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Abstract Biological systems are increasingly being studied by high throughput profiling of

molecular data over time. Determining the set of time points to sample in studies that profile

several different types of molecular data is still challenging. Here we present the Time Point

Selection (TPS) method that solves this combinatorial problem in a principled and practical way.

TPS utilizes expression data from a small set of genes sampled at a high rate. As we show by

applying TPS to study mouse lung development, the points selected by TPS can be used to

reconstruct an accurate representation for the expression values of the non selected points.

Further, even though the selection is only based on gene expression, these points are also

appropriate for representing a much larger set of protein, miRNA and DNA methylation changes

over time. TPS can thus serve as a key design strategy for high throughput time series

experiments. Supporting Website: www.sb.cs.cmu.edu/TPS

DOI: 10.7554/eLife.18541.001

Introduction
Time series experiments are very commonly used to study a wide range of biological processes.

Examples include various developmental processes (Roy et al., 2010), stem cell differentiation

(Sperger et al., 2003), immune responses (Yosef and Regev, 2011), stress responses (Gitter et al.,

2013) and several others. Indeed, analysis of the largest repository of gene expression experiments,

the Gene Expression Omnibus (GEO), determined that roughly a third of these datasets come from

experiments profiling dynamic processes over time (Zinman et al., 2013).

While mRNA gene expression data have been the primary source of high-throughput time series

data, more recently several other genomic regulatory features are profiled over time. These include

miRNA expression data (Schulz et al., 2013), ChIP-Seq studied to determine TF targets

(Chang et al., 2013) and several types of epigenetic markers including DNA methylation

(Singer et al., 2014), histone modifications (Paige et al., 2012) and more. In fact, with the rise in

our ability to perform such high-throughput time series analysis, many researchers are now combin-

ing a few or several of these time series profiling experiments in a single experiment (Chang et al.,

2013; Buenrostro et al., 2015) and then integrate these datasets to obtain a better understanding

of cellular activity.
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While integrated analysis of high-throughput genomic datasets can greatly improve our ability to

model biological processes and systems, it comes at a cost. From the monetary point of view, these

costs include the increased number of Seq experiments required to profile all types of genomic fea-

tures. While such costs are common to all types of studies utilizing high-throughput data, they can

be prohibitively high for time series based studies since they are multiplied by the number of time

points required, the number of repeats performed for each time point and the number of different

types of data being profiled. Importantly, even if the budget is not an issue, the ability to obtain

enough samples for profiling all genomic features at all time points may be challenging, if not

completely prohibitive.

One of the key determinants of the experimental and sample acquisition costs associated with

time series studies is the number of time points that are being profiled. In most studies, the first and

last time point can usually be determined by the researcher (for example, the time from birth to full

lung structural development and maturation in mice). However, the number of samples required

between these two points and the sampling frequency (given a fixed budget) are often hard to

determine based on phenotypic observations since the molecular events of interest may precede

such phenotypic events. To date, sampling rates have largely been determined using one of two ad-

hoc protocols. The first utilized uniform sampling across the duration of the study (Li et al., 2013)

with the number of samples constrained by the available budget and samples. The second relied on

some (conceived or real) knowledge of the process, often based on phenotypic observations. These

studies, especially for responses though also for development, have often used nonuniform sampling

(Schulz et al., 2013; Bar-Joseph et al., 2003a) though it is hard to determine if such sampling

misses important molecular events between the sampled points.

Relatively, little work has focused so far on the selection of time points to sample in high through-

put time series studies. Singh et al (Singh et al., 2005) and Rosa et al (Rosa et al., 2012) presented

an iterative process which starts with profiling a small number of time points and then selects the

next time point either based on an Active Learning method (Singh et al., 2005) or based on using

prior related experiments (Rosa et al., 2012). Next the selected point is profiled and the process is

repeated until a stopping criteria has been reached. Both of these methods require several iterations

until the final time series is profiled, which can drastically lengthen the experiment time and can

introduce additional biases making them less useful in practice. In addition, these methods employ a

stopping criteria that does not take into account the full profile and also require that related time

series expression experiments be used to select the point, which may be problematic when studying

new processes or treatments.

Here, we propose the first non iterative method to address the issue of sampling rates across all

different genomic data types. Our method starts by selecting a small set of genes that are known to

be associated with the process being studied (while the full set is often unknown, for most processes

a small set is usually known in advance). Next, we use a cheap array-based technology to sample

these genes at a high, uniform rate across the duration of the study. Note that unlike standard curve

fitting algorithms, a method for selecting time points for these experiments is required to accommo-

date over a hundred curves (for all genes) simultaneously, and we discuss various ways to formulate

this as an optimization problem. To solve this optimization problems, we developed the Time Points

Selection method (TPS), an algorithm that uses spline based analysis and combinatorial search to

select a subset of the points that, when combined, provide enough information for reconstructing

the values for all genes across all time points. The number of points selected can either be set in

advance by the user (for example, based on budget constraints) or can be defined as a function of

the reconstruction error. The selected time points are then used for the larger, genome-wide experi-

ments across the different types of data being profiled.

To test and evaluate the method we applied it to study lung development in mice. Normal devel-

opment of lung alveoli through the process of alveolar septation is a dynamic, coordinated process

that requires the accurate spatial and temporal integration of signals. We currently lack a compre-

hensive understanding of the dynamic networks that govern normal alveolar septation. Thus, lung

development can serve as an ideal test case for TPS since a variety of different time series genomic

datasets are needed to enable accurate reconstruction of networks regulating this process. As we

show, TPS was able to successfully identify time points for reconstructing the mRNA profiles of

selected genes and these points improved upon uniform based sampling for such points. Further,

we show that the set of points selected based on the analysis of this limited set of highly sampled
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mRNAs is also appropriate for sampling a much larger, unbiased, set of miRNA profiles as well as to

determine the temporal protein levels of over 1000 proteins. Finally, we show that the mRNA sam-

ples can also be used to determine the optimal sampling points for a DNA methylation study of the

same developmental process.

Results

The time points selection (TPS ) method
We developed TPS to select a subset of k time points from an initial larger set of n points such that

the selected subset provides an accurate, yet compact, representation of the temporal trajectory.

Figure 1 presents an overview of the method. TPS utilizes splines to represent temporal profiles and

implements a cross-validation strategy to evaluate potential sets of points. Following initialization

which is based on the expression values, we employ a greedy search procedure that adds and

removes points until a local minima is reached (Materials and methods). The resulting set is then

used for the larger genomic and epigenetic experiments.

To test the usefulness of TPS , we used it to determine time points for a lung development study

in mice. We first profiled the expression of 126 genes known or suspected to be involved in lung

development using NanoString (See Appendix Methods for a list of the selected genes and the rea-

son each was selected). We then used TPS analysis of these experiments to select a subset of time

points for profiling the expression of a larger, unbiased, set of miRNAs. Finally, we have used TPS to

design time series experiments to study DNA methylation patterns for a subset of the genes.

TPS identifies subset of important time points across multiple genes
We have tested the performance of TPS by using it to select subsets of points ranging from 3 to 25

and evaluating how well these can be used to determine the values of non-sampled points. To deter-

mine the accuracy of the reconstructed profiles using the selected points, we computed the average

mean squared error for points that were not used by the method (Materials and methods). The

results are presented in Figure 2. The figure includes a comparison of our method with two baseline

methods: a random selection of the same number of points and uniform sampling of points within

the range being studied, a method that is commonly used for time series expression profiling as dis-

cussed above. We have also compared the performance of the different strategies for initializing the

set of points as discussed in Appendix Method (sorting by absolute differences or by equal partition)

and between different methods for searching for the optimal subset (simulated annealing, weighting

genes by cluster size, and adding/removing multiple time points per iteration, Appendix Methods).

Finally, Figure 2 also presents the repeat noise values which is the theoretical limit for the perfor-

mance of any profile reconstruction method.

As expected, we find significant performance improvement when using TPS when compared to

randomly selected points. Importantly, we also see a significant and consistent improvement (for all

sizes of selected time points) over uniform sampling highlighting the advantage of condition-specific

sampling decisions. Sorting initial points by absolute values further improves the performance

highlighting the importance of initialization when searching large combinatorial spaces. Simulated

annealing, weighting, and multiple point selection improve performance as well. As the number of

points used by TPS increases, it leads to results that are very close to the error represented by noise

in the data (0.108) ( Figure 2—figure supplement 1).

