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The photo-protective role of vitamin D
in the microalga Emiliania huxleyi

Or Eliason,1 Sergey Malitsky,2 Irina Panizel,2 Ester Feldmesser,2 Ziv Porat,2 Martin Sperfeld,1 and Einat Segev1,3,*
SUMMARY

An essential interaction between sunlight and eukaryotes involves vitamin D production through expo-
sure to ultraviolet (UV) radiation. While extensively studied in vertebrates, the role of vitamin D in non-
animal eukaryotes like microalgae remains unclear. Here, we investigate the potential involvement of
vitamin D in the UV-triggered response of Emiliania huxleyi, a microalga inhabiting shallow ocean depths
that are exposed to UV. Our results show that E. huxleyi produces vitamin D2 and D3 in response to UV.
We further demonstrate that E. huxleyi responds to external administration of vitamin D at the transcrip-
tional level, regulating protectivemechanisms that are also responsive to UV.Our data reveal that vitamin
D addition enhances algal photosynthetic performance while reducing harmful reactive oxygen species
buildup. This study contributes to understanding the function of vitamin D in E. huxleyi and its role in
non-animal eukaryotes, as well as its potential importance in marine ecosystems.

INTRODUCTION

Life on Earth has a complex relationship with sunlight, relying on its energy for certain processes while simultaneously requiring protection

against its potential harmful effects. A molecular process that is tightly linked to sunlight is the formation of vitamin D following exposure to

ultraviolet-B (UV-B) radiation emitted from the sun. Vitamin D (calciferol) comprises a group of steroids that result from the photochemical

transformation of several sterol precursors by UV-B wavelengths.1 The most common vitamin D species known to occur naturally are vitamin

D2 and D3, originating from the conversion of ergosterol and 7-dehydrocholesterol, respectively.2,3

In mammals and other studied vertebrates, vitamin D functions as a hormone, involved in the regulation of a multitude of intracellular and

physiological processes vital for the organism survival and well-being.4 Vitamin D is pivotal in facilitating the absorption and homeostasis of

essential ions such as Ca2+ and PO4
3-,5,6 and vitaminD deficiency has been linked to a range of physiological disorders.7,8 Due to its key role in

human health, vitamin D has been the focus of biological and pharmaceutical research efforts, directed toward understanding the mecha-

nisms through which it operates in humans and human models.

However,mounting evidence suggests that vitaminD has been a constituent of eukaryotes long before the emergence of vertebrates. This

is evident not only in the identification of vitamin D in distant eukaryotic lineages like algae,9–11 plants,12 and fungi13–15 but also in the pres-

ervation of vitamin D-related biomarkers, likely from an algal source, in marine sediments dating back over 600 million years.16

Despite its widespread presence across diverse lineages, our understanding of the role of vitamin D in non-animal eukaryotes remains

limited. Non-animal eukaryotes, namely microalgae, have been suggested as potential sources of vitamin D for higher trophic levels in

the marine environment.17–19 However, the processes underlying vitamin D formation and regulation in microalgae remain largely

unexplored.20

UV-B radiation is crucial for vertebrate health due to its role in vitamin D formation, but it can also be detrimental. UV can cause direct

damage to biomolecules like DNA, leading to the generation of reactive oxygen species (ROS),21–23 and can ultimately result in cell death.24

Photosynthetic organisms, like algae, are particularly susceptible to UV damage, as their energy production hinges on exposure to solar ra-

diation.25,26 Although water acts as a UV-B filter,27 significant intensities can still penetrate the upper layers of the ocean,28 potentially impact-

ing organisms such as algae.29

Microalgae of the species Emiliania huxleyi, also named Gephyrocapsa huxleyi,30 are widely distributed in modern oceans and play

key roles in various biogeochemical cycles.31,32 These algae are known to flourish in high light environments at shallow depths of about

10–20 m,33 where exposure to UV wavelengths is likely. Earlier findings provided indications that E. huxleyi algae might synthesize vitamin

D. These reports highlighted the algal capacity to generate vitamin D2 upon exposure to UV-B irradiation,11 the algal cholesterol content,34,35

and the presence of a gene analogous to 7-dehydrocholesterol reductase (DHCR7) responsible for converting 7-dehydrocholesterol into

cholesterol.36 However, a comprehensive understanding of the cellular role of vitamin D in E. huxleyi, an environmentally key microalga, is

still lacking.
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Table 1. E. huxleyi algae produce vitamin D3 and D2

Compound UV Control

D2 4.32 G 1.39 * 0.09 G 0.01

D3 0.038 G 0.001 0.039 G 0.001

Ergosterol 83.01 G 28.96 71.76 G 9.53

7-dehydrocholesterol 0.24 G 0.04 * 0.16 G 0.02

Metabolic analysis of vitamin D species and precursors under UV and control conditions, using algal cultures at day 10 of growth. Values are averages of dry

weight (ng/mg)G standard deviation based on 4 biological replicates. Statistically significant differences (p < 0.05) between treatments are marked by *, calcu-

lated using two-sample t-test assuming equal variances.
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In this study, we explore the overlooked role of vitamin D in E. huxleyi. Specifically, we investigate vitamin D formation following exposure

to UV and the regulation of cellular mechanisms that operate in response to harmful radiation.

RESULTS

E. huxleyi algae produce vitamin D2 and D3

To investigate whether vitamin D is formed by E. huxleyi algae upon exposure to UV under our experimental settings, we cultivated algal

cultures in a chamber with environmentally relevant UV-B radiation levels (see STAR Methods). Metabolic analyses revealed the presence

of both D2 and D3 in irradiated algal cultures (Table 1). Our results show that D2 was significantly enriched in UV-exposed cultures, with levels

of approximately�4 ng/mg dry weight, while it was barely detected in cultures that were not exposed to UV. The D2 precursor ergosterol was

found in both UV-treated and control cultures. Lower amounts of vitamin D3 (�0.04 ng/mg dry weight) were detected in both UV-treated and

control cultures.

Importantly, while D2 detection was consistent across all analyzed UV-exposed samples, D3 was identified only in part of our experiments.

