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Abstract

Defects in the genes encoding the Paf1 complex can cause increased genome instability.

Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of

gross chromosomal rearrangements (GCRs). Combining the cdc73Δmutation with individ-

ual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere

maintenance, resulted in synergistic increases in GCR rates. Whole genome sequence

analysis of GCRs indicated that there were reduced relative rates of GCRs mediated by

de novo telomere additions and increased rates of translocations and inverted duplications

in cdc73Δ single and double mutants. Analysis of telomere lengths and telomeric gene

silencing in strains containing different combinations of cdc73Δ, tel1Δ and yku80Δ muta-

tions suggested that combinations of these mutations caused increased defects in telomere

maintenance. A deletion analysis of Cdc73 revealed that a central 105 amino acid region

was necessary and sufficient for suppressing the defects observed in cdc73Δ strains; this

region was required for the binding of Cdc73 to the Paf1 complex through Ctr9 and for

nuclear localization of Cdc73. Taken together, these data suggest that the increased GCR

rate of cdc73Δ single and double mutants is due to partial telomere dysfunction and that

Ctr9 and Paf1 play a central role in the Paf1 complex potentially by scaffolding the Paf1 com-

plex subunits or by mediating recruitment of the Paf1 complex to the different processes it

functions in.

Author summary

Maintaining a stable genome is crucial for all organisms, and loss of genome stability has

been linked to multiple human diseases, including many cancers. Previously we found

that defects in Cdc73, a component of the Paf1 transcriptional elongation complex, give

rise to increased genome instability. Here, we explored the mechanism underlying this
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instability and found that Cdc73 defects give rise to partial defects in maintaining telo-

meres, which are the specialized ends of chromosomes, and interact with other mutations

causing telomere defects. Remarkably, Cdc73 function is mediated through a short central

region of the protein that is not a part of previously identified protein domains but targets

Cdc73 to the Paf1 complex through interaction with the Ctr9 subunit. Analysis of the

other components of the Paf1 complex provides a model in which the Paf1 subunit medi-

ates recruitment of the other subunits to different processes they function in. Together,

these data suggest that the mutations in CDC73 and CTR9 found in patients with hyper-

parathyroidism-jaw tumor syndrome and some patients with Wilms tumors, respectively,

may contribute to cancer progression by contributing to genome instability.

Introduction

Gross chromosomal rearrangements (GCRs), such as translocations and deletions, are com-

mon in many cancers [1]. DNA repair and DNA damage signaling defects that cause increased

rates of accumulating GCRs in model systems like Saccharomyces cerevisiae have been identi-

fied in sporadic tumors and in inherited cancer predisposition syndromes, suggesting that

increased genome instability plays a role in the development of some cancers [2–7]. In addi-

tion to defects in DNA metabolism [8,9], defects in transcription are also a source of genome

instability. How transcriptional defects cause GCRs is not completely understood, but colli-

sions with the replication machinery, formation of RNA:DNA hybrids, and/or transcription-

associated homologous recombination (HR) are potential mechanisms [10,11].

Recently we identified CDC73 in a large-scale screen for genes that suppress the formation

of GCRs in S. cerevisiae [6]. CDC73 encodes a subunit of the Paf1 complex, and CDC73 has

been previously implicated as playing a role in maintaining the stability of yeast artificial chro-

mosomes, chromosome transmission fidelity, and suppression of direct repeat HR [12–14].

The Paf1 complex, which is comprised of Paf1, Cdc73, Rtf1, Ctr9, and Leo1, binds to and mod-

ifies the activity of RNA polymerase during transcription [15–20]. This complex has been

implicated in a variety of processes, including transcription elongation, mRNA 3’-end matura-

tion, histone methylation and ubiquitination, expression of normal levels of telomerase RNA

TLC1 and maintenance of normal telomere lengths [16,21–24], and is conserved among

eukaryotes [25]. Somatic mutations in CDC73 in humans are associated with breast, renal,

gastric, and parathyroid cancers [26–28], and germline mutations in CDC73 cause the cancer

susceptibility syndrome hyperparathyroidism-jaw tumor syndrome (HPT-JT) [29,30]. In addi-

tion, a small fraction of familial Wilms tumor cases have been attributed to germline mutations

in CTR9 [31]. However, little is known about how CDC73 and CTR9 function as tumor sup-

pressors, particularly since mutations in the genes encoding the other members of the Paf1

complex have not yet been linked to the development of cancer.

Here we have investigated how the Paf1 complex acts to suppress genome instability with

the goal of shedding light on how the human homolog of CDC73 may function as a tumor

suppressor. We have found that PAF1, CDC73, and CTR9 play the most important roles in sup-

pressing the accumulation of GCRs among the genes that encode subunits of the Paf1 com-

plex. Strains with CDC73 defects appear to have perturbations in telomere maintenance that

result in increased GCR rates and that these defects result in synergistic increases in GCR rates

when combined with defects in TEL1 and YKU80, which cause other types of defects in telo-

mere maintenance that also result in increased GCR rates. Deletion analysis identified a 105

amino acid region of Cdc73 that was necessary and sufficient for its incorporation into the
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Paf1 complex, nuclear localization, and Cdc73 function. These analyses enhance our under-

standing of how Cdc73, as a subunit of the Paf1 complex, suppresses genome instability, and

provide insights into how its human homolog may function as a tumor suppressor.