Figure 3 presents the reconstructed and measured expression values when using TPS to select 13

time points (less than a third of the points that were profiled). Note that even though each of these

genes has distinct trajectory and inflection points, the selected set of time points enable TPS to fit

all quite accurately without overfitting (See Figure 3—figure supplement 1 and Figure 3—figure

supplement 2 for figures of several other genes and for figures reconstructed by using the best 8

time points as determined by TPS , respectively).

Identified time points using mRNA data are appropriate for miRNA
profiling
To test the usefulness of our method for predicting the correct sampling rates for other genomic

datasets, we next profiled mouse miRNAs for the same developmental process. miRNAs have been

Kleyman et al. eLife 2017;6:e18541. DOI: 10.7554/eLife.18541 3 of 30

Tools and resources Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.18541


known to regulate lung development (Sessa and Hata, 2013) and several miRNAs are differentially

expressed during this developmental process (Williams et al., 2007). Several of these are also coor-

dinately activated with various TFs to control specific transitions during development (Schulz et al.,

2013). Thus, any large scale effort to model lung development would require the profiling of miR-

NAs as well. Unlike the mRNA dataset, which utilized prior knowledge to profile less than 1% of all

Figure 1. The TPS method. Clockwise from top left. Given a dense sampling of a selected subset of genes (a) we select an initial set of points (b) using

the initialization method described in the text. Next, we fit a spline to the selected points for each gene (c) and evaluate the error on all other points.

We perform a greedy search process (d) which iteratively removes and adds points to improve the test data fit resulting in the final set of points (e). The

reconstructed curves are fitted to all genes (f) and an overall error is computed and compared to the theoretical limit (noise) to determine the ability of

the selected number of points to fit the data.

DOI: 10.7554/eLife.18541.002

The following figure supplements are available for figure 1:

Figure supplement 1. Comparison of performance between TPSand a previous method Singh et al.

DOI: 10.7554/eLife.18541.003

Figure supplement 2. Comparison of initialization methods to each other by their final error.

DOI: 10.7554/eLife.18541.004

Figure supplement 3. Comparison of initialization method by their final error compared to selecting random points.

DOI: 10.7554/eLife.18541.005
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genes, the miRNA dataset contained a much larger number of miRNAs (6̂00). Thus, the miRNA data

represent an unbiased sample providing information on whether using one type of genomic data

can be helpful for determining rates for other types. In our analysis, we normalized miRNA values by

variance mean normalization (Bolstad et al., 2003).

To test TPS on this dataset, we used the mRNA expression data to select time points and then

used the miRNA expression values for the selected time points to reconstruct the complete trajecto-

ries for each miRNA. The results are presented in Figure 4. As can be seen, when using the points

selected based on the mRNA data we achieve a much lower error when compared to the error

resulting from using the same number of uniform or random points (p<0:01 for random based on

randomization analysis) highlighting the relationship between the two datasets and the ability to use

one to determine points for the other. More generally, even though the noise in the miRNA data is

Figure 2. Performance of TPS using different sizes for the selected points. Error comparisons of TPS variants to uniform selection of points and noise.

Absolute difference - Greedy iterative addition with absolute difference initialization (Algorithm 1, Appendix Methods). Simulated annealing - Iterating

using simulated annealing with absolute difference initialization. Weighted error - Selection based on cluster rather than individual gene errors. See

Appendix Methods for details.

DOI: 10.7554/eLife.18541.006

The following figure supplements are available for figure 2:

Figure supplement 1. Average noise in each mRNA expression time point.

DOI: 10.7554/eLife.18541.007

Figure supplement 2. Comparison of error for the TPS algorithm on full data, 75% random data, and random points chosen on the full data.

DOI: 10.7554/eLife.18541.008

Figure supplement 3. Comparison of TPS and piecewise linear fitting over genes (a) Pdgfra, (b)Eln, (c) Lrat.

DOI: 10.7554/eLife.18541.009

Figure supplement 4. Comparison of the reconstruction error when using the points selected by TPS and when using the same number of random

points from the overall set of sampled points.

DOI: 10.7554/eLife.18541.010
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Figure 3. Reconstructed expression profiles for selected genes. (a). Pdgfra. , (b). Eln. , (c). Inmt.

DOI: 10.7554/eLife.18541.011

The following figure supplements are available for figure 3:

Figure supplement 1. Expression profiles over several genes (a) Esr2, (b) Nme3, (c) Polr2a.

DOI: 10.7554/eLife.18541.012

Figure supplement 2. Reconstructed expression proles by eight points over genes (a) Pdgfra, (b) Eln, (c) Inmt.

DOI: 10.7554/eLife.18541.013

Figure 4. Performance of TPS by on the miRNA data. (a) TPS reconstruction error when using the mRNA data to select time points for the miRNA

experiments. Results of random and uniform selection as well as repeat noise error are also presented for comparison. TPS variants shown are the same

two presented in Figure 2. (b) Error of splines with points selected by training TPS on the actual miRNA data itself, using the maximum absolute

difference initialization.

DOI: 10.7554/eLife.18541.014

The following figure supplements are available for figure 4:

Figure supplement 1. Observed and reconstructed expression proles for miRNAs (a) mmu-miR-100, (b) mmu-miR-136,c) mmu-miR-152, (d) mmu-miR-

219.

DOI: 10.7554/eLife.18541.015

Figure supplement 2. 8 stable miRNA clusters.

DOI: 10.7554/eLife.18541.016

Figure supplement 3. TPS performance for the proteomics data using different number of time points.

DOI: 10.7554/eLife.18541.017
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higher than for the mRNA dataset, relative ordering of the performance of each of the methods is

similar to the mRNA results in Figure 2. This serves as a strong indication that mRNAs can serve as a

general proxy for selecting time points for other genomic datasets. Figure 4b presents the error

achieved when using the miRNA data itself to select the set of points (evaluated on the miRNA

data). As expected, the performance when using the miRNA data itself is better than when using the

mRNA data. However, when taking into account the inherent noise in the data the differences are

not large. For example, when using the 13 selected mRNA points, the average mean squared error

is 0.4312 whereas when using the optimal points based on the miRNA data itself the error is 0.4042.

Figure 4—figure supplement 1 presents the reconstructed and measured expression values for

a few miRNAs based on time points identified using the mRNA dataset. As with the mRNA data, the

ability to accurately reconstruct different miRNA profiles highlights the importance of selecting a

global set of points that can fit all genes and miRNAs in our study.

We have also analyzed the performance of TPS when using the mRNA data to select sampling

time points for profiling the levels of more than 1000 proteins. We observed results that are very

similar to the results obtained for the miRNA time point selection. Specifically, the points selected

by TPS lead to reconstruction errors that are lower than those observed for uniform sampling or for

a random set of the same number of points further demonstrating the general applicability of our

method. See Appendix Results for details.

Using TPS to select time points for DNA methylation analysis
In addition to mRNA and miRNA expression data, epigenetic data have been increasingly studied in

time series experiments (Talens et al., 2010; Schneider et al., 2010). To test the ability of the

mRNA data to determine the appropriate points for DNA methylation analysis, we used targeted

bisulfite sequencing to profile three CpG-enriched regions for 13 genes at 8 of the 42 time points

used for the mRNA and miRNA studies (Materials and methods). We next applied TPS to the mRNA

data of these 8 points to select the best subest of 4 points and compared the selected points to

those that would have been selected using the methylation data itself. The 4 points identified using

the mRNA data (0:5, 5, 15, 26) were exactly the same as the ones selected using the methylation

data indicating again that mRNA data is a good proxy for the dynamics of the epigenetic data as

well. Figure 5—figure supplement 1 presents the reconstructed splines over the identified points

for several genomic methylation loci. Figure 5 presents the methylation and expression curves for 3

genes: Akt,1 Cdh11, and Tnc. These were the genes with the strongest negative correlation between

their methylation and expression. As can be seen, in several cases we observed strong negative or

positive correlations between the two datasets in the time points we used serving as another indica-

tion for the ability to use one dataset to select the sampling points for the other. See Figure 5—fig-

ure supplement 2 for correlation of all genes.