When D3 was detected, its precursor 7-dehydrocholesterol was detected as well. Inconsistent detection of D3 was previously reported in

plants and was attributed to the sensitivity of the analytical method used.37 Our many efforts to resolve the variable measurements of D3

were not successful (see detailed description of attempts in STARMethods). Collectively, our findings demonstrate that E. huxleyi algae pro-

duce D2 and D3, with increased levels of D2 following UV irradiation. These observations suggest a possible role for vitamin D in the algal

response toward UV.

E. huxleyi algae show a transcriptomic response to UV radiation

UV radiation is necessary for the formation of vitamin D2. In other organisms, once vitamin D is generated, it functions as a hormone that reg-

ulates various physiological processes.4 Therefore, we sought to explore the transcriptomic response of E. huxleyi algae to UV exposure,

seeking to elucidate cellular processes that may be related to vitamin D. We therefore analyzed the E. huxleyi transcriptome in cultures

that were grown under diurnal light conditions that included UV irradiation, in comparison to algal cultures that were protected from the

UV source. Cultures were sampled for RNA sequencing at three time points representing different growth phases (days 7, 10, and 13, see

Figure S1).

The transcriptomic analysis revealed differential expression of 374 genes between UV-exposed and control cultures (Table S1). Of these

genes, 172 were annotated with GO terms related to a known function or process. The annotated genes that were differentially expressed in

the transcriptome under UV exposure were associated with various cellular processes including intracellular signaling pathways and stress

response mechanisms. Notably, genes participating in the inositol 3-phosphate/calcium (IP3/Ca
2+) and the oxylipin signaling pathways

were differentially expressed (Table 2), both playing key roles in stress response mechanisms across different organisms.38–42

A substantial number of differentially expressed genes were involved in various stress responses, including DNA damage sensing and

repair, oxidative stress mitigation, protective pigment biosynthesis, and maintenance of the photosynthetic machinery. Interestingly, several

of the genes and pathways that were differentially expressed in E. huxleyi are known to be associated with UV exposure and vitamin D activity

in vertebrates. For instance, the IP3/Ca
2+ and oxylipin pathways are involved in UV stress response in mammals,43,44 and vitamin D is involved

in the regulation of these pathways.45–49 In mammals, vitamin D also plays a role in oxidative stress mitigation, DNA repair, and the regulation

of various enzymes related to stress responses including heme oxygenase, glutathione peroxidase, and tyrosinase.50–54 Given that vitamin D

regulates stress response mechanisms in mammals, and similar mechanisms are regulated by UV in E. huxleyi, vitamin D could potentially be

involved in algal stress responses.

To explore the temporal dynamics of the algal response, specifically whether the algal transcriptomic response is elicited immediately

upon exposure to UV, algal cultures were exposed to UV for a duration of 1 h at day 10 of growth (Figures S2 and S3). RNA was extracted

and several genes that exhibited upregulation under diurnal UV conditions in our previous RNA-seq analysis were subsequently analyzed

by RT-qPCR. The investigated genes showed significant upregulation. The differences in magnitude of differential expression observed

between the two transcriptomic assays are possibly the result of prolonged versus brief UV exposure. Taken together, algal cells exhibit a

transcriptomic response following UV irradiation, including the activation of various stress response mechanisms. At least several of these

mechanisms are immediately activated following a brief exposure to UV.
2 iScience 27, 109884, June 21, 2024



Table 2. Differential expression (DE) of genes associated with signaling and stress response mechanisms in E. huxleyi that were upregulated under UV

Gene ID Putative protein or domain

DE

Protein functiond. 7 d. 10 d. 13

Genes related to intracellular signaling

G10384 Lipoxygenase domain �0.46 �1.27 2.04 Oxylipin biosynthesis

G14992 Prostaglandin F(2-alpha) synthase 0.38 0.22 1.75 Oxylipin biosynthesis

G12340 Cytosolic phospholipase A2 domain �0.51 �0.82 1.70 Oxylipin biosynthesis; Intracellular signaling

G14502 Ca-binding domain �0.57 �1.12 1.67 Shares similarity to A. thaliana calmodulin-like

protein; Intracellular signaling.

G21784 Phosphoinositide phospholipase C �0.52 �0.62 1.50 Ip3 signaling initiation; cytosolic calcium regulation

G15496 Phosphoinositide 5-phosphatase 0.54 0.74 1.46 IP3 signaling; cytosolic calcium regulation

G25467 Steroid hydroxylase 1.15 1.49 1.16 Shares similarity to rat cyp1a2 with a suggested

25-cholesterol hydroxylase activity

G1648 Mannosyl phosphorylinositol ceramide synthase �0.37 �0.21 0.98 Potentially involved in Calcium signaling

G19702 Phosphatidylinositol 3-kinase �0.17 0.00 0.95 IP3 signaling

G27192 Calcineurin B-like interacting protein kinase �0.34 1.25 �0.3 Involved in Ca-mediated signaling;

Abiotic stress response

Genes related to stress response

G27084 Deoxyribodipyrimidine photolyase 0.93 1.9 4.29 UV-damage DNA repair

G647 3-dehydroquinate synthase domain �0.31 5.33 4.07 Shikimate pathway; potentially involved in

the production of UV-protective compounds

G22973 Sirtuin 2 1.16 0.89 1.49 DNA transcription and repair

G16746 Tyrosinase Cu-binding domain �0.54 �1.09 1.46 Involved in synthesis of protective pigments

and antioxidants

G18590 Light-harvesting protein 0.51 1.22 1.13 Shares similarity to C. reinhardtii LHCSR;

Alleviates photo-oxidative stress

G12503 Poly ADP-ribose polymerase Zn-finger domain 0.62 1.13 1.08 DNA damage sensor

G18115 Deoxyribodipyrimidine photolyase 0.24 0.25 0.99 UV-damage DNA repair

G6690 Glutathione peroxidase 0.05 0.32 0.98 Oxidative stress mitigation

G25108 Chalcone synthase 2 �0.36 �0.43 0.82 Potentially involved in UV protection