Results

Analysis of genome instability, transcriptional defects, and silencing

defects in Paf1 complex deletion strains suggests a model for the Paf1

complex

Because we previously identified CDC73 as a genome instability suppressing (GIS) gene [6],

we tested if other genes encoding subunits of the Paf1 complex suppressed the formation of

GCRs selected in the duplication-mediated GCR (dGCR) assay (Fig 1A). The cdc73Δ, ctr9Δ,

Fig 1. Defects in the genes encoding Paf1 complex subunits affect the suppression of GCRs, transcription elongation, and telomeric

silencing to varying degrees. a. The dGCR, sGCR, and uGCR assays involve selection against the CAN1 and URA3 genes placed on the terminal

non-essential region of chrV L. Breakpoints must occur between the most telomeric essential gene, PCM1, and the CAN1 and URA3 genes. The dGCR

assay primarily selects GCRs mediated by non-allelic HR between the DSF1/HXT13 segmental duplication (boxed) and regions of divergent homology

on chrIV L, chrX L, and chrXIV R. The sGCR assay contains a portion of chromosome III containing the SUP53 tRNA and ~100 bp fragment of

YCLWdelta5 at the can1::PLEU2-NAT insertion (boxed, also found in the version of the dGCR assay used here) and allows selection of HR-mediated

rearrangements that target many tRNA and Ty-related sequences in the S. cerevisiae genome as well as nonhomology- and microhomology-mediated

translocations, interstitial deletions, and de novo telomere addition-mediated GCRs. The uGCR assay contains no sequence homology within the

breakpoint region and allows selection of nonhomology- and microhomology-mediated translocations, interstitial deletions, and de novo telomere

addition-mediated GCRs. The number of “+” symbols indicates the relative importance of different types of GCRs in each GCR assay observed in wild-

type strains. b. The table summarizes the effects of deletion of the genes encoding Paf1 complex subunits on the dGCR rate as single mutations and as

double mutation combinations with tel1Δ or yku80Δmutations (S1 Table), resistance to 6-azauracil (S1A Fig), and telomeric silencing (S1A Fig). “+++”

corresponds to wild-type, “–” corresponds to a severe defect and “++” and “+” correspond to intermediate defects. c. Model of the general structure of

the Paf1 complex based on cryoelectron microscopy results [81], which illustrates Paf1 as a subunit that facilitates the function of the other subunits, as

indicated.

https://doi.org/10.1371/journal.pgen.1007170.g001
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and paf1Δ single mutations caused the largest increases in dGCR rate (9–22 fold), and the

leo1Δ and rtf1Δ single mutations caused small increases in the dGCR rate (3–4 fold; Fig 1B; S1

Table). As will be discussed in detail below, we found that the cdc73Δmutation caused a syner-

gistic increase in the dGCR rate when combined with yku80Δ or tel1Δmutations (Fig 1B) and

tested if the yku80Δ or tel1Δmutations synergized with deletions of other Paf1 complex genes.

Similar to the effects of the single mutations, the cdc73Δ, ctr9Δ, and paf1Δmutations caused

strong synergistic increases in the dGCR rate when tested in combination with either a yku80Δ
or tel1Δmutation whereas the rtf1Δ and leo1Δmutations did not cause a synergistic increase

in the dGCR rate in combination with either a yku80Δ or tel1Δmutation relative to the respec-

tive single mutations (Fig 1B; S1 Table). Interestingly, the mutations that caused the strongest

increases in GCR rates in these experiments, cdc73Δ, paf1Δ and ctr9Δ, caused the largest

decreases in telomere lengths and TLC1 levels along with causing strong defects in telomere

gene silencing (see below), whereas the mutations that caused little if any increases in GCR

rates in these experiments, rtf1Δ and leo1Δ, also caused the smallest decreases in telomere

lengths and TLC1 levels [32].

Given the differences in the roles of the Paf1 complex subunits in suppressing the accumu-

lation of GCRs, we also tested if transcriptional elongation defects, which are caused by Paf1

complex defects [33–35], might correlate with the increased GCR rates in mutant strains. We

measured transcriptional elongation defects that result in sensitivity to 6-azauracil, which

depletes cellular rGTP levels [36]. Deletion of PAF1 or CTR9 caused strong sensitivity to

6-azauracil, deletion of CDC73 caused weaker sensitivity, and deletion of RTF1 or LEO1 caused

no sensitivity (Fig 1B; S1A Fig). These results are in accord with the results of studies employ-

ing other transcriptional elongation assays [33–35]; however, it should be noted that the mag-

nitude of the effect caused by defects affecting the Paf1 subunits, including Cdc73, varies

between the transcriptional elongation assays used, and 6-azauracil sensitivity assays can show

strain-to-strain variation [37].

Strains with deletions of PAF1 or RTF1 have defects in the silencing of telomere-proximal

genes (CDC73, CTR9 and LEO1 were not tested) [23], which has been termed the telomere

position effect (TPE) [38] and deletions in PAF1, CTR9, RTF1, and to a lesser extent CDC73,

but not LEO1 cause defects in the histone H3 modifications required for gene silencing includ-

ing TPE [23,39–41]. To determine if TPE defects correlated with increased GCR rates, we mea-

sured TPE by monitoring the survival of strains with a telomere-proximal URA3 gene in the

presence of 5-fluoroorotic acid (5FOA), which is toxic to strains expressing URA3. Deletion of

PAF1 and RTF1 caused the greatest loss of TPE (Fig 1B; S1A Fig), whereas milder TPE defects

were observed in cdc73Δ and ctr9Δ strains, and no TPE defect was observed in the leo1Δ strain.