Discussion
Time series gene expression experiments are widely used in several studies. More recently, advances

in sequencing and proteomics are enabling the profiling of several other types of genomic data over

time. Here we focused on lung development in mice with the goal of identifying an optimal set of

time points for profiling various genomic and proteomic data types for this process.

An important question is: Whether a better selection of time points really leads to observations

that are missed when using an inferior set of points (even if the number of points is the same)? To

answer this question we looked at several prior studies that profiled mouse lung development over

time using various high throughput assays. Table 1 presents 9 representative studies and lists the

biological data that was profiled and the time points that were used. As can be seen, while certain

time points seem to be widely used across studies (for example, 7d) others were profiled in only one

or two of the studies (2d, 10d, three weeks). This raises several issues. First, it is very hard to com-

pare or combine these datasets (for example, protein levels were not profiled on day 7(Cox et al.,

2007) whereas all mRNA levels were). It also makes it hard to determine if differences between DE

genes or miRNAs between these studies are the result of differences in the underlying conditions

studied (for example, when testing for mutants or treatments) or simply the result of different sam-

pling. Finally, each of these studies may have missed key genes, proteins or miRNAs because of the
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sampling used restricting the ability of downstream analysis to use the data to model causal and reg-

ulatory events in lung development.

To illustrate these problems we compared the resulting curves using three of the sampling rates

from Table 1 to the reconstructed curves obtained by using TPS to select the optimal 5 and 8 time

points. For example, the points selected by Schulz et al. (2013) are 0, 4, 7, 14 and 28 (since 28 is last

day in our analysis we used it instead of 42). In contrast, TPS selects 0:5, 6, 9:5, 19 and 28. As can be

seen in Figure 6, important expression changes in key genes are missed by using the arbitrary points

while the TPS points are able to correctly reconstruct these profiles even though the total number of

points is the same (5). More globally, the error for the arbitrary set of selected points is much higher

on average (Appendix 2—Table 4). Similar results are obtained for the other sampling rates used in

the past (Figure 6, Appendix 2—Table 4) and when comparing TPS to iterative methods previously

suggested for selecting the set of points to profile (Figure 1—figure supplement 1). This indicates

that accurate selection of time points can have a large impact on the ability of the study to identify

Figure 5. Comparison of gene expression and methylation data for selected genes. (a). Akt1. , (b). Cdh11. , (c). Tnc.

DOI: 10.7554/eLife.18541.018

The following figure supplements are available for figure 5:

Figure supplement 1. Reconstructed methylation proles over several loci (chromosome, position) with corresponding genes.

DOI: 10.7554/eLife.18541.019

Figure supplement 2. Bootstrap analysis of Pearson correlation r between expression and methylation datasets over eight time points for each gene.

DOI: 10.7554/eLife.18541.020

Table 1. Summary of prior high throughput lung development studies.

Reference Data types Selected time points (Days)

[Bonner et al., 2003] mRNA expression E9, E4, E17, 0, 7, 14, 28

[Melén et al., 2011] mRNA expression E16, E18, 0, 7, 14, 28

[Bhaskaran et al., 2009] microRNA expression E16, E19, E21, 0, 6, 14, 60

[Dong et al., 2011] mRNA and microRNA expression E12, E14, E16, 0, 2, 10

[Cox et al., 2007] Protein expression levels E12, E14, E18, 2, 14, 56

[Schulz et al., 2013] mRNA and miRNA expression 0, 4, 7, 14, 42

[Cormack et al., 2010] mRNA expression 0, 7, 14, adult

[Mager et al., 2007] mRNA expression E15, E17, E19, E21, 1, 14, 84

[Mariani et al., 2002] mRNA expression E18, 1, 4, 7, 10, 14, 21, adult

DOI: 10.7554/eLife.18541.021
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Figure 6. Comparison of TPS with sampling rates used in previous studies. Dark green curves are the reconstructed profiles based on the points

profiled by prior studies. Light green and red curves are based on the points selected by TPS . As can be seen, even when comparing results from

using the same number of points, TPS can identify key events for some of the genes that are missed when using the phenotype based sampling rates.

Figure 6 continued on next page
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key genes and events. See also Appendix Results for a discussion about the importance of the differ-

ences between the TPS and prior work results for selected genes.

Our method relies on a very small subset of genes that are known to be involved in the process

studied for the initial (highly sampled) set of experiments. While such set is known for several pro-

cesses, there may be cases where very little is known about the biological process and so it may be

hard to obtain such set. TPS can still be applied to determine sampling rates for such processes

using a small random set of genes. To illustrate this we repeated the analysis presented in Results

using only the measured values of 25% of genes in our original set and replacing the values for the

other genes with random profiles. As we show in Figure 2—figure supplement 2, even when using

such set, the time points selected by TPS greatly improve upon an arbitrary set of the same number

of time points. Since in most time series experiments at least 25% of the genes are differentially

expressed (and in several cases a much larger fraction, (Zhou et al., 2009; Shi et al., 2015) a ran-

dom selection of genes is likely to exhibit similar results even for poorly understood processes.

Beyond the analysis of a specific type of data, several studies have now been profiling multiple

types of genomic data over time. Such studies need to agree on a set of time points which would be

common to all experiments so that these diverse types can be integrated to form a unified model

(Chang et al., 2013; Roy et al., 2010). To date, the selection of such points relied on ad-hoc meth-

ods. The processes being studied were either sampled uniformly or based on prior knowledge. How-

ever, known properties of such systems were often been based on phenotypic observations which

may not necessarily agree with the timing of molecular events. In addition, in many case studies of

the same, or similar processes differed with respect to the time points that have been profiled. For

example, early work on the analysis of cell cycle data in yeast utilized both uniform and nonuniform

sampling (Spellman et al., 1998) and recent studies of circadian rhythms have followed a similar pat-

tern (Storch et al., 2002; Ueda et al., 2002). Similarly, more recent analysis of responses to flu

diverged widely in the (nonuniform) sampling rates that were used (Shapira et al., 2009; Li et al.,

2011).

TPS addresses these problems by using a principled method for determining sampling rates. An

important goal in the development of TPS was to enable it to be successfully applied to different

types of biological datasets. As we show, a relatively inexpensive, gene centric, method provides a

very good solution for RNA expression profiling as well as other types of data including miRNAs and

DNA methylation. Thus, a combined experiment can be fully designed using our method.

While we evaluated TPS on several types of high throughput data, we have only tested it so far

on data for a specific biological process (lung development in mice). While we believe that such data

is both challenging and representative and thus provides a good test case for the method, analysis

of additional datasets may identify new challenges that we have not addressed and we leave it to

future work to address these.

TPS, including all initialization methods discussed, is implemented in Python and is available on

the supporting website. We hope that as sequencing technology continues to advance, more and

more studies would integrate diverse types of time series data and will utilize TPS in the design pipe-

line of their studies.

Materials and methods

mRNA and miRNA used in the study
To select the list of 126 genes used in the NanoString profiling we searched the literature for genes

that have been linked to the following processes: (a) Cell type specification genes (e.g. alveolar type

Figure 6 continued

Subfigures a,b, and c are a piecewise linear fit over points 0.5, 7.0, 14.0, 28.0 . Subfigures d,e, and f are a piecewise linear fit over points 0.5, 2.0, 14.0,

28.0. Subfigures g,h, and i are a piecewise linear fit over points 0.5, 4.0, 7.0, 14.0, 28.0.

DOI: 10.7554/eLife.18541.022

The following figure supplement is available for figure 6:

Figure supplement 1. Comparison of gene expression and protein abundance for selected gene protein pairs.

DOI: 10.7554/eLife.18541.023

Kleyman et al. eLife 2017;6:e18541. DOI: 10.7554/eLife.18541 10 of 30

Tools and resources Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.18541.022
http://dx.doi.org/10.7554/eLife.18541.023
http://dx.doi.org/10.7554/eLife.18541


I epithelial, alveolar type II epithelial, any epithelial, basal, endothelial, mesenchymal, pericyte, fibro-

blast, monocyte), (b) genes known to be up or down regulated during septation, (c) genes known to

be altered in DNA methylation during development, (d) genes known to be involved in septation, (e)

genes known to be regulated by miRNA involved in septation, and (f) genes known to be regulated

by DNA methylation during fibrosis. Appendix 2—Table 1 contains a list of the selected genes and

the process for which they were selected.