G2876 DNA-(apurinic or apyrimidinic site) lyase 0.56 0.52 0.81 DNA repair

G26038 ATP-dependent DNA helicase �0.34 �0.76 0.79 DNA stability and repair

G8907 (6-4)DNA photolyase 0.07 0.43 0.78 UV-damage DNA repair

G2511 Heme oxygenase 0.37 0.96 0.67 Oxidative stress mitigation

G16133 Formamidopyrimidine-DNA glycosylase 0.49 0.89 0.53 DNA repair

G832 Protochlorophyllide reductase 1.23 �0.41 0.2 Chlorophyll biosynthesis

G22197 50-tyrosyl DNA phosphodiesterase 0.83 0.22 0.10 DNA repair

DE values calculated according to the transcriptomic analysis are given for days 7, 10 and 13 of growth (designated d. 7, d. 10 and d. 13). Genes are ordered

according to DE values at day 13. Full DE and NCBI accession data are presented in Table S1 and Data S1.
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External application of vitamin D impacts algal traits similarly to UV irradiation

To study the role of vitamin D in the algal response toward UV, we wished to manipulate the algal exposure to vitamin D. Exogenous appli-

cation of vitamin D is a common practice in mammalian cells.53,55,56 However, no knowledge exists on whether single-celled algae respond to

this treatment. Therefore, to establish a vitamin D treatment in our algal cultures, we screened a range of vitamin D concentrations and

measured the effect on algal growth. An impact on algal growth would suggest that algal cells are affected by the exogenous addition of

vitamin D.

Growth inhibition (p<0.05) was observed under treatment of 1 mMofD2 and under the combination of 0.5 mMD2 and 0.5 mMD3 (Figure S2),

suggesting that algae are affected by these treatments. The combination of D2 and D3 resulted in stronger growth inhibition compared to D2

alone (p = 0.00013). Importantly, under UV irradiation, algal growth inhibition was previously observed,57,58 though our initial cultivation
iScience 27, 109884, June 21, 2024 3



Figure 1. Vitamin D treatment leads to similar cellular traits as exposure to UV

(A) Cell area, (B) chlorophyll area, (C) average number of chloroplasts, and (D) cellular chlorophyll a content at day 10 of growth. Cultures were either treated with

both D2 + D3 (0.5 mMof each) or DMSO (untreated) as control. Statistical significance of treated cultures compared to control conditions was calculated based on

three biological replicates for (A–C) and six biological replicates for (D) using two-tailed t test assuming equal variances. One, two or three asterisks indicate p <

0.05, p < 0.01, and p < 0.001, respectively. Boxplots show the average and the difference between maximum and minimum value.
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experiments did not demonstrate similar inhibition (Figure S1). We therefore adjusted our experimental setup to recapitulate the reported

growth inhibition and indeed observed a similar impact when the culture volume was reduced from 50 to 20 mL (Figure S2C), potentially due

to shorter passage of UV in the medium.

We further investigated whether additional algal traits are similarly affected by UV irradiation and vitamin D treatment. Therefore, we

examined cellular parameters that have been previously reported to be impacted by UV, including cell size, chloroplast size, and chloro-

phyll content.57,59 Our findings show that when algae are cultivated under diurnal UV irradiation or are supplemented with a combination

of D2 + D3 (0.5 mM of each), similar changes in algal traits are observed (Figures 1 and S4). These changes include an increase in cell area,

overall chloroplasts area, and chlorophyll a content. Furthermore, both treatments have resulted in a significant increase of the average

number of chloroplasts per cell. An increase in chloroplast number, coupled with cell enlargement, is indicative of cell-cycle arrest and

is typical of UV-induced stress.57 Additionally, a high correlation between cell and overall chloroplasts area was observed across biological

replicates of control, vitamin D, and UV treatments (Pearson correlation coefficient of r = 0.99, p = 4 * 10�7). These findings are in agree-

ment with previous reports on UV effects in E. huxleyi and other microalgal species.57,59 Importantly, other environmental stresses such as

high light and nutrient starvation can also inhibit algal growth.60,61 However, the impact of most environmental stresses on algal and plant

physiology is reduction in chloroplasts to cell size ratio and in chlorophyll content,62,63 contrary to the uniformity between treatments

observed here (Figures 1 and S4). Thus, both UV irradiation and exogenous addition of D2 + D3 affect algal growth and several cellular

traits in a similar manner.
4 iScience 27, 109884, June 21, 2024



Figure 2. Combined treatment of vitamin D2 and D3 upregulates UV-responsive genes

RT-qPCR analysis of genes following 1 h of UV exposure or vitamin D treatments. Top title denotes gene products. In brackets: gene identifier in E. huxleyi

CCMP326664 and matching gene transcript in the E. huxleyi CCMP1516 reference genome.65 Upregulation of G18590 by vitamin D was observed for only

two out of three replicates. Statistical significance of treated cultures compared to control conditions was calculated using two-tailed t test assuming equal

variances. One, two or three asterisks indicate p < 0.05, p < 0.01, and p < 0.001, respectively.
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Vitamin D upregulates expression of UV-regulated genes

After implementing a vitamin D treatment, we could examine whether vitamin D drives patterns of gene expression that are comparable to

those observed under UV irradiation. Similar expression patterns would suggest that vitamin D regulates a similar response to the response

activated by UV. Therefore, we supplemented algal cultures with vitamin D and monitored the expression of UV-responsive genes via

RT-qPCR.

Algal cultures were treated with 1 mMof D2 or D3, or with a combination of both (0.5 mMof each). Control cultures were supplemented with

DMSO and exposed to either normal growth conditions or to UV radiation for 1 h. RNA was collected from all cultures 1 h post-treatment.

Out of 12 monitored genes, our analyses revealed four genes that exhibit upregulated expression upon vitamin D addition and under UV

irradiation (Figure 2). Notably, in vitamin D-treated cultures, the upregulation was only observed following addition of both D2 and D3. The

four upregulated genes encode for light-harvesting complex stress-related protein (LHCSR and G18590), heme oxygenase (G2511), steroid

hydroxylase (G25467), and a Ca-binding protein (G26534).

Considering the potential role of these four genes in a vitamin D-mediated response to UV, we searched the literature for their func-

tions. Both LHCSR and heme oxygenase are proteins related to the algal stress response. The LHCSR gene is known to exhibit increased

expression in moss and green algae under UV-B and high-light stress, promoting excess energy dissipation in the light-harvesting com-

plex, thereby reducing photo-oxidative stress.66–68 Heme oxygenases are enzymes involved in the formation of antioxidants in plants and

animals, with known upregulated expression in response to UV-B and other ROS-forming stressors.69–71 Notably, UV-B radiation is a funda-

mental component of high light environments. As vitamin D is produced under UV radiation (Table 1) and triggers the upregulation of

oxidative and photo-oxidative stress mitigation pathways, it is possible that vitamin D is part of a cellular response toward harmful light

intensities or radiation.