The stronger TPE defects caused by the paf1Δ and rtf1Δmutations are consistent with the

known role of Paf1 and Rtf1 in the specific recruitment of histone modifiers [23,39]. To verify

that the TPE defects in the cdc73Δ strain were due to loss of telomere silencing and not due to

induction of ribonucleotide reductase, which accounts for the apparent TPE defect in pol30-8
and cac1Δ strains [42], we tested the 5FOA sensitivity of the cdc73Δ strain in the presence of

sublethal concentrations of hydroxyurea (HU), which rescues the TPE in pol30-8 and cac1Δ
strains [42]. Consistent with the results in the absence of HU, growth on 5FOA-containing

plates was not restored by addition of HU (S1B Fig). We did not test the deletion of the other

Paf1 complex genes because their role or lack of a role in transcriptional silencing is well estab-

lished [23,39–41] and because paf1Δ and ctr9Δ strains are HU sensitive [37].

The data presented here along with published data [32] suggest that PAF1 plays important

roles in genome stability, transcriptional elongation, telomere silencing, maintaining TLC1
levels, and telomere length maintenance. CDC73 has an important role in genome stability,

maintaining TLC1 levels, telomere length maintenance and a lesser but detectable role in

Cdc73 suppresses genome instability
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telomere silencing but little if any role in transcriptional elongation. CTR9 has important roles

in genome stability, transcriptional elongation, maintaining TLC1 levels, and telomere length

maintenance, and a role in telomere silencing that was similar to that observed for CDC73.

RTF1 has the most important role in telomere silencing, but plays little if any role in genome

stability and transcriptional elongation, and lesser roles in maintaining TLC1 levels, and telo-

mere length maintenance. And LEO1 plays little if any role at all in the Paf1 complex functions

considered here and only a modest role in maintaining TLC1 levels and telomere length main-

tenance. These observations suggest a model for the complex in which Paf1 facilitates the

functions of the other subunits potentially by mediating recruitment of the complex to the dif-

ferent processes it functions in (Fig 1C), consistent with the results of coimmunoprecipitation

experiments in S. cerevisiae and binding assays performed with human homologs [22,43,44].

A genetic screen identifies mutations causing synergistic increases in

genome instability when combined with a cdc73Δmutation

Since PAF1 and CDC73 played the largest roles in suppressing GCRs and the cdc73Δmutation

caused fewer additional defects, we sought to understand how the Paf1 complex suppresses

genome instability by focusing on CDC73. We crossed strains containing the dGCR assay and

a cdc73Δmutation or an rtf1Δmutation as a control to a 638-strain subset of the S. cerevisiae
deletion collection that contained deletions of known GIS genes and cooperating GIS (cGIS)

genes [6,45]. The resulting haploid double mutant strains were scored by patch tests for the

increased accumulation of CanR 5FOAR papillae that are a measure of the formation of GCRs

relative to the single mutant strains (Fig 2A). Forty-three mutations caused increased strain

patch scores when combined with the cdc73Δmutation (Fig 2B); potential suppressive interac-

tions were not investigated as slow growth phenotypes can also cause reduced strain patch

scores. Selected interactors causing increased patch scores were verified by quantitative fluctu-

ation assays (S2 Table). Almost none of the mutations that caused increased scores when com-

bined with the cdc73Δmutation interacted with an rtf1Δmutation (Fig 2B), consistent with the

more modest effects of rtf1Δ on GCR rates (Fig 1B).

Some mutations affecting telomere homeostasis synergize with a

cdc73Δmutation

Among the CDC73 interactors were 7 genes (YKU70, YKU80, TEL1, MRC1, NUP60, RAD6,

and VPS20) in which mutations cause shorter telomeres [46–48]. Combined with reports that

cdc73Δ strains have reduced levels of the telomerase RNA TLC1 [32], these results suggested

that defects in telomere homeostasis could be responsible for some of the strong interactions.

To extend these results, we focused on YKU80, YKU70, and TEL1 because the role of these

genes in telomere homeostasis is better understood than the other 4 genes. A cdc73Δmutation

showed synergistically increased patch scores when it was combined with either yku70Δ or

yku80Δmutations, which disrupt the Ku complex and cause both shortened telomeres and

non-homologous end joining (NHEJ) defects [49,50]. Quantitative rate measurements demon-

strated that the cdc73Δ yku80Δ double mutant had a 162-fold increase in dGCR rate as com-

pared to the 4- to 9-fold increase in dGCR rate seen for the respective single mutants (Table 1).

In contrast, deletion of DNL4, which encodes the DNA ligase required for NHEJ but not telo-

mere maintenance, did not result in a synergistic increase in GCR rates when combined with

the cdc73Δmutation (S2 Table) suggesting that the increased GCR rates of the cdc73Δ yku70Δ
and cdc73Δ yku80Δ double mutants do not involve a defect in NHEJ.