For the miRNA set we used a commercially available, unbiased, array (the nCounter Mouse

miRNA Expression Assay Kit, NanoString).

mRNA and miRNA profiling and analysis
A total of 240 samples were isolated by Laser Capture Microscopy (LCM) from murine lung at multi-

ple time points (E16.5, P.05 to P14 every 12 hr, and P15 to P28 every 24 hr). The samples were used

to prepare total RNA. RNA extraction was performed by miRNeasy MicroKit (Qiagen) following the

manufacturer’s protocol. RNA concentration and integrity were measured by using NanoDrop ND-

2000 and 2200 Tape Station. A custom NanoString probe set (Reporter Code set and Capture Probe

set) for 126 genes was designed and the nCounter Gene Expression Assay was performed using 50

ng total RNA. The data files produced by the nCounter Digital Analyzer were exported as a Reporter

Code Count (RCC) file and data normalization was performed using the nSolver, the analysis soft-

ware provided by Nanostring.

DNA methylation analysis
Mouse alveolar lung tissues attached to LCM caps were stored at �80˚C until processing. DNA was

extracted using the ZR Genomic DNA-Tissue MicroPrep kit (Zymo Research). Incubation with Diges-

tion buffer and proteinase K was done overnight at 55˚C in inverted tubes. 13 genes were chosen

for targeted NextGen bisulfite sequencing (NGBS): Igfbp3, Wif1, Cdh11, Eln, Sox9, Tnc, Dnmt3a,

Akt, Vegfa, Lox, Foxf2, Zfp536 and Src, based on published data (Cuna et al., 2015). Targeted

NGBS was done on samples collected at: E16.5, E18.5, P0.5, P1.5, P2.5, P5, P10, P15, P19 and P26.

Multiplex PCR was performed using 0.5 units of TaKaRa EpiTaq HS (Takara Bio, Kusatsu, Japan) in

2x master mix. FASTQ files were aligned using open source Bismark Bisulfite Read Mapper using

Bowtie2. Methylation levels were calculated in Bismark. Sites where the difference in methylation

was less than 5% over the entire time period, those where there was a difference of >20% at a single

time point and those with less than 3 non zero values were removed from the analyses.

Problem statement
Our goal is to identify a (small) subset of time points that can be used to accurately reconstruct the

expression trajectory for all genes or other molecules being profiled. We assume that we can effi-

ciently and cheaply obtain a dense sample for the expression of a very small subset of representative

genes (here we use nanostring to profile less than 0.5% of all genes) and attempt to use this subset

to determine optimal sampling points for the entire set of genes.

Formally, let G be the set of genes we have profiled in our dense sample, T ¼ ft1; t2; . . . ; tTg be

the set of all sampled time points. We assume that for each time point we have R repeats for all

genes. We denote by ergt be the expression value for gene g 2 G at time t 2 T in the r’th repeat for

that time point. We define Dg ¼ fergt ; t 2 T ; r 2 R as the complete data for gene g over all replicates

and time points T .

To constrain the set of points we select, we assume that we have a predefined budget k for the

maximum number of time points we can sample in the complete experiment (i.e. for profiling all

genes, miRNAs, epigenetic marks etc. using high-throughput seq experiments). We are interested in

selecting k time points from T which, when using only the data collected at these k points, minimizes

the prediction error for the expression values of the unused points. To evaluate such a selection, we

use the selected values to obtain a smoothing spline (De Boor, 1978; Bar-Joseph et al., 2003a;

Wahba, 1990) function for each gene and compare the predicted values based on the spline to the

measured value for the non-selected points to determine the error. In our problem, t1 and tT define

the first and end points, so they are always selected. The rest of the points are selected to maximize

the following objective 1:
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Problem statement: Given Dg for genes g 2 G, the number of desired time points k, identify a sub-

set of k � 2 time points in T n ft1; tTg which minimizes the prediction error for the expression values

of all genes in the remaining time points.

Spline assignments
Before discussing the actual procedure we use to select the set of time points, we discuss the

method we use to assign splines based on a selected subset of points for each gene. There are two

issues that need to be resolved when assigning such smoothing splines: (1) The number of knots

(control points) and (2) their spacing. Past approaches for using splines to model time series gene

expression data have usually used the same number of control points for all genes regardless of their

trajectories (Subhani et al., 2010; Bar-Joseph et al., 2003b), and mostly employed uniform knot

placements. However, since our method needs to be able to adapt to any size of k as defined above,

we also attempt to select the number of knots and their spacing. We do this by using a regulariza-

tion parameter for the fitted cubic smoothing spline where number of knots is increased until the

smoothing condition is satisfied (Wahba, 1990). The regularization parameter is estimated by leave-

one-out cross-validation (LOOCV).

TPS : Iterative process to select points
Because of the highly combinatorial nature of the time points, we rely on a greedy iterative process

to select the optimal points as summarized in Figure 1 (See Appendix Methods for pseudocode).

There are three key steps in this algorithm which we discuss in detail below.

. Selecting the initial set of points: When using an iterative algorithm to solve non-convex prob-
lems with several local minima, a key issue is the appropriate selection of the initial solution set
(Hartigan, 1975; McLachlan and Peel, 2004)]. We have tested a number of methods for per-
forming such initializations and results for some of these are presented in Figure 1—figure
supplement 2. Since the goal of the method is to optimize a specific function (error on the left
out set of expression values measured at time points not used), all initialization methods can
be tested for each dataset and the solution minimizing the left out error can be used. See
Appendix Methods for details.

. Iterative improvement step: After selecting the initial set, we begin the iterative process of
refining the subset of selected points. In this step we repeat the following analysis in each iter-
ation. We exhaustively remove all points from the existing solution (one at a time) and replace
it with all points that were not in the selected set (again, one at a time). For each pair of such
point, we compute the error resulting from the change (using the splines computed based on
the current set of points evaluated on the left out time points), and determine if the new point
reduces the error or not. Formally, let T� ¼ T n ft1; tTg and Cn be set of points for iteration n.
We are interested in finding a point pair ðta 2 Cn; tb 2 T� n CnÞ which minimizes the following
error ratio for the next iteration Cnþ ¼ Cn n ftag [ ftbg:

error ratio¼
errorðCnþÞ

errorðCnÞ
¼

P
g2G

P
r2R

P
t2TnCnþ

ðêCnþ
gt � ergtÞ

2

P
g2G

P
r2R

P
t2TnCn

ðêCn
gt � ergtÞ

2
(1)

where ê
Cn
gt is our spline based estimate of the expression of gene g at time t by fitting smooth-

ing spline over points Cn. If there are pairs which lead to an error ratio of less than 1 in the
above function, we select the best (lowest error), assign it to Cnþ1 and continue the iterative
process. Otherwise we terminate the process and output Cn as the optimal solution. While the
process is guaranteed to converge, given the large combinatorial search space convergence
can be slow. This makes adequate initialization an important issue which we have focused on.
In practice we find that the search usually converges very fast (within 10 – 15 iterations).

. Fitting smoothing spline: The third key step of our approach is fitting a smoothing spline to
every gene independently for the selected subset of time points. As discussed above, this is
done by using a regularized version of approximating splines which allow us to determine a
unique number of control points and spacing for each of the genes. See Appendix Methods
for more details.
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Individual vs. cluster-based evaluation
So far, we assumed that error of each gene has the same contribution to the overall error. However,

this assumption ignores the fact that the expression profiles of genes are correlated with the expres-

sion of other genes. To take the correlation between gene profiles into account, we also performed

cluster based evaluation of genes where we analyzed the error by weighting each gene in terms of

inverse of the numbers of genes in the cluster it belongs. This scheme ensures that each cluster con-

tributes equally to the resulting error rather than each gene. We find clusters by k-means algorithm

over time series-data by treating each gene as a point in RT space as well as over a vector of ran-

domly sampled T time points on fitted spline (Bishop, 2006). We use Bayesian Information Criterion

(BIC) to determine the optimal number of clusters (Schwarz, 1978).
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Appendix 1 Methods

Selecting the set of 126 genes
Table 1 provides the list of genes used for the nanostring analysis and the rational for their

inclusion.