Vitamin D treatment improves the algal photosynthetic performance following exposure to saturating light

To investigate the involvement of vitamin D in the algal response toward harmful light intensities, we tested the impact of D2 + D3 (0.5 mM of

each) on algal photosynthetic performance under excess light. Algae were subjected to two light regimes: first, following a 5-min dark-incu-

bation period, algal cultures were exposed to saturating light intensities (1,150 mmol photons m�2 s�1) and their photosynthetic parameters

were evaluated. Additionally, we subjected algae to fluctuating light, common to the marine environment.72 To this end, algal cultures were

initially exposed to high light intensities (1,000 mmol photonsm�2 s�1) for 2 h before undergoing a 5-min dark-incubation period, followedby a

second exposure to high light. Photosynthetic parameters were evaluated during the second saturating light period.

Under these two light regimes, photosynthetic performance was assessed using pulse amplitude modulated (PAM) fluorometry,

measuring nonphotochemical chlorophyll fluorescence quenching (NPQ) as a proxy for the ability of algae to dissipate excess absorbed light

energy into heat.73 In addition, photosystem II (PSII) quantum yield (FPSII) andmaximal PSII quantum yield (Fv/Fm) weremeasured as indicators

of photosynthetic efficiency.74

Cultures subjected to the fluctuating light regime displayed lower quantum yields indicative of photoinhibition,75 and decreased NPQ

development, when compared to cultures that experienced a single exposure (Figures 3A–3C). The latter observation suggests that the ma-

jority of light-dissipating capacity had already been initiated during the first saturating light period. Under these fluctuating conditions, addi-

tion of vitamin D significantly increased the quantum yields and NPQ observed during the second saturating light period (Figures 3A–3C).

These findings suggest that the vitamin D treatment facilitated a quicker relaxation of NPQ and PSII reaction centers after the initial exposure

period to saturating light, thereby preparing the cell for subsequent exposure. Indeed, vitamin D treatment did not have a noticeable effect

on algal cultures exposed to a single saturating-light period where relaxation of NPQ and PSII reaction centers was not required. These ob-

servations suggest that vitamin D plays a role in algal physiology under harmful light, particularly under fluctuating light levels.
iScience 27, 109884, June 21, 2024 5



Figure 3. Vitamin D treatment improves the algal photosynthetic performance and alleviates oxidative stress following exposure to excess light

(A) Non photochemical quenching (NPQ), (B) Fv/Fm values, and (C) FPSII values of vitamin D-treated and control algal cultures. Cultures were either pre-exposed

to saturating light of 1,000 mmol photons m�2 s�1 followed by dark incubation and a second exposure during the PAM analysis (‘‘pre-exposure’’), or not pre-

exposed (‘‘single exposure’’).

(D) Fluorescence values of vitamin D-treated and control algal cultures stained with the intracellular reactive oxygen species (ROS) probe H2DCF-DA. Cultures

were exposed to regular light or excess light (130 or 1,000 mmol photons m�2 s�1, respectively) intensities for 3 h. Algae were cultivated in 50 mL and sampled for

analysis at day 10 of growth. Statistically significant values (p < 0.05) of vitamin D-treated cultures compared to control conditions are marked by *, calculated

based on three biological replicates using two-tailed paired t test for (A–C) and one-tailed paired t test for (D). Boxplots show the average and the difference

between maximum and minimum value.
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Interestingly, previous reports indicated that UV irradiation led to an increase in NPQ in E. huxleyi.58,76 However, in our experiments, cul-

tures subjected to UV did not exhibit a comparable effect (Figure S5).

Vitamin D alleviates ROS accumulation under saturating light

Under conditions of saturating light, photosynthetic organisms are likely to experience photo-oxidative stress,77 resulting in the production of

detrimental ROS. Our RT-qPCR analysis detected the upregulation of two ROS mitigating mechanisms following treatment with vitamin D

(Figure 2). Onemechanism involves the LHCSRprotein and operates by reducing ROS formation in the light-harvesting complex under excess

light by means of NPQ (G18590), and the other mechanism involves the enzyme heme oxygenase that produces antioxidants (G2511).

To further explore the possible role of vitamin D in regulating cellular ROS levels, we examined whether the addition of vitamin D to algal

cultures under saturating light leads to reduced ROS levels in algae. We therefore subjected algal cultures to saturating light (1,000 mmol

photonsm�2 s�1) and assessed the formation of intracellular ROS using the cell-permeable fluorescent probe 2,7-Dichlorodihydrofluorescein

diacetate (H2DCF-DA). The tested algal cultures were either treated with D2 + D3 (0.5 mM of each) or supplemented with DMSO (untreated).

Additionally, control cultures were exposed to regular light intensities (130 mmol photonsm�2 s�1) and subjected to the sameprocedures. Our

findings revealed a significant decrease in intracellular ROS formation in algae that were treated with vitamin D and exposed to saturating

light, compared with untreated algae under the same light regime (Figure 3D). The reduction in ROS formation was detected after 3 h of
6 iScience 27, 109884, June 21, 2024
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incubation under saturating light. These findings provide additional support for the involvement of vitamin D in the algal response to high

light conditions, underscoring its role in alleviating oxidative stress induced by ROS.

DISCUSSION

Vitamin D alleviates algal photo-oxidative stress

The current study reveals a photo-protective role of vitamin D in a globally abundant marinemicroalgal species. Our findings suggest that the

photochemical transformation of vitamin D serves as an indicator of exposure to harmful radiation, consequently enhancing the algal

response to excess-light stress (Figure S6). This enhanced response is manifested by a quicker relaxation of NPQmechanisms and PSII reac-

tion centers under fluctuating light, along with an overall reduction in cellular ROS. Our data suggest that a significant aspect of the response

triggered by vitamin D is aimed at mitigating photo-oxidative stress.