Similarly, the cdc73Δmutation showed a strong interaction with a tel1Δmutation in the

dGCR assays as measured by patch scores (Fig 2A and 2B), and the cdc73Δ tel1Δ double

Cdc73 suppresses genome instability
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mutant had a 236-fold increase in the dGCR rate (Table 1). TEL1 encodes a protein kinase

involved in the DNA damage checkpoint that also plays a role in maintaining normal telomere

lengths such that a tel1Δmutation causes shortened telomere lengths [53,54]. In contrast,

Fig 2. Systematic analysis of CDC73 as a suppressor of GCRs selected in the dGCR assay. a. Sample

patches from each of two biological replicates with single and double mutants for genes with mutations that

show a synergistic interaction with the cdc73Δmutation. Each papilla corresponds to a GCR event and the

greater the number of papillae per patch the greater the GCR patch score, which correlate with increased

GCR rates. b. dGCR strain scores, which are the average of 3 independent patch scores for mutations that

cause increased patch scores when combined with the cdc73Δmutation. The semi-quantitative scoring

strategy assigns a number between 0 and 5 to each patch depending on the number of papillae (0: no

papillae, 1: 1 to 5 papillae, 2: 6 to 15 papillae, 3: 16 to ~150–200 papillae, 4: distinct papillae that were too

many or too close together to count, 5: a lawn of papillae covering the entire patch). A score of 1 corresponds

to the wild-type level of GCRs. Interactions with cdc73Δ or rtf1Δmutations that resulted in significantly

increased patch scores using previously established criteria [6] are displayed in bold. Single mutations

causing decreased telomere lengths are underlined [46,47]. c. The number of GCRs in the dGCR assay

mediated by recombination between DSF1-HXT13 and MAN2-HXT17, t(V;XIV), or between HXT13 and

HXT15 or HXT16, t(V;IV or X), were determined by PCR analysis.

https://doi.org/10.1371/journal.pgen.1007170.g002
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mutant strains that contained a cdc73Δmutation in combination with defects in other check-

point genes either did not have increased dGCR patch scores (RAD9, DUN1, and RAD53) or

only had small increases in dGCR patch scores (MEC3, RAD17, RAD24, and MEC1), support-

ing the view that the genetic interaction between the cdc73Δ and tel1Δmutations reflects the

telomere maintenance defect caused by the tel1Δmutation. The tel1Δ yku80Δ double mutant

had a 28-fold increase in the dGCR rate (Table 1 and S2 Table) and the cdc73Δ tel1Δ yku80Δ
triple mutant had a 2024-fold increase in the dGCR rate (S2 Table), consistent with the

hypotheses that loss of CDC73, YKU80, and TEL1 cause partial defects in different telomere

maintenance pathways and that the increased GCR rates that result from combining mutations

in these genes may reflect increased telomere maintenance defects.

GCRs selected in the dGCR assay are most commonly generated by non-allelic HR between

the DSF1-HXT13 region on the left arm of chromosome V (chrV L) and divergent homologies

on chrIV L, chrX L, and chrXIV R [51]. PCR analysis of GCRs formed in the cdc73Δ, cdc73Δ
tel1Δ and cdc73Δ yku80Δ dGCR strains showed that the distribution of GCRs were essentially

the same as that from the wild-type strain, despite the>200-fold increase in GCR rate in some

of the strains analyzed (Fig 2C). As expected, introduction of the HR-defective rad52Δmuta-

tion decreased the dGCR rates of the cdc73Δ tel1Δ and cdc73Δ yku80Δ double mutants by

45-fold and 25-fold, respectively (S2 Table). In addition, the rad52Δmutation shifted the spec-

trum of GCRs recovered in the cdc73Δmutant to GCRs that were not formed by non-allelic

HR (Fig 2C).

The cdc73Δmutation reduces the relative efficiency of forming de novo

telomere addition GCRs

As observed in the dGCR assay, synergistic increases in GCR rates were also observed when

the cdc73Δmutation was combined with either the yku80Δ or tel1Δmutation in strains

Table 1. Synergy between cdc73Δ and yku80Δ, tel1Δ, and exo1Δ in multiple GCR assays.

Genotype dGCR assay sGCR assay uGCR assay

RDKY CanR 5FOAR Rate† RDKY CanR 5FOAR Rate† RDKY CanR 5FOAR Rate†

Wild-type 7635 8.1 [6.4–15] x 10−8 (1) 7964 6.1 [4.3–18] x 10−9 (1) 6677 2.27 [1.3–4.8] x 10−9 (1)*

cdc73Δ 7986 7.54 [3.5–22] x 10−7 (9.3) 8407 1.68 [1.1–3.0] x 10−7 (28) 8480 1.56 [0.5–2.1] x 10−8 (6.9)

tel1Δ 8340 3.38 [2.0–4.9] x 10−7 (4.2) 8405 7.11 [5.8–8.5] x 10−9 (1.2) 6761 4.99 [0.0–9.2] x 10−9 (2.2)*

yku80Δ 8339 3.29 [1.5–10] x 10−7 (4.1) 8406 3.25 [1.3–5.7] x 10−9 (0.5) 8006 <6.88 [0.0–7.9] x 10−10 (<0.3)*

cdc73Δ tel1Δ 8324 1.91 [0.7–3.3] x 10−5 (236) 8409 8.00 [3.9–11] x 10−7 (131) 8481 2.14 [1.0–7.9] x 10−7 (94)

cdc73Δ yku80Δ 8323 1.31 [0.7–3.4] x 10−5 (162) 8411 1.51 [0.5–2.8] x 10−6 (248) 8482 3.73 [2.2–5.2] x 10−7 (163)

tel1Δ yku80Δ 8467 2.27 [1.3–3.0] x 10−6 (28) 8408 1.86 [1.7–2.7] x 10−8 (3.1) n.d.

pif1Δ n.d. 8342 2.49 [1.6–3.5] x 10−6 (408) n.d.

cdc73Δ pif1Δ n.d. 8343 4.36 [0.3–8.4] x 10−7 (72) n.d.

exo1Δ 8419 2.21 [1.6–2.7] x 10−7 (2.7) 8469 1.09 [0.5–1.6] x 10−8 (1.8) n.d.

cdc73Δ exo1Δ 8428 1.02 [0.8–3.5] x 10−5 (126) 8470 2.22 [1.2–3.6] x 10−7 (36) n.d.

tel1Δ exo1Δ 8464 6.13 [3.2–12] x 10−7 (7.6) 8473 1.86 [0.6–3.0] x 10−8 (3.1) n.d.

yku80Δ exo1Δ 8463 1.44 [1.2–2.2] x 10−7 (1.8) 8472 8.78 [5.2–14] x 10−10 (0.14) n.d.