DNA Methylation analysis
Mouse alveolar lung tissues attached to LCM caps were stored at �80˚C until processing. DNA

was extracted using the ZR Genomic DNA-TissueMicroPrep kit (Zymo Research). Incubation

with Digestion buffer and proteinase K was done overnight at 55˚C in inverted tubes. 13 genes

were chosen for targeted NextGen bisulfite sequencing (NGBS): Igfbp3,Wif1, Cdh11, Eln,

Sox9, Tnc, Dnmt3a, Akt, VEGF, Lox, FoxF2, ZFP536 and Src, based on published data

(Cuna et al., 2015). The presence of CpG islands in 5-UTR, gene body and 3-UTRwas

interrogated using NCBI Epigenomics database, as well as CpG island searcher (Takai and

Jones, 2002), and EMBOSS Cpgplot (Rice et al., 2000). TargetedNGBSwas done by

Epigendx Inc. Gene sequences from selected regions were acquired from the Ensembl

database. Gene IDs, transcript IDs, simplex PCR IDs, and target regions for each gene are

listed inAppendix 2—Table 3. A total of 42 target PCRs were designed by PyroMark Assay

Design Software (Qiagen).

Targeted NGBS was done on samples collected at the following time points: E16.5,

E18.5, P0.5, P1.5, P2.5, P5, P10, P15, P19 and P26. Mouse genomic DNA (200–500 ng)

was bisulfite treated using the EZ DNA Methylation Kit (Zymo Research). Multiplex PCR

was performed using 0.5 units of TaKaRa EpiTaq HS (Takara Bio) in 2x master mix.

FASTQ files were aligned using open source Bismark Bisulfite Read Mapper using Bowtie2.

Methylation levels were calculated in Bismark by dividing the number of methylated reads

by the number of total reads, considering all CpG sites covered by a minimum of 30 total

reads. Sites where the difference in methylation was less than 5% over the entire time

period, those where there was a difference of >20% at a single time point and those with

less than 3 non zero values were removed from the analyses.

TPS Algorithm
A pseudocode for the TPS algorithm is presented in Algorithm 1.3.

Algorithm 1. TPS : Iterative k-point selection

1: Procedure ITERATIVE–TEMPORAL–SELECTION

2: C0 ¼ select initial k time points by absolute difference sorting
3: e0 ¼ error of remaining points by fitting splines to C0

4: i ¼ 0

5: do
6: for each pair ðta; tbÞ 2 ðT� n CiÞ � Ci do
7: C� ¼ Ci [ taf g tbf g
8: e� ¼ estimate error by fitting smoothing spline to C� where regularization parameter is

estimated by LOOCV
9: if e�<ei then
10: Ciþ1 ¼ C�

11: eiþ1 ¼ e�

12: end if
13: i ¼ iþ 1

14: end for
15: While eiþ1<ei
16: Output Ci and ei
17: end procedure
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Selecting the initial set of points
When using an iterative algorithm to solve non-convex problems with several local minima, a

key issue is the appropriate selection of the initial solution set. We have tested a number of

methods for performing such initializations. The simplest method we tried is to uniformly

select a subset of the points (so if k ¼ T=4 we use each 4’th point). Another method we

tested is to partition the set of all time points T into k � 1 intervals of almost equal size.

This method determines these boundaries by estimating the cumulative number of points

until each time point and selecting time points with cumulative values T
k�1

; 2 T
k�1

; . . . ; ðk �

2Þ T
k�1

respectively. Then, it uses k interval boundaries including t1 and tT as initial solution.

We also tested a method that relies on the changes between consecutive time points to

select the most important ones for our initial set. Specifically, we sort all points except t1
and tT by average absolute difference with respect to its predecessor and successor time

points by computing:

mti ¼

P
g2G jMdðegti�1

Þ�MdðegtiÞjþ jMdðegtiþ1
Þ�MdðegtiÞj

2jGj
(2)

where MdðegtiÞ is the median expression for gene g at time ti. We then select the k � 2

points with maximum mti as the initial solution.

Finally, we developed an alternative initialization method, based on dyanmic recalculation

of a metric on each time point. Metric A is same equal to the equation shown above.

Metric B of a time point is the difference absolute difference with respect to its

predecessor and successor time points. Metric C of a time point is absolute difference with

respect to only its predecessor. The alternative initialization algorithm calculates the given

metric on each time point other than the first and last and then places those points in a

min heap based on the metric. The top(minimum) point in the heap is removed. The metric

is recalculated for the point’s predeccesor and succesor based on thier neighboring points,

using only the points remaining in the heap. This process is repated until only k-2 time

points remain in the heap. Then the first time point, last time point and the points remaind

in the heap are chosen.

MetricAe;ti ¼

P
g2G jðMdðegpreviousti Þ�MdðegtiÞÞþ ðMdðegnextti Þ�MdðegtiÞÞj

2jGj
(3)

MetricBe;ti ¼

P
g2G jðMdðegpreviousti Þ�MdðegtiÞÞ� ðMdðegnextti Þ�MdðegtiÞÞj

2jGj
(4)

MetricCe;ti ¼

P
g2G jðMdðegpreviousti Þ�MdðegtiÞÞ

2jGj
(5)

Algorithm 2: Init TPS: Iterative initial k point selection

continued on next page
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continued

Algorithm 2: Init TPS: Iterative initial k point selection

1: Procedure ITERATIVE–INITIAL POINT–SELECTION

2: H ¼ Empty min heap
3: e ¼ matrix where rows are genes and columns are time points, values are expression measurements
4: for each time point t (other than the first and last) do
5: valuet ¼ Metrice;t
6: previoust ¼ t � 1

7: nextt ¼ t þ 1

8: Add valuet to H

9: end for
10: While sizeðHÞ > k � 2 do
11: Remove minimum valuem time point m from H

12: previousnextm ¼ previousm
13: nextpreviousm ¼ nextm
14: Remove valuepreviousm from H

15: Remove valuenextm from H

16: Remove m from e

17: valuepreviousm ¼ Metrice;previousm
18: valuenextm ¼ Metrice;nextm
19: Add valuenextm toH

20: Add valuepreviousm toH

21: end while
22: Ouput all t left as valuet in H + first time point + last time point
23: end procedure

We found that for our particular dataset, the dynamic initialization with MetricAe;ti

performed best for selections of time points smaller than one third of the the initial dense

time series, while the non dynamic mti method works best for selections of time points

between one third and and one half of the initial time series. The dyanmic metric and non

dynamic metrics can be compared in their performance on our data in Figure 1—figure

supplement 2. However, all of the metrics performed much better than a selection of

random points as shown in Figure 1—figure supplement 3.

Further improvements to the iterative points selection
procedures
We tested the following possible search strategies to improve the iterative points removal and

addition in TPS.

. We add and remove b time points in each iteration instead of a single point. This increases

the complexity of each iteration from OðkGT2QÞ to OðkGT2bQÞ where Q is the complexity of
fitting a smoothing spline.

. We use simulated annealing to escape from local minima (Kirkpatrick et al., 1983). In this
case, we do not always move to a pair of points with the minimum error in each iteration,
but instead move to a solution with random pair of points with probability 1 if its error er is

lower than error of current solution ei whereas we move to a solution with probability

e�Cðer�eiÞ if er � ei. Here, C is the temperature that increases by increasing number of itera-
tions and the probability of moving to a solution with larger error decreases over time.

In practice, even though both approaches should in theory be better able to escape local

minima than the greedy approach described above, for the data we analyzed they do not

perform significantly better as Figure 2 in the main text demonstrates.
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Fitting smoothing spline
TPS uses splines for fitting expression curves. Regularized smoothing spline satisfies the

piecewise cubic polynomial �ðtÞ ¼ ai þ biðt � tiÞ þ ciðt � tiÞ
2 þ diðt � tiÞ

3 for t 2 ½ti; tiþ1Þ; i 2

1; . . . ; T � 1 as shown inWahba (1990). Then, according to (Reinsch, 1967; De Boor, 1978),

regularized smoothing spline objective can also be expressed as in:

min ðy� aÞ
0

ðy� aÞþlc
0

Rc (6)

where a ¼ ða1; a2; . . . ; aTÞ, c ¼ ðc2; c3; . . . ; cT�1Þ, and R is a ðn� 2Þ2 tridiagonal symmetric

matrix with entries ri;i ¼
2ðhiþhiþ1Þ

3
, ri;iþ1 ¼

hiþ1

3
where hi ¼ tiþ1 � ti. The continuity restrictions

imply that:

Rc¼Q
0

a (7)

where Q is an n� ðn� 2Þ tridiagonal matrix with entries qi;iþ1 ¼
1

hiþ1

, qiþ1;i ¼
1

hiþ1

and

qi;i ¼ �ð1
hi
þ 1

hiþ1

Þ. Thus, we may write Equation 6 as:

minðy� aÞ
0

ðy� aÞþla
0

QR�1Q
0

a (8)

where a can be derived as in:

a¼ ðIþlQR�1Q
0

Þ�1
y (9)

Once a is estimated, b, c, d are estimated by corresponding Equations in Reinsch (1967).