Vitamin D may serve as an algal light indicator

Vitamin D has the potential to serve as a sensitive light indicator in phytoplankton, particularly under dynamic light environments. The ocean

surfacemixed layer can extend depths of over 200m,78 and phytoplankton cells are transported vertically in this layer.79 This vertical transport

can lead to rapid changes in light intensity within a matter of hours.33,80 In such a dynamic scenario, as cells ascend, they experience an in-

crease in UV-B and subsequently may generate vitamin D. The specificity of the photochemical conversion of vitamin D under UV-B, coupled

with its relatively high reactivity to these wavelengths,81 suggests that it could function as a sensitive proxy for assessing exposure to UV-B

radiation, high light levels, or fluctuations in light intensity.

Limitations of exogenous vitamin D addition

Exogenous administration of vitamin D is common in mammalian cell research, typically by dissolving it in an organic solvent and adding the

mixture into the supernatant of cell cultures.53,55,56 Mammalian cells regularly absorb vitamin D from the extracellular matrix and harbor

vitamin D receptors in their plasma membrane.82 The extent of exogenous vitamin D absorption by E. huxleyi, its stability inside the cell,

and the specific membranes or organelles it may permeate, are currently unknown. Despite these challenges, our observations reveal a

measurable response of E. huxleyi to exogenous vitamin D, leading to a beneficial impact such as reduced ROS under saturating-light stress

(Figure 3D). Furthermore, there appears to be a synergistic effect of combinedD2 andD3 on growth and gene expression, whichmerits further

exploration. Furthermore, among the genes displaying overexpression under both UV and vitamin D treatments, a distinctly greater differ-

ential expression was evident in cultures subjected to UV (Figure 2: G18590, G2511, andG25467). The stronger response to UV, as opposed to

vitamin D, might be due to the exogenous administration procedure. Though, these differences might stem from a broader cellular response

to UV radiation, triggering additional regulatory mechanisms that are not specifically responsive to vitamin D alone.

UV is an important environmental factor impacting algal physiology

When studying algal physiology, the significance of UV as an influential environmental factor should be acknowledged. In experimental setups

aimed at studying algal physiology and ecology, UV radiation has traditionally been excluded due to its detrimental effects. However, in the

environment, algae regularly encounter low levels of UV. While the omission of UV simplifies experimental conditions, our study unveils the

influence of vitamin D, a product of UV-B exposure, on the response of E. huxleyi to environmental stress. These findings point to the poten-

tially advantageous role of UV for algae facing excess-light stress and underscore the significance of studying algal physiology under envi-

ronmentally relevant conditions.

Vitamin D in vertebrates versus algae

Our study offers comparative insights on the role of vitamin D in vertebrates and in E. huxleyi algae. The extensive knowledge on vitamin D

biology primarily originates from research on humans and other vertebrates. Transposing this knowledge to E. huxleyi presents challenges

due to significant phylogenetic and physiological differences. Nevertheless, parallels can be drawn. Vitamin D was shown to enhance cellular

defense in human andmice keratinocytes against UV-induced oxidative stress and DNA damage.53,54 Vitamin D has also been shown to miti-

gate oxidative stress in rat liver and intestine,50,83 partly through the upregulation of heme oxygenase, a response mirrored in vitamin

D-treated algal cells.

The possible ancient origin of vitamin D

Vitamin D synthesis likely has ancient origins, given its presence across various lineages of eukaryotes.9–15 Sterols are a defining feature of

eukaryotes, and the enzymatic pathways leading to the production of ergosterol and 7-dehydrocholesterol, which are precursor molecules

to D2 and D3 forms of vitamin D, may have existed in the last eukaryotic common ancestor (LECA).84,85 Previous studies suggested the ancient

evolutionary origins of vitamin D,20,86 but the understanding of its role beyond the animal kingdom remained limited.

Eukaryotes likely evolved near oxygenic photoautotrophs in sunlit ocean surfaces due to the absence of oxygen in the deep ocean during

their emergence.87 Given the antioxidant properties of vitamin D and its evolutionary ties to oxidative agents like UV-B and oxygen, it raises

the question of whether vitamin D evolved in early eukaryotes to sense oxidative environments. Similar roles have been proposed for sterols,
iScience 27, 109884, June 21, 2024 7
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particularly cholesterol, in response to environmental oxygen levels.88,89 Thus, the unique reactivity of vitamin D to solar radiation may have

played a role in the early stages of life on Earth.

Limitations of the study

UV spectrum: UV radiation, particularly UV-B, is essential for the synthesis of vitaminD in vivo. TheUV-light source employed in our study emits

a spectrum including UV-A, UV-B, and UV-C. Therefore, we are not able to determine the specific influence of UV-B on the transcriptomic

profile of E. huxleyi, as well as on potential pathways associated with vitamin D synthesis. Rather, our results pertain to the broader spectrum

of UV.

External vitamin D administration: In this study, we demonstrate the physiological and photo-protective effects of exogenous administra-

tion of vitamin D to cultures of E. huxleyi. A comprehensive analysis of the microalgal capability to uptake vitamin D and metabolize it would

contribute to this newly established protocol. Furthermore, a transcriptomic analysis of E. huxleyi under exogenous vitamin D administration

could deepen our understanding of the interplay between UV exposure, vitamin D synthesis, and the algal physiological response. Such an

analysis may also uncover biological functions related to vitamin D that were not explored in our study.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Cholecalciferol (Vitamin D3) Cayman Chemical 11792

Ergocalciferol (Vitamin D2) Cayman Chemical 11791

Ergosterol Cayman Chemical 19850

7-dehydrocholesterol Sigma-Aldrich 30800

Vitamin D2 (d3) IsoSciences s5014–0.1

4-Phenyl-1,2,4-triazoline-3,5-dione Sigma-Aldrich 42579

H2DCFDA Thermo Fisher D399

Critical commercial assays

ISOLATE II RNA Mini Kit Meridian Bioscience BIO-52072

TURBO DNase Thermo Fisher AM2238

RNA Clean & Concentrator-5 Zymo Research R1013

SuperScript IV Reverse Transcriptase Thermo Fisher 18090050

Deposited data

Transcriptomics data NCBI Gene Expression Omnibus (GEO) GSE243677

Experimental models: Organisms/strains

Emiliania huxleyi CCMP3266 Bigelow Laboratory for Ocean Sciences CCMP3266
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Einat Segev (Einat.

Segev@weizmann.ac.il).

Materials availability

RT-qPCR primer sequences used in this study are given in Table S2.