* GCR rate from [51,52]. The uGCR rate determined using a wild-type uGCR strain constructed in RDKY7635, which is highly related to RDKY6677, was

1.8 [0.7–4.1] x 10−9.
†Rate of accumulating CanR 5FOAR progeny. The numbers in square brackets [] are the 95% confidence interval limits. The number in parenthesis () is the

fold increase relative to the wild-type assay.

n.d., not determined.

https://doi.org/10.1371/journal.pgen.1007170.t001
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containing either the unique sequence (uGCR) assay or the short homology GCR (sGCR)

assay (Table 1). Since the sGCR assay selects for a somewhat broader diversity of types of

GCRs including de novo telomere additions than the uGCR assay and is not dominated by a

single type of GCR as compared to the dGCR assay (summarized in Fig 1A), we used the

sGCR assay to determine if the absence of CDC73 altered the distribution of the GCRs formed.

We analyzed 1 parental strain and 11 independent GCR-containing isolates by paired-end

next-generation sequencing for the wild-type strain, the cdc73Δ single mutant strain, and the

cdc73Δ tel1Δ and cdc73Δ yku80Δ double mutant strains (Fig 3; S3 and S4 Tables; S2–S8 Figs).

In the wild-type sGCR strain, 46% of the GCRs analyzed (5 of 11) were produced by de novo
telomere addition, 18% (2 of the 11) were produced by HR between the SUP53 tRNA gene

introduced by the can1::PLEU2-NAT marker and another leucine tRNA gene, and 36% (4 of the

11) were produced by HR between the YCLWdelta5 fragment introduced by the can1::PLEU2-
NAT marker and another Ty-related sequence (Fig 3A; S5,S9 and S10 Figs; S4 Table). The

presence of both de novo telomere addition and HR-mediated GCRs among the GCRs selected

in the sGCR assay is useful for characterizing mutations that alter the GCR spectra.

Analysis of GCRs formed in the cdc73Δ, cdc73Δ tel1Δ, and cdc73Δ yku80Δ sGCR strains

revealed that no de novo telomere addition GCRs were recovered when CDC73 was deleted

(Fig 3A; S6–S8 Figs; S4 Table). Remarkably, the majority of the GCRs selected in strains con-

taining a cdc73Δmutation were inverted duplications, and most of these contained a second

breakpoint that was mediated by HR (Fig 3G; S11 Fig). Inverted duplications mediated by

hairpins were frequent in the cdc73Δ tel1Δ sGCR strain (Fig 3H; S12 Fig), which is consistent

with the previously observed increase in hairpin-mediated inverted duplications observed in

the uGCR assay for the tel1Δ single mutant strain [52]. For inverted duplication GCRs, the ini-

tial inversion GCRs would be predicted to be dicentric, but in all cases identified here, these

GCRs underwent additional rearrangements to generate stable monocentric chromosomes.

These additional rearrangements commonly involved HR between repetitive elements on

chrV L and other repetitive elements elsewhere in the genome, including an unannotated delta

sequence on chrV R (S13 and S14 Figs). All of the GCRs observed other than de novo telomere

addition-mediated GCRs were different types of translocations; the rates of accumulating

these translocations in the sGCR assay relative to the wild-type rate were increased 52-fold for

the cdc73Δ single mutant, 242-fold for the cdc73Δ tel1Δ double mutant, and 460-fold for the

cdc73Δ yku80Δ double mutant sGCR strains. Most GCR-containing strains contained a nor-

mal complement of chromosomes, except for one cdc73Δ yku80ΔGCR-containing strain that

contained two copies of chrXVI (S15 Fig).

Taken together, the shift in the GCR spectra in sGCR strains lacking CDC73 is consistent

with an underlying defect in telomere homeostasis as most mutations that result in high GCR

rates result in increased levels of de novo telomere addition GCRs as long as functional telome-

rase is present [55]. Given the limits on the numbers of GCRs we can presently sequence, our

analysis cannot definitively prove that de novo telomere addition GCRs are not formed when

CDC73 is deleted, but does demonstrate that other types of GCRs, which are all different types

of translocations, are selectively increased (e.g., the increase in the rate of de novo telomere

additions in the cdc73Δmutant relative to the wild-type is <5-fold compared to a 52-fold

increase in the rate of translocations). The relative lack of de novo telomere addition GCRs

among the GCRs selected in the sGCR assay in strains containing cdc73Δmutations could

indicate a complete failure of de novo telomere additions, as is observed with strains with dele-

tions of YKU80 or genes encoding telomerase subunits [55], or a partial defect that only

decreases the efficiency of de novo telomere additions relative to other GCR-forming mecha-

nisms, as is observed with tel1Δ strains [52,55]. We therefore combined the cdc73Δmutation

with a deletion of PIF1, which causes a substantial increase in GCRs formed through an
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increase in de novo telomere additions due to decreased inhibition of telomerase at DSBs

[56,57], even under conditions where pif1 mutations potentially prevent the formation of

GCRs mediated by break-induced replication [52,55]. Mutations inhibiting de novo telomere

addition suppress the increased GCR rate caused by the pif1Δmutation, whereas mutations

causing only reduced efficiency of de novo telomere addition do not [52,55]. The cdc73Δmuta-

tion partially suppressed the increased GCR rate caused by the pif1Δmutation (Table 1), sug-

gesting that the cdc73Δmutation causes a substantial, but incomplete, defect in the formation

of GCRs mediated by de novo telomere addition. This could be due to reduced levels of func-

tional telomerase resulting from the partial reduction of TLC1 telomerase RNA levels observed

in cdc73Δmutants [32].