For our specific setting, we also introduce a regularization parameter to enable us to

determine the number of control points. Let Ig ¼ fðt;MdðegtÞÞ; t 2 Cg, and � be the spline we

are interested in fitting, smoothing spline can be found by the following optimization

problem which minimizes penalized least-squares error:

min
X

ðt;ytÞ2Ig

ðyt ��ðtÞÞ2 þl

Z tT

t1

�
00

ðxÞ2dx (10)

where l is the regularization parameter which prevents overfitting by affecting the number

of knots selected. We estimated l by leave-one-out cross-validation (LOOCV) in our

experiments (See Appendix Methods for details of smoothing spline fitting).

Proteomics analysis
Proteins were extracted using tissue protein extraction reagent (T-PER, Thermo) as per

manufacturer’s instructions, carried out directly on the micro-dissection cap. Protein

concentrations was determined with the EZQ protein assay (Life Sciences). The proteins were

digested overnight at 37C, followed by acidification to pH 3� 4 with 10%formic acid (FA),

and extracted as per manufacturer’s instructions, then concentrated to near completion

using a Savant SpeedVac Concentrator (Thermo) and diluted with 0:1% FA to a final

concentration of ~ 100 ng \uL for analysis by LCMS. The LCMS data were converted to a

universal MzXML file format prior to being searched using SEQEST (Thermo) against a

Mouse subset of the UniRef100 database. These data were then uploaded to Scaffold

(Proteome Software) in order to filter and group each peptide ID to specific proteins with

peptide probability scores set at 80%, and protein probability scores set at 99%. Using only

proteins presenting with 2 or more peptides per protein, the confidence interval was set to
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~ 99:9% with and FDR <0:1. Quantification was carried out using Scaffold Q + using

normalized spectral counts.
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Appendix 2 Results

Example of a TPS run
Here we discuss a specific setting for TPS that allows us to discuss the set of points selected and

their relevance. Specifically, to test TPS , we fixed three set points in advance (first (0:5’th day)

and last (28’th day), which are required for any setting and day 7 which was previously

determined to be of importance to lung development. Next, we have asked TPS to further

select 10more points (for a total of 13). For this setting, the method selected the following

points: 0:5, 1:0, 1:5, 2:5, 4, 5, 7, 10, 13:5, 15, 19, 23, 28. While we do not know the ground truth,

the larger focus on the earlier time points determined by the method (with 7 of the 13 points

for the first 7 days) makes sense in this context as several aspects of lung differentiation are

determined in the first week (Guilliams et al., 2013). The other 3 weeks were more or less

uniformly sampled by our TPS . This highlights the usefulness of an unbiased approach to

sampling time points rather than just uniformly sampling through the time window.

TPS identifies subset of important time points across
multiple genes
To understand whether gene-expression profiles over time has a simple trend, we also compare

the reconstruction performance of TPS with fitting piecewise linear curves between initial and

middle time points and between middle and last time points. The reconstruction error by TPS

is significantly better than the piecewise linear reconstruction for 102 genes out of 126 genes.

We have plotted the comparison of reconstruction for several of these genes as in Figure 2—

figure supplement 3. The distribution of error difference between these methods looks

significantly different than normal distribution (p<0:0001 by Shapiro-Wilk test).

miRNA clusters are enriched for several biological
processes
While the mRNA datasets includes only a handful of genes (less than 0.5% of all genes) the miRNA

data includes more profiles and so further analysis of this data can be perfromed. We have

performed clustering of the miRNA data using k-means (Hartigan, 1975) where the number

of clusters is selected by Bayesian Information Criteria (Schwarz, 1978) leading to 8 stable

miRNA clusters Figure 4—figure supplement 2. Next, we mapped miRNA’s to predicted

targets using TargetScan (Agarwal et al., 2015), and performed gene-enrichment analysis by

FuncAssociate (Berriz et al., 2003). We find clusters to be enriched for several Gene Ontology

biological processes (Ashburner et al., 2000). For instance, cluster 4 is enriched for single-

organism cellular process, positive regulation of biological process, regulation of metabolic

process, etc. See Supporting Website for complete results.

miRNA reconstruction
Figure 4—figure supplement 1 presents the reconstructed and measured expression values for

a few miRNAs based on time points identified using the mRNA dataset. Several of these

miRNAs are known to be involved in regulation of lung development. For example, mmu-

miR-100 is known to regulate Fgfr3 and Igf1r, mmu-miR-136 targets Tgfb2, mmu-miR-152

targets Meox2, Robo1, Fbn1, Nfya (Popova et al., 2014). Additional figures for all miRNAs

and mRNAs are avialable on the supporting website.
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TPS application to select time points for proteomics
analysis
We used mass spectrometry to profile the levels of 1020 proteins over the optimal 13 time

points determined by TPS (using the mRNA expression data):

½0:5; 1:0; 1:5; 2:5; 4:0; 5:0; 7:0; 10:0; 13:5; 15:0; 19:0; 23:0; 28:0�). To test the ability of TPS to

determine the optimal time points for the proeomics data (based only on the mRNA data)

we performed a similar analysis to the analysis performed for the miRNA data. Specifically,

we used TPS to select subset of 4 to 12 of these points based on the mRNA data and

compared the error using these points to random and uniform selection of the same number

of points. The results are presented in . In addition to comparing TPS to random and

uniform we have also compared different strategies for initializing the set of points as

discussed in Method. Finally, the figure also presents the repeat noise values which is the

theoretical limit for the performance of any profile reconstruction method.

As for the miRNA data, we see a significant and consistent improvement (for all number of

selected time points) over uniform sampling highlighting the advantage of condition specific

sampling decisions. Again, as the number of points used by TPS increases, it leads to results

that are very close to the error represented by noise in the data (17:47).

Analysis of methylation data
Methylation data included 3 repeats for time points 0:5, 1:5, 2:5, 5, 10, 15, 19, 26 for 266 loci

belonging to 13 genes. Among these genes all except Zfp536 were also profiled in our

nanostring mRNA analysis. Appendix 2—Table 2 summarizes the number of loci for each

gene in the methylation dataset. We used shifted percentage of methylation at each time

point in our analysis which is obtained by subtracting the median percentage of methylation

at initial time point (baseline) from all data points for each gene. Figure 5—figure

supplement 2 presents the best positive or negative correaltion observed between the

methylation data and the gene expression data for these genes (note that we do not expect

all up stream regions to show a correlated profile since it is likely that only a subset, or even

a single, region is responsible for the changes in expression observed which is why we look

for the most correlated or anti-correlated region).

Importance of correct determination of expression
profiles
As shown in Figure 6 in the main text, TPS results differ from prior methods when

reconstructing expression profiles for several genes. Below we discuss the significance of

these differences and their impact on the ability to correctly assign function to that gene:

. Nol3: Nucleolar protein 3 (apotosis repressor with CAR domain) gene (also called ARC) enco-
des a protein that inhibits apoptosis, by decreasing activities of Caspases 2 and 8 and tumor
protein p53. Evaluation of the TPS profile suggests that the increase in Nol3 correlates with
postnatal lung development, with a rapid increase from birth until 2 weeks of age, followed
by stabilization, while the prior sampling rates show only an initial peak and then decrease.
While the exact role of Nol3 in lung development has not been established, it is known that
Nol3 protects pulmonary arterial smooth muscle cells from hypoxia-induced death and facili-
tates growth factor-induced proliferation and hypertrophy, and is probably involved in human
pulmonary hypertension (Turi et al., 1990). Nol3 is a regulator of myogenic differentiation
(Hunter et al., 2007) and its pattern of expression suggests that it may be important in regu-
lating pulmonary airway and vascular smooth muscle development and differentiation.
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. Esr2: The gene estrogen receptor beta encodes a receptor for estrogen, and is important in
regulating lung development and modulating differences in lung development between
males and females (Gortner et al., 2013). Evaluation of the TPS profile suggests that the
Esr2 decreases briefly after birth, followed by an increase from around day 5 until day 20
whereas non-optimized profile suggests a relatively flat profile. While fetal mouse lungs
express both Esr2 alpha and beta, adult mouse lungs express only Esr2 beta consistent with
the TPSresults (Carvalho and Goncalves, 2012).