Data and code availability

� Transcriptomics data have been deposited inNCBI’s Gene ExpressionOmnibus and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.
� No code was generated in this study.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Emiliania huxleyi CCMP3266

Microalgal species used in this study is Emiliania huxleyi strain CCMP3266, purchased from the National Center for Marine Algae and Micro-

biota (Bigelow Laboratory for Ocean Sciences, Maine, USA). Algae were grown in artificial sea water according to Goyet and Poisson90 and

supplemented with L1 medium according to Guillard and Hargraves,91 with the exception that Na2SiO3 was omitted following the cultivation

recommendations for this strain. Algal cultures were grown inside borosilicate Erlenmeyer flasks placed in a growth chamber at 18�C under a

light/dark cycle of 16/8 h. Growth light intensity during the light period was 130 mmol photonsm�2 s�1. Core cultures were routinely refreshed

by inoculating a 10 mL of a two-weeks old algal culture into 20 mL fresh medium in a 100 mL Erlenmeyer flask. The axenic status of the algal

culture was validated periodically under the microscope and by plating the algal culture on a marine broth (MB) agar plate to monitor for

bacterial contamination.
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Experimental growth conditions and monitoring

Algal cultures were grown standing in borosilicate Erlenmeyer flasks with an initial inoculum of 330 cells/ml. Cultures used for metabolo-

mics, transcriptomic, RT-qPCR, PAM and ROS accumulation analysis were grown in 50 mL medium inside 250 mL borosilicate Erlenmeyer

flasks. Cultures used for growth analysis under vitamin D treatments, ImageStream flow cytometry and chlorophyll measurements were

grown in 20 mL medium inside 100 mL borosilicate Erlenmeyer flasks. All experiments were comprised of at least 3 biological replicates

per treatment.

Diurnal UV irradiation during the light period was achieved by placing a UV-emitting light source (Exo Terra Reptile UVB150 25W, Hagen,

Montreal, Canada) inside the algal growth chamber, at a distance of 20 cm from the culturing flasks. UV intensities are given in the table below,

measured using ALMEMO 2470 data logger equipped with FLA 623 UV-A, UV-B and UV-C probes (Ahlborn, Budapest, Hungary).
UV radiation intensity used in the study

UV type Measured range (nm) Intensity (w/m2)

UV-A 310-400 (355) 0.50

UV-B 265-315 (297) 0.07

UV-C 220-280 (265) 0.03

Intensities of the different UV ranges weremeasured byALMEMO2470 data logger equippedwith FLA 623 probes for UV-A, UV-B andUV-C. The brackets next to

the measured range designate the maximum sensitivity of the probe.
UV radiation intensity wasmeasured fromwithin the Erlenmeyer flask in dry conditions, therefore the reported intensities take into account

attenuation by the borosilicate boundary. The wavelength spectrum emitted by the UV light source included a small fraction of visible light

that did not alter the overall readings of photosynthetic light intensity inside the growth chamber, measured with MQ-500 quantum meter

(Apogee instruments, Logan, UT, USA). The UV-B intensity used in this study was selected to emulate environmental UV-B intensities encoun-

tered at the ocean surface in some locations.29 The UV light-source was operating daily for 14 h in parallel to the light period, starting 1 h after

illumination started, and ending 1 h before illumination ended. This irradiation regime aimed to mimic a simplified day cycle including dawn

and dusk periods.

Vitamin D treatment was conducted by dissolving vitamin D2 or D3 (Sigma-Aldrich, Burlington, Massachusetts, USA) in DMSO. The final

DMSO concentration in cultures, including controls, was 0.1%.

Algal growth was monitored by a CellStream CS-100496 flow cytometer (Merck, Darmstadt, Germany) using a 561 nm laser and plotting

the chlorophyll fluorescence at 702/87 nm against forward scatter.
Vitamin D analysis

Metabolic analysis was conducted following Oberson.92 Standards for D2, D3, ergosterol (Cayman Chemical) and 7-dehydrocholesterol

(Sigma-Aldrich) were purchased in dry and dissolved in CHCl3. Standard solutions of the different metabolites were combined into a single

solution and diluted to create a standard curve. All final standards and samples were spiked with 50 ng of vitamin D2-d3 (IsoSciences, Ambler,

Pennsylvania, USA) serving as an internal standard. Algal samples were centrifuged, lyophilized and stored in �80�C until analysis. Saponi-

fication was achieved by resuspending samples in 108 mL 55% KOH, 192 mL ethanol, and 60 mL of 9%NaCl and 7.4% ascorbic acid, followed by

homogenization and stirring at room temperature for 18 h. Samples were then supplemented with 40 mL 10% NaCl and 300 mL of 20% ethyl

acetate in heptane, vortexed extensively and centrifuged for 30 min. The upper phase was collected, and the process was repeated twice.

Samples were evaporated, dissolved in 200 mL of 0.5% isopropanol in hexane and sonicated. Strata SI-silica 55 mm 70 A columns (Phenom-

enex, Torrance, California, USA) were used for solid phase extraction and were pre-conditioned with 1 mL of 50% CHCl3 in isopropanol, fol-

lowedby twowasheswith 1mLof hexane. Sampleswere then loadedonto the columns andwashedwith 0.5mLof 0.5% isopropanol in hexane

which were discarded and washed again with 2.5 mL of 2.5% isopropanol in hexane which were collected. Samples were evaporated and

dissolved in 200 mL of PTAD in acetonitrile, sonicated, stirred at room temperature for 2 h, centrifuged for 10 min and transferred into LC-

MS vials. Samples were protected from light during the extraction process.

Due to the inconsistency in identification of D3 in algal samples, several technical adaptations regarding algal growth and sample collec-

tion were implemented and evaluated. To examine whether inconsistencies arise due to rapid D3 enzymatic degradation, algal cultures were

immediately placed on ice, centrifuged in a cooled, 4�C centrifuge, and the supernatant quickly discarded and replacedwith 50%methanol in

DDW. The samples were then plunged into liquid nitrogen and stored in �80�C. Later, samples were thawed, evaporated in vacuum to re-

move the methanol, lyophilized and proceeded to vitamin D extraction. Additional modifications included increasing the intensity of UV ra-

diation during algal growth, increasing sample size by combining separate cultures, and using F/2 trace metal mix instead of L1 trace metals.

