine and feline T foetus were queried against their respect-
ive host protein databases using BlastX (e-value 0.0001)
[28]. Parasite transcripts that did not produce a common
Blast hit with their respective host were extracted and quer-
ied in a further BlastX against known druggable domains
retrieved from the ChEMBLs DrugEBility database (e-value
0.0001) [94]. Positive hits were matched with domain infor-
mation to identify which transcripts contain domains that
satisfy Lipinski ‘rule of 5’ of druggability [95].

Availability of supporting datasets

The assembled transcriptome libraries supporting the re-
sults of this article are available in the LabArchives reposi-
tory [96], [http://dx.doi.org/10.6070/HAGHIFWD]. All
raw sequence read data has been submitted to the se-
quence read data (SRA) repository under the BioProject
accession PRJNA246668 [http://www.ncbi.nlm.nih.gov/
bioproject/PRJNA246668].

The additional tables (Additional file 1: Tables S1,
Additional file 2: Table S2, Additional file 3: Table S3
and Additional file 4: Table S4) supporting the results of
this article are included within the article.
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Additional files

Additional file 1: Highly expressed proteases of the bovine

T. foetus genotype. Two excel documents showing assembled bovine
transcript ID (from this study) that presents with a hit to the MEROPs
database, in order of the highest estimation of protease expression
(RPKM) within the bovine genotype. Transcript length, specific hits to
MEROPS proteases family and MEROPS accession numbers are presented.
Transcript sequences that successfully produce pairwise alignment to
published bovine cysteine proteases are also shown.

Additional file 2: Highly expressed proteases of the feline T. foetus
genotype. Two excel documents showing assembled feline transcript ID
(from this study) that presents with a hit to the MEROPs database, in
order of the highest estimation of protease expression (RPKM) within the
feline genotype. Transcript length, specific hits to MEROPS proteases
family and MEROPS accession numbers are presented. Transcript
sequences that successfully produce pairwise alignment to published
feline cysteine proteases are also shown.

Additional file 3: Non-host, putative bovine T. foetus genotype
druggable domains. Bovine T. foetus non-host (i.e. unique to the
parasite) transcripts which presented a positive hit to known druggable
domains are presented, along with the EMBL DrugGAbility px number
(SCOP domain), the associated pdb code and information regarding the
druggable domain found. Transcript IDs are repeated in the table as
more than one domain could associated within each transcript.
Adherence to the Lipinski rule of 5 for druggablity is presented as "Y”
for true or “N” for false. BlastX annotation and length of the assembled
transcript is also presented.

Additional file 4: Non-host, putative feline T. foetus genotype
druggable domains. Feline T. foetus non-host (i.e. unique to the
parasite) transcripts which presented a positive hit to known druggable
domains are presented, along with the EMBL DrugGAbility px number
(SCOP domain), the associated pdb code and information regarding the
druggable domain found. Transcript IDs are repeated in the table as
more than one domain could be associated within each transcript.
Adherence to the Lipinski rule of 5 for druggablity is presented as “Y” for
true or “N” for false. BlastX annotation and length of the assembled
transcript is also presented.
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