A cdc73Δmutation synergizes with deletion of YKU80 and TEL1 to

cause shortened telomeres

Deletions of CDC73, YKU70, YKU80 and TEL1 all result in shortened telomeres [32,46,47]. To

investigate if cdc73Δ double and triple mutant strains have increased telomere defects in addi-

tion to increased GCR rates, we generated haploid single, double, and triple mutant strains

containing different combinations of CDC73, EXO1, TEL1 and YKU80 deletions by crossing

mutant strains to each other to generate fresh mutant haploid spore clones for telomere length

analysis. Consistent with previous results [32,46,47], telomere lengths were reduced in cdc73Δ,

and to a greater extent in tel1Δ, and yku80Δ single mutant strains (Fig 4A). Exo1 plays a role in

resection of deprotected telomeres [58] and deleting EXO1 partially restored the shortened

telomeres caused by the cdc73Δ, tel1Δ, and yku80Δmutations; this is consistent with prior

observations that exo1Δ yku80Δ double mutants have slightly longer telomeres than yku80Δ
single mutants [59]. The tel1Δ yku80Δ, cdc73Δ yku80Δ, and cdc73Δ tel1Δ double mutant com-

binations all showed potential signs of additional telomere dysfunction compared to the

respective single mutants, which included: (1) a telomere length that was shorter than seen in

the respective single mutants (cdc73Δ tel1Δ) or potentially shorter than seen in the respective

single mutants (tel1Δ yku80Δ, which was previously reported [60], and cdc73Δ yku80Δ); and

(2) a smeared telomere pattern (tel1Δ yku80Δ and cdc73Δ yku80Δ), which was reminiscent of

the telomere pattern seen in telomerase-defective post-senescent survivors that maintain their

telomeres by alternative mechanisms [61]. Remarkably, the cdc73Δ tel1Δ yku80Δ triple mutant

Fig 3. GCRs selected in cdc73Δmutants are characterized by reduced levels of de novo telomere additions and increased levels of

inverted duplications. a. Distribution of different categories of GCRs selected in the sGCR assay. b.-h. Copy number analysis of chrV L (left)

and the target chromosomes (right) for representative GCRs selected in the sGCR assay based on whole genome sequencing. The thick

hashed blue arrow indicates sequences within the GCR; the thin dashed blue arrow indicates connectivity between portions of the GCR that

map to different regions of the reference chromosome. Filled triangles are Ty-related (red) or other (blue) duplicated sequences involved in

GCR-related HR events. Junction sequences are displayed for rearrangements not associated with copy number changes. b. The copy

number distribution for the parental strain. c. De novo telomere addition with a terminal deletion of chrV L and a chrV L/de novo telomere

junction sequence. d. Microhomology-mediated translocation with a terminal deletion of chrV L, and a duplication of a unique sequence from

chrXV R terminated by a telomere (TEL15R). e. Translocation GCR mediated by HR involving the YCLWdelta5 fragment at the can1::PLEU2-

NAT locus, a loss of all unique sequences telomeric to can1::PLEU2-NAT, a duplication of chrVII R bounded byYGRWdelta21 and a telomere

(TEL07R) at the other end, and characterized by uniquely mapping read pairs that spanned the YCLWdelta5/YGRWdelta21 junction. f.

Translocation GCR mediated by HR involving the SUP53 tRNA gene at the can1::PLEU2-NAT locus had a loss of all unique sequences

telomeric to can1::PLEU2-NAT, a duplication of chrI R bounded at one end by a SUP53 homolog and a telomere (TEL01R) at the other end,

and characterized by uniquely mapping read pairs that spanned the SUP53/tRNA junctions. g. Inverted duplication GCR mediated by an

YCLWdelta5/YELWdelta1 HR-mediated event associated with loss of all unique sequences telomeric to can1::PLEU2-NAT, duplication on chrV

L bounded by YELWdelta1 and YELCdelta4, and duplication of chrII L bounded by a YBLWdelta5/6 and a telomere (TEL02L) mediated by HR

between YELCdelta4 and YBLWdelta5/6. The YCLWdelta5/YELWdelta1 and YELCdelta4/YBLWdelta5/6 junctions were characterized by

uniquely mapping read pairs that spanned each junction. h. Hairpin-mediated inverted duplication GCR had a terminal deletion of chrV L, a

duplication immediately adjacent to the deletion bounded by an inverted repeat hairpin sequence (light blue arrow) at one end and

YELWdelta1/2 at the other end, and a duplication of chrV R bounded by “YERWdelta27” and a telomere (TEL05R) mediated by HR between

YELWdelta1/2 and “YERWdelta27” characterized by uniquely mapping read pairs that spanned the YELWdelta1/2/“YERWdelta27” junction.

https://doi.org/10.1371/journal.pgen.1007170.g003
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strain did not have a distinct telomere-containing band, but rather had only a smeared pattern,

suggestive an even stronger telomere defect. The genetic interactions observed between the

cdc73Δ, tel1Δ, and yku80Δmutations resulting in increased telomere dysfunction mirrors the

synergistic increases in GCR rates seen in strains containing combinations of these mutations.