. Igfbp3: Insulin-like growth factor binding protein 3 ( Igfbp3) belongs to the Igfbp family and
has a Igfbp domain and a thyroglobulin type-I domain (http://www.ncbi.nlm.nih.gov/gene/
3486). The TPS profile for Igfbp3 is very different from the non-optimized profile, suggesting
that important biological information is lost when not using the TPS profile. Igfbp3 regulates
the induction of TNC by TGF-beta (Brissett et al., 2012) and both these molecules are criti-
cal in lung alveolar septation.

. Wif1: Wnt inhibitory factor 1 ( WIF1) inhibits Wnt proteins, that are well known to be critical
in many stages of lung development. The TPS profile is very different from the non-optimized
profile, as the TPS profile indicates a much earlier and higher peak of WIF1 during postnatal
lung development that may be critical in alveolar septation. WIF1 is a target gene for Smad1,
one of the BMP receptor proteins important in lung development and maturation. A regula-
tory loop of Bmp4-Smad1-Wif1-Wnt/beta-catenin may coordinate BMP and Wnt pathways to
control lung development (Xu et al., 2011), and dysregulation of the Smad1/Wif1 axis is
associated with lung hypoplasia (Fujiwara et al., 2012).

. Inmt: Indolethylamine N-methyl transferase (Inmt) gene encodes an enzyme that N-methyl-
ates indoles such as tryptamine (http://www.ncbi.nlm.nih.gov/gene/11185). The TPS profile
for Inmt is very different from the non-optimized profile, as the TPS profile indicates a much
lower and prolonged reduction of Inmt during postnatal lung development. Methyl conjuga-
tion is an important pathway in the metabolism of many drugs, neurotransmitters, and xeno-
biotic compounds (Thompson and Weinshilboum, 1998). While it is known that Inmt
expression varies over the course of human lung development (Kopantzev et al., 2008), its
exact role in lung development is not known.

. Fgf18: Fibroblast growth factor 18 (Fgf18) is a member of the fibroblast growth factor family,
and the Fgfs are well known to be critical in multiple stages of lung development. The non-
optimized profile indicates a smaller and later peak, and is not similar to the TPS profile
which suggests a much more improtant role.Fgf18 is a pleiotropic growth factor that stimu-
lates proliferation in a number of tissues (http://www.ncbi.nlm.nih.gov/gene/8817). Fgf18 is
highly expressed in the developing lung as the TPS profile indicates (Ohbayashi et al.,
1998), and Fgfr3 is important in postnatal alveolar development (Weinstein et al., 1998).
The role of Fgf18 in regulating fibroblast proliferation (Hu et al., 1999) may be important in
alveolar septation, as Fgf18 increases after birth with a peak around P10, with reduction after
completion of alveolar septation.

Appendix 2—table 1. List of genes used for the Nanostring analysis and the rational for their

inclusion.

Ensembl gene ID Accession number Gene name Rationale

ENSMUSG00000024130 NM_001039581.2 Abca3 Alveolar Type II cell marker

ENSMUSG00000031378 NM_007435.1 Abcd1 important in other processes (IPF, COPD etc)

ENSMUSG00000029802 NM_011920.3 Abcg2 Mesenchymal cell marker

ENSMUSG00000035783 NM_007392.3 Acta2 Fibroblast cell marker

ENSMUSG00000029580 NM_007393.1 Actb Common house-keeping gene

ENSMUSG00000036040 NM_029981.1 Adamtsl2 Altered DNA methylation during septation

ENSMUSG00000015452 NM_007425.2 Ager Alveolar Type I cell marker

ENSMUSG00000001729 NM_001165894.1 Akt1 Altered DNA methylation during septation

ENSMUSG00000053279 NM_013467.3 Aldh1a1 Important for septation

ENSMUSG00000013584 NM_009022.3 Aldh1a2 Potentially important for septation

ENSMUSG00000022244 NM_008537.4 Amacr important in other processes (IPF , COPD etc)

ENSMUSG00000044217 NM_009701.4 Aqp5 Alveolar Type I cell marker

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Ensembl gene ID Accession number Gene name Rationale

ENSMUSG00000026576 NM_009721.5 Atp1b1 Lung fluid clearance

ENSMUSG00000060802 NM_009735.3 B2m Common house-keeping gene

ENSMUSG00000102037 NM_009742.3 Bcl2a1a Apoptosis regulator

ENSMUSG00000056216 NM_009884.3 Cebpg Important for lung development

ENSMUSG00000029084 NM_007646.4 Cd38 Airway smooth muscle cell functional responses

ENSMUSG00000018774 NM_009853.1 Cd68 Monocyte cell marker

ENSMUSG00000031673 NM_009866.4 Cdh1 Epithelial cell marker

ENSMUSG00000064246 NM_007695.2 Chil1 Monocyte cell marker

ENSMUSG00000040809 NM_009892.1 Chil3 Increased during septation

ENSMUSG00000022512 NM_016674.3 Cldn1 Tight junction protein

ENSMUSG00000070473 NM_009902.4 Cldn3 Tight junction protein (mostly epithelial)

ENSMUSG00000041378 NM_013805.4 Cldn5 Tight junction protein

ENSMUSG00000018569 NM_016887.6 Cldn7 Tight junction protein (mostly epithelial)

ENSMUSG00000001506 NM_007742.3 Col1a1 Fibroblast cell marker

ENSMUSG00000063063 NM_009819.2 Ctnna2 Altered DNA methylation during septation

ENSMUSG00000031360 NM_001168571.1 Ctps2 important in other processes (IPF , COPD etc)

ENSMUSG00000040856 NM_010052.4 Dlk1 Decreased during septation

ENSMUSG00000020661 NM_007872.4 Dnmt3a Altered DNA methylation during septation

ENSMUSG00000046179 NM_001013368.5 E2f8 Altered DNA methylation during septation

ENSMUSG00000000303 NM_009864.2 Cdh1 Epithelial cell marker

ENSMUSG00000020122 NM_207655.2 Egfr Important for lung development

ENSMUSG00000029675 NM_007925.3 Eln Altered DNA methylation during septation

ENSMUSG00000045394 NM_008532.2 Epcam Epithelial cell marker

ENSMUSG00000052504 NM_010140.3 Epha3 Involved in lung development

ENSMUSG00000028289 NM_001122889.1 Epha7 Involved in lung cancer, potential role in development

ENSMUSG00000021055 NM_010157.3 Esr2 Important regulator of multiple processes

ENSMUSG00000061731 NM_010162.2 Ext1 Altered DNA methylation during septation

ENSMUSG00000039109 NM_001166391.1 F13a1 Involved in lung injury , cancer

ENSMUSG00000057967 NM_008005.1 Fgf18 Important for septation

ENSMUSG00000030849 NM_010207.2 Fgfr2 Important regulator of multiple processes

ENSMUSG00000078302 NM_008242.2 Foxd1 Pericyte cell marker

ENSMUSG00000042812 NM_010426.1 Foxf1 Involved in lung development

ENSMUSG00000038402 NM_010225.1 Foxf2 Altered DNA methylation during fibrosis

ENSMUSG00000001020 NM_011311.1 S100a4 Fibroblast cell marker

ENSMUSG00000057666 NM_001001303.1 Gapdh Common house-keeping gene

ENSMUSG00000005836 NM_010258.3 Gata6 Important regulator of multiple processes

ENSMUSG00000029992 NM_013528.3 Gfpt1 important in other processes (IPF, COPD etc)