These attempts did not improve the reproducibility of D3 detection.

Vitamin D was measured using an UPC2-ESI-MS/MS equipped with Acquity UPC2 system (Waters, Milford, Massachusetts, USA). The MS

detector (Waters TQ-XS) was equipped with an ESI source. The measurements were performed in the positive ionization mode using MRM.

The source andde-solvation temperatures weremaintained at 150�Cand 500�C, respectively. The capillary voltagewas set to 1.5 kV.Nitrogen
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was used as the de-solvation gas and cone gas at a flow rate of 700 L h�1 and 150 L h�1, respectively. Ionization parameters of ergosterol,

7-dehydrocholesterol, D2 and D3 were adjusted by direct infusion of standards. Ionization parameters for other compounds were taken

from Oberson.92

UPC2 system: mobile phase A consisted of CO2, and mobile phase B consisted of 98% MeOH, 2% DDW and 10mM ammonium formate.

Make up solvent was 1% formic acid in 90% MeOH and 10% DDW at a flow rate of 0.4 mL min�1. The column (WATERS Acquity CSH

FluoroPhenyl 1.7 mm, 3.0 3 100 mm, cat. 186006573) was maintained at 45�C, injection volume was 3 mL. At the first 0.5 min of injection,

99.5% of mobile phase B, and 0.5% of mobile phase A were run at flow rate of 2.0 mL min�1. Then, mobile phase A was gradually reduced

to 92% at 6 min, and further decreased to 70% at a flow rate of 1.75 mLmin�1 at 6.5 min. This composition of mobile phase and flow rate were

kept until 7 min, followed by increase in mobile phase A to 99.5% at 7.8 min, and then increase in flow rate to 2 mL min�1 at 8.5 min, and

running at those conditions until 9 min.
RNA extraction

Algal cultures were harvested for RNA extraction by centrifugation at 4000 rpm for 5 min at 18�C. RNA was extracted using the Isolate II RNA

mini kit (Meridian Bioscience, London, UK) according to manufacturer instructions. Cells were ruptured in RLT buffer containing 1% b-mer-

capto-ethanol by bead beating for 5 min at 30 mHz. RNA was then treated with 3 mL Turbo DNAse (ThermoFisher, Waltham, MA, USA) in

a 50 mL reaction volume, followed by a cleaning step using RNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA, USA) according

to manufacturer instructions. RNA yields were �200 mg/mL or higher, and RNA integrity was assessed by TapeStation 4150 (Agilent, Santa

Clara, CA, USA). RNA was used for generating transcriptomic data and RT-qPCR analysis.
Transcriptomic analysis

Transcriptomic data was generated using theMARS-seq library preparation protocol,93 and analyzed with the UTAP pipeline.94 As part of the

pipeline, read counts for each gene were normalized using the DESeq2’s median of ratios method.95 Differential expression (DE) between

treatments was calculated using the following thresholds: mean number of normalized reads across all samples R5, adjusted p-value %

0.05, Log2 fold change % �0.7 or R0.7. The previously generated E. huxleyi CCMP3226 synthetic genome (sGenome) and annotation file

was used as reference for the UTAP pipeline.64 Briefly, the E. huxleyiCCMP3226 sGenomewas generated by de novo transcriptome assembly

of short-reads and long-reads. The assembled E. huxleyi CCMP3226 transcripts were then mapped to the E. huxleyi CCMP1516 reference

genome65 to define gene loci. For the current work, functional gene annotations were manually curated by identifying open reading frames

in assembled transcripts using theORF finder tool (www.ncbi.nlm.nih.gov/orffinder; transcript accessions are given in Table S1) and analyzing

protein domains in the translated sequences using InterProScan 5.96 Additionally, transcript sequences were searched against the SwissProt

database using NCBI blastx,97 and the hit with the highest E-value taken. Specifically, the gene loci analyzed using blastx were G18590,

sharing highest similarity to Chlamydomonas reinhardtii LHCSR (Uniprot: P93664.1) with E-value of 1e-26 and nucleotide identity of 57%;

G25467, sharing highest similarity to rat cyp1a2 (Uniprot: P04799.2) with E-value of 1e-31 and nucleotide identity of 27%;G14502, sharing high-

est similarity to Arabidopsis thalianaCalmodulin-like protein 12 (Uniprot: P25071.3) with E-value of 6-e5 and nucleotide identity of 22.6%. The

putative Ca-binding activity of G26534 was assessed by identifying bona fide Ca-binding domains using InterProScan 5. Specifically, we per-

formed blastx97 and focused on the highest hit that contained an identifiable protein domain using InterProScan 596, resulting in the identi-

fication of an EF-hand family protein inChrysochromulina tobinii that harbors three EF-handdomain pairs (NCBI: KOO34173.1, with E-value of

8e-13 and nucleotide identity of 32%).
Imaging flow cytometry and pigment analysis

For imaging flow cytometry, cultures were grown in 20 mL medium and either exposed to UV daily or treated with vitamin D2 and D3

(0.5 mM of each) at day 4 of growth. Control and UV-exposed cultures were treated with equal amounts of DMSO. Cultures were

analyzed by imaging flow cytometry (ImageStreamX, Amnis, Cytek Biosciences, Fremont, California, USA). Side scatter was deter-

mined using 785 nm laser (3.75mW), chlorophyll fluorescence using a 405 nm laser with collection at 640–745 nm (channel 11),

and brightfield using channels 1 and 9 of the device. At least 2600 cells were collected from each sample. Data were analyzed using

image analysis software (IDEAS 6.3; Amnis). Cells were gated for single cells using the area and aspect-ratio features on the bright-

field channel, and for focused cells using the gradient root-mean-square (Gradient RMS)98 and Contrast features. Cells were further

gated for chlorophyll positive using the area and intensity of the chlorophyll channel. To calculate cell area, the Object mask was

used (delineates the cell morphology) on the brightfield image. To calculate chlorophyll area, the Morphology mask was created

on the chlorophyll channel. Calculated cell and chlorophyll areas describe the area fraction out of a 2D image, and do not depict

the total cell or chloroplast surface areas. The number of chloroplasts was calculated using the Spot count feature on the Peak

mask (value set at 1.1), on the chlorophyll channel.