The slow growth of the cdc73Δ single and double mutants partially

recovers after many rounds of serial restreaking

The cdc73Δ single mutant and the tel1Δ yku80Δ, cdc73Δ yku80Δ, and cdc73Δ tel1Δ double

mutants all grow slowly and have evidence of telomere defects. We therefore investigated

whether or not these strains would show evidence of crisis, escape from senescence and

improved growth by serially restreaking the mutant strains on non-selective medium (S16

Fig). To ensure that our serial restreaking procedure could detect senescence and recovery, we

tested the tel1Δ yku80Δ double mutant strain and found it initially grew slowly but eventually

recovered a wild-type growth rate as previously reported [62] (not illustrated). In contrast, the

slow growth of the cdc73Δ single mutant and the even slower growth of the cdc73Δ yku80Δ,

Fig 4. Loss of CDC73 results in a telomere defect. a. Southern blot of XhoI-digested genomic DNA isolated from strains of the indicated

genotypes derived by sporulation of appropriate diploids and analyzed with a telomere-specific probe immediately after sporulation and

genotyping. The dashed line corresponds to wild-type telomere length. b. Strains were serially propagated on non-selective media for >20

restreaks and then tested by telomere Southern blot as above. c. Strains of the indicated genotypes were obtained by sporulation of

heterozygous diploids and analyzed by pulse field gel electrophoresis. Wild-type chromosome sizes are labeled (left). Chromosome bands

with new sizes are indicated with solid triangles, and missing bands are indicated with open triangles. Decreased band intensity and

increased smearing can be seen in strains that were shown to undergo senescence. d. TPE was assayed by plating 10-fold serial dilutions

of cdc73Δ, tel1Δ, and yku80Δ single and double mutant strains on selective media or selective media containing 5FOA. Loss of telomeric

silencing is indicated by increased sensitivity to 5FOA.

https://doi.org/10.1371/journal.pgen.1007170.g004
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and cdc73Δ tel1Δ double mutants showed only partial improvement in growth after 11 rounds

of restreaking and never achieved wild-type growth rates. One possible explanation for this dif-

ference is that telomere maintenance-independent effects on transcription could also contrib-

ute to the slow growth phenotype caused by the cdc73Δmutation.

The telomere structures of these serially propagated strains were analyzed by Southern blot

and the telomere species of the tel1Δ yku80Δ, cdc73Δ tel1Δ, cdc73Δ yku80Δ, and cdc73Δ tel1Δ
yku80Δ strains were all observed to contain smeared telomere fragments (Fig 4B); this suggests

that the telomeres in these mutants may be partially maintained by one of the RAD52-depen-

dent telomerase-independent telomere maintenance pathways [61,63]. Consistent with this,

the cdc73Δ tel1Δ rad52Δ and cdc73Δ yku80Δ rad52Δ triple mutants all had very short telomeres,

but lacked the smeared pattern seen in the Southern blots (Fig 4B). In contrast, we were unable

to generate a cdc73Δ tel1Δ yku80Δ rad52Δ quadruple mutant by either PCR mediated gene dis-

ruption or by crossing different mutant strains to each other; this is consistent with a require-

ment of RAD52-dependent HR in the cdc73Δ tel1Δ yku80Δ triple mutant either for telomere

maintenance or for the repair of some other type of spontaneous DNA damage in this triple

mutant.

Strains with increasing levels of telomere defects have increased levels

of chromosome alterations

Pulse field gel electrophoresis (PFGE) was used to analyze chromosomes from cdc73Δ single,

double and triple mutant strains for the presence of aberrant sized chromosomes (Fig 4C).

The cdc73Δ, tel1Δ, and yku80Δ single mutant strains and the cdc73Δ tel1Δ, cdc73Δ yku80Δ,

and tel1Δ yku80Δ double mutant strains had chromosomal banding patterns that were simi-

lar to that from the respective wild-type strain, although the double mutants showed more

chromosomes with abnormal sizes despite being grown in the absence of any selection for

chromosome rearrangements. The cdc73Δ tel1Δ rad52Δ and cdc73Δ yku80Δ rad52Δ triple

mutants had increased numbers of chromosomes with abnormal sizes compared to the

respective cdc73Δ tel1Δ and cdc73Δ yku80Δ double mutants. In contrast, no chromosome

bands were visible when the cdc73Δ tel1Δ yku80Δ triple mutant was analyzed, which is con-

sistent with reports that chromosomes from post-senescent survivors are unable to enter

PFGE gels, likely because of the structure of the HR intermediates that act in telomere main-

tenance [61]. The aberrant chromosomes observed in this experiment were not studied fur-

ther; however, the structures of GCRs selected in many of these mutant strains have been

determined (Fig 3).