ENSMUSG00000041624 NM_001033322.2 Gucy1a2 Important for septation

ENSMUSG00000025534 NM_010368.1 Gusb Common house-keeping gene

ENSMUSG00000021109 NM_010431.2 Hif1a Hypoxia signaling

ENSMUSG00000058773 NM_020034.1 Hist1h1b Decreased during septation

ENSMUSG00000061615 NM_175660.3 Hist1h2ab Decreased during septation

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Ensembl gene ID Accession number Gene name Rationale

ENSMUSG00000032126 NM_013551.2 Hmbs Common house-keeping gene

ENSMUSG00000029919 NM_019455.4 Hpgds important in other processes (IPF, COPD etc)

ENSMUSG00000025630 NM_013556.2 Hprt Common house-keeping gene

ENSMUSG00000020053 NM_001111274.1 Igf1 Regulating miRNA altered during septation

ENSMUSG00000020427 NM_008343.2 Igfbp3 Altered DNA methylation during septation, fibrosis

ENSMUSG00000003477 NM_009349.3 Inmt Increased during septation

ENSMUSG00000026768 NM_001001309.2 Itga8 Involved in lung development

ENSMUSG00000040029 NM_001081113.1 Ipo8 important in other processes (IPF, COPD etc)

ENSMUSG00000030786 NM_001082960.1 Itgam Monocyte cell marker

ENSMUSG00000030789 NM_021334.2 Itgax Monocyte cell marker

ENSMUSG00000090122 NM_021487.1 Kcne1l important in other processes (IPF, COPD etc)

ENSMUSG00000063142.10 XM_006518608.1 Kcnma1 Altered DNA methylation during septation

ENSMUSG00000079852 NM_010649.3 Klra4 Increased during septation

ENSMUSG00000023043 NM_010664.2 Krt18 Epithelial cell marker

ENSMUSG00000061527 NM_027011.2 Krt5 Basal cell marker

ENSMUSG00000029570 NM_008494.3 Lfng Important for septation

ENSMUSG00000024529 NM_010728.2 Lox Altered DNA methylation during fibrosis

ENSMUSG00000028003 NM_023624.4 Lrat Increased during septation

ENSMUSG00000027070 NM_001081088.1 Lrp2 Altered DNA methylation during septation

ENSMUSG00000061068 NM_010779.2 Mcpt4 Decreased during septation

ENSMUSG00000026110 NM_173870.2 Mgat4a Involved in acute lung injury

ENSMUSG00000043613 NM_010809.1 Mmp3 Increased during septation

ENSMUSG00000018623 NM_010810.4 Mmp7 Important in lung fibrosis

ENSMUSG00000066108 XM_006508653.1 Muc5b Important in lung fibrosis

ENSMUSG00000037974 NM_010844.1 Muc5ac Epithelial cell marker

ENSMUSG00000024304 NM_007664.4 Cdh2 Tight Junction/Adhesion

ENSMUSG00000054008 NM_008306.4 Ndst1 Involved in pathologic airway remodeling

ENSMUSG00000031902 NM_010901.2 Nfatc3 Important for lung development

ENSMUSG00000073435 NM_019730.2 Nme3 Apoptosis-related gene

ENSMUSG00000026575 NM_138314.3 Nme7 Important for stem cell renewal

ENSMUSG00000014776 NM_030152.4 Nol3 Regulating miRNA altered during septation

ENSMUSG00000051048 NM_177161.4 P4ha3 Important in lung fibrosis

ENSMUSG00000068039 NM_013686.3 Tcp1 Basal cell marker

ENSMUSG00000029998 NM_025823.4 Pcyox1 important in other processes (IPF , COPD etc)

ENSMUSG00000029231 NM_011058.2 Pdgfra Important for septation

ENSMUSG00000024620 NM_008809.1 Pdgfrb Pericyte cell marker

ENSMUSG00000028583 NM_010329.2 Pdpn Alveolar Type I cell marker

ENSMUSG00000062070 NM_008828.2 Pgk1 important in other processes (IPF , COPD etc)

ENSMUSG00000053398 NM_016966.3 Phgdh important in other processes (IPF, COPD etc)

ENSMUSG00000005198 NM_009089.2 Polr2a important in other processes (IPF, COPD etc)

ENSMUSG00000071866 NM_008907.1 Ppia Common house-keeping gene

ENSMUSG00000024997 NM_007452.2 Prdx3 Mitochondrial oxidative stress regulator

Appendix 2—table 1 continued on next page

Kleyman et al. eLife 2017;6:e18541. DOI: 10.7554/eLife.18541 26 of 30

Tools and resources Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.18541


Appendix 2—table 1 continued

Ensembl gene ID Accession number Gene name Rationale

ENSMUSG00000026134 NM_008922.2 Prim2 Expressed in placenta and crucial for mammalian growth.

ENSMUSG00000033491 NM_178738.3 Prss35 Decreased during septation

ENSMUSG00000032487 NM_011198.3 Ptgs2 Regulating miRNA altered during septation

ENSMUSG00000056458 NM_011973.2 Mok Alveolar Type I cell marker

ENSMUSG00000037992 NM_001177302.1 Rara Important for septation

ENSMUSG00000022883 NM_019413.2 Robo1 Altered DNA methylation during septation

ENSMUSG00000025508 NM_026020.6 Rplp2

ENSMUSG00000066361 NM_008458.2 Serpina3c Increased during septation

ENSMUSG00000022097 NM_011359.1 Sftpc Alveolar Type II cell marker

ENSMUSG00000021795 NM_009160.2 Sftpd Alveolar Type II cell marker

ENSMUSG00000050010 NM_001033415.3 Shisa3 Altered DNA methylation during septation

ENSMUSG00000032402 NM_016769.3 Smad3 Important for septation

ENSMUSG00000042821 NM_011427.2 Snai1 Important for lung development and injury

ENSMUSG00000000567 NM_011448.4 Sox9 Altered DNA methylation during septation

ENSMUSG00000027646 NM_001025395.2 Src Altered DNA methylation during septation

ENSMUSG00000014767 NM_013684.3 Tbp Common house-keeping gene , involved in multiple processes

ENSMUSG00000000094 NM_172798.1 Tbx4 Altered DNA methylation during septation

ENSMUSG00000032228 NM_011544.3 Tcf12 Involved in multiple developmental processes

ENSMUSG00000022797 NM_011638.3 Tfrc Common house-keeping gene

ENSMUSG00000002603 NM_011577.1 Tgfb1 Important for septation

ENSMUSG00000045691 NM_153083.5 Thtpa important in other processes (IPF, COPD etc)

ENSMUSG00000032011 NM_009382.3 Thy1 Fibroblast cell marker

ENSMUSG00000028364 NM_011607.1 Tnc Altered DNA methylation during septation

ENSMUSG00000044986 NM_009437.4 Tst important in other processes (IPF, COPD etc)

ENSMUSG00000026803 NM_009442.2 Ttf1 Important for lung development

ENSMUSG00000008348 NM_019639.4 Ubc Common house-keeping gene

ENSMUSG00000023951 NM_001025250.3 Vegfa Angiogenesis; Altered DNA methylation during septation

ENSMUSG00000026728 NM_011701.4 Vim Mesenchymal cell marker

ENSMUSG00000020218 NM_011915.1 Wif1 Altered DNA methylation during septation

ENSMUSG00000022285 NM_011740.2 Ywhaz Common house-keeping gene

DOI: 10.7554/eLife.18541.026

Appendix 2—table 2. Summary of methylation dataset

Gene Number of loci Gene Number of loci

Cdh11 14 Zfp536 16

Src 11 Igfbp3 34

Sox9 16 Wif1 21

Dnmt3a 41 Vegfa 20

Eln 20 Tnc 4

Foxf2 41 Lox 17

Akt1 11

DOI: 10.7554/eLife.18541.027
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Appendix 2—table 4. Mean and standard deviation of mean squared error over all 126 genes

by TPS selecting 5 points and piecewise linear fits over 3 sets of points identified heuristically in

the literature.

Method Mean Std dev

TPS (0:5, 6, 9:5, 19 and 28) 0.40306335962 0.2206665163

Piecewise linear over 0:5, 7, 14, 28 0.594072719494 0.399642079492

Piecewise linear over 0:5, 2, 14, 28 0.710967061349 0.721681860787

Piecewise linear over 0:5, 4, 7, 14, 28 0.560990230501 0.364739525724
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