Chlorophyll awasmeasured by filtering at least�4 * 106 cells from each culture on aWhatmann GF/C filter and extraction with 3 mLmeth-

anol overnight at 4�C. Samples where centrifuged for 10min, 1mLof extract was placed in a polystyrene cuvette and its absorbancemeasured

by Ultrospec 2100 pro (Biochrom, Cambridge, UK). Chlorophyll a concentration as mg/ml wasmeasured by [Chl a] = (16.29 *E665) – (8.54 *E652),

where E665 and E652 are the absorption at 665 and 652 nm, respectively, after deduction of the absorption at 750 nm.99 The concentration per

mL was further multiplied by the extraction volume and divided by the total number of cells filtered.
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Quantitative real-time PCR (RT-qPCR)

Algal cultures were treated with 1 mM of vitamin D species as described earlier. UV-treated cultures were exposed to the same UV intensities

as described previously and treated with equal amounts of DMSO. All treatments lasted 1 h. Equal concentrations of RNA taken from 10 days

old cultures were utilized for cDNA synthesis using Superscript IV (ThermoFisher), according tomanufacturer instructions. qPCRwas conduct-

ed in 384 well plates using SensiFAST SYBR Lo-ROX Kit (Meridian Bioscience, Cincinnati, OH, USA) in a QuantStudio 5 qPCR cycler (Applied

Biosystems, Foster City, CA, USA). The qPCR program ran according to enzyme requirements for 40 cycles. Samples were normalized using

three housekeeping genes: alpha-tubulin, beta-tubulin and ribosomal protein l13 (rpl13). DNA contamination was assessed by applying the

same program on RNA samples that were not reverse transcribed (omitting the Superscript IV enzyme in the reverse transcription reaction

mix). Gene expression ratios were analyzed according to Vandesompele100 by geometric averaging of housekeeping genes. Relative gene

expression levels were compared to control samples. Primer efficiencies were determined using the QuantStudio 5 software, by qPCR ampli-

fication of serially diluted cDNA. All primers had a measured efficiency between 80 and 120%. Primer sequences are given in Table S2.
Pulse amplitude-modulated fluorometry (PAM) analyses

For PAManalyses, algal cultures at day 10 of growth were divided into four subcultures (two pairs) that were subjected to different treatments.

Under the ‘single exposure’ assay, one subculture was treated with D2 +D3 (0.5 mMof each) and the second one treated with an equal amount

of DMSO (control). Following 2 h, the two subcultures were incubated in the dark for 5 min and analyzed using WATER-PAM II (Heinz Walz

GmbH, Effeltrich, Germany), applying saturating pulses of 0.9 s, 6000 mmol photons m�2 s�1, and actinic light intensity of 1150 mmol photons

m�2 s�1. Under the ‘pre exposure’ assay, the second pair of subcultures was subjected to the same vitamin D and control treatments, and

placed in the growth chamber under saturating light intensities of 1000 mmol photonsm�2 s�1 usingwhite LED lamps. Following 2 h of vitamin

D and saturating light treatments, the paired subcultures were incubated in the dark for 5min and analyzed as described above. No difference

in Fv/Fm values was observed between untreated cultures incubated in the dark for 5 and 30min (Figure S7), suggesting that 5min in darkness

is sufficient for the relaxation of PSII reaction centers under regular growth conditions. Maximum PSII quantum yield (Fv/Fm) was calculated as

Fv/Fm = (Fm - F0)/Fm, where F0 is the baseline fluorescence under a measuring light of 160 mmol photons m�2 s�1 and Fm is the maximum

fluorescence yield at the first saturating pulse.101 PSII quantum yield (FPSII) was calculated as (F’m –Ft)/F’m, where F’m is the maximum fluores-

cence yield at a given saturating pulse, and Ft the steady-state fluorescence value under actinic light immediately prior to the saturating pulse.

Non-photochemical quenching (NPQ) was calculated as NPQ = (Fm –F’m)/F’m.
101
Intracellular reactive oxygen species (ROS) measurements

Algal cultures were divided into four subcultures (two pairs) and treated with D2 + D3 (0.5 mM of each) or DMSO as described under ‘chloro-

phyll fluorescence’. Following 2 h of vitamin D or DMSO treatment, the subcultures were stained with 0.5 mM of H2DCFDA (ThermoFisher) in

DMSO and incubated in the dark for 20 min. Then, one pair was returned to regular light conditions of 130 mmol photons m�2 s�1 and the

second pair exposed to saturating light of 1000 mmol photons m�2 s�1 using white LED lamp for 3 h. DCF fluorescence was measured using

CellStream CS-100496, excited at 488 nm and the signal was collected at 528/46 nm. The algal population was gated by plotting chlorophyll

fluorescence (excitation-emission 561–702/87 nm) against forward scatter.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests (Student’s t test, Pearson correlation coefficient) were conducted using Microsoft Excel. Statistical details are presented in

relevant figure and table legends, and in the results section of this study. Significance was defined as p < 0.05.
iScience 27, 109884, June 21, 2024 15


	ISCI109884_proof_v27i6.pdf
	The photo-protective role of vitamin D in the microalga Emiliania huxleyi
	Introduction
	Results
	E. huxleyi algae produce vitamin D2 and D3
	E. huxleyi algae show a transcriptomic response to UV radiation
	External application of vitamin D impacts algal traits similarly to UV irradiation
	Vitamin D upregulates expression of UV-regulated genes
	Vitamin D treatment improves the algal photosynthetic performance following exposure to saturating light
	Vitamin D alleviates ROS accumulation under saturating light

	Discussion
	Vitamin D alleviates algal photo-oxidative stress
	Vitamin D may serve as an algal light indicator
	Limitations of exogenous vitamin D addition
	UV is an important environmental factor impacting algal physiology
	Vitamin D in vertebrates versus algae
	The possible ancient origin of vitamin D
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Emiliania huxleyi CCMP3266

	Method details
	Experimental growth conditions and monitoring
	Vitamin D analysis
	RNA extraction
	Transcriptomic analysis
	Imaging flow cytometry and pigment analysis
	Quantitative real-time PCR (RT-qPCR)
	Pulse amplitude-modulated fluorometry (PAM) analyses
	Intracellular reactive oxygen species (ROS) measurements

	Quantification and statistical analysis