Strains with increasing levels of telomere defects show increased TPE

defects

We also investigated whether cdc73Δ single and double mutants with telomere defects had

TPE defects. Consistent with previous results [64], we found that deletion of YKU80 caused

significant TPE defects relative to wild-type cells and hence a decreased ability to grow on

plates containing 5FOA (Fig 4D). In contrast, the cdc73Δ and tel1Δ single mutant strains had

modest but easily detectible or no sensitivity to 5FOA, respectively (Fig 4D, S1A Fig, S17A

Fig). However, the cdc73Δ yku80Δ and cdc73Δ tel1Δ double mutant strains showed increased

sensitivity to 5FOA, suggesting increased perturbation of the chromatin structure proximal to

the telomeres, and hence loss of silencing in these double mutants. Consistent with a synergis-

tic defect in TPE rather than an indirect effect due to induction of ribonucleotide reductase

[42], growth on 5FOA-containing plates was not restored by addition of HU (S1B Fig, S17A

Fig, S20B Fig).
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Not all mutations affecting telomere length homeostasis synergize with

cdc73Δ
To test interactions between cdc73Δ and additional telomere homeostasis mutations, we mea-

sured the dGCR rates of strains containing a cdc73Δmutation in combination with deletions

of SIR2, SIR3, or SIR4, which cause defects in TPE, telomere chromatin structure and, at least

in the case of SIR3 and SIR4 (SIR2 does not appear to have been tested) also cause shortened

telomeres [61,65], but were missing from our screen as these genes are required for mating

[61,66]. The single sir2Δ, sir3Δ and sir4Δmutant dGCR rates were increased 6 to 8-fold relative

to the wild-type dGCR rate, and the double mutation combinations with the cdc73Δmutation

resulted in a synergistic increase in dGCR rates that were 41 to 190-fold higher than the wild-

type dGCR rates (S2 Table).

In contrast, only 9 of the 36 mutations tested (including sir3Δ and sir4Δ) that were known

to cause shortened telomeres [46–48,67] resulted in synergistic increases in dGCR rates when

combined with cdc73Δ (S18 Fig). However, of the 27 mutations that did not interact, 3 muta-

tions caused extremely high GCR rates and 1 mutation was in a Paf1 complex genes making it

unlikely that interactions could be detected. Of the remaining 23 non-interacting mutations,

many caused weak or inconsistent phenotypes (lst7Δwas reported to cause both long and

short telomeres), 20 were identified in only one of two genetic screens performed suggestive of

causing weak or inconsistent phenotypes and in most cases have not yet been demonstrated as

causing a defect in a specific aspect of telomere homeostasis such as defects in TPE. Moreover,

the cdc73Δmutation also caused a strong synergistic increase in the dGCR rate when com-

bined with a deletion of EXO1 (Table 1). EXO1 encodes a 5’ to 3’ exonuclease that acts in dif-

ferent DNA repair pathways and is the primary nuclease that resects deprotected telomeres

[68–70]. Unlike the case of the cdc73Δmutation, combining the exo1Δmutation with either a

yku80Δ or a tel1Δmutation did not cause synergistic increases in the dGCR rate (S2 Table).

Taken together, these data do not argue that the cdc73Δmutation causes synergistically

increased GCR rates in strain backgrounds that have short telomeres per se. Rather, the inter-

action of cdc73Δwith tel1Δ and yku80Δmay reflect an interaction between mutations that dis-

rupt specific aspects of telomere structure including telomere chromatin structure [61,65],

nuclear localization of telomerase [71,72], and/or telomerase recruitment to telomeres [73,74].

Overexpression of TLC1 partially suppresses the genomic instability of

cdc73Δ strains

The data described above are consistent with a role for CDC73 in suppressing genome instabil-

ity arising due to telomere dysfunction. This effect could be due to roles of CDC73 in promot-

ing TLC1 transcription [32] or causing defects in transcriptional elongation that give rise to

recombinogenic RNA:DNA hybrids (R-loops) [75–78], particularly at the sites of long non-

coding telomeric repeat containing RNA (TERRA) [79]. We measured the TLC1 levels in

cdc73Δ, tel1Δ, and yku80Δ single and double mutant strains and found that the yku80Δ and

cdc73Δmutations caused a small and large decrease in TLC1 levels, respectively, as previously

reported [32] and that the cdc73Δ tel1Δ and cdc73Δ yku80Δ double mutants had the same level

of TLC1 as the cdc73Δ single mutant (S17B Fig). Introduction of a plasmid expressing TLC1

into strains in the uGCR assay caused a statistically significant ~4-fold decrease in the GCR

rate of the cdc73Δ tel1Δ double mutant and caused a small, but not statistically significant,

decrease in the GCR rate of the cdc73Δ yku80Δ double mutant (S5 Table). Consistent with the

suppression results, the TLC1 expression plasmid caused 1) increased TLC1 levels in all strains

tested, 2) increased the telomere lengths in the cdc73Δ single mutant and the cdc73Δ tel1Δ dou-

ble mutant, and 3) potentially a small increase in telomere length in the cdc73Δ yku80Δ double
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mutant as evidenced by a modest increase in more slowly migrating telomere species (S19

Fig). We also measured the TERRA levels in cdc73Δ, tel1Δ, and yku80Δ single and double

mutant strains and found that these mutants did not significantly affect TERRA accumulation,

except for an increase of the chrXV L TERRA in a yku80Δ single mutant (S17C Fig). To test if

the effects of cdc73Δmight be due to the accumulation of R-loops, we introduced a plasmid

bearing RNH1, which encodes S. cerevisiae RNase H1, into uGCR assay strains. In contrast to

TLC1 overexpression, the RNH1 plasmid did not substantially affect the uGCR rate of either

the cdc73Δ tel1Δ double mutant or the cdc73Δ yku80Δ double mutant (S5 Table). Taken

together, these data suggest that the increased GCR rate caused by the cdc73Δmutation may in

part reflect an alteration in telomere structure caused by reduced telomerase activity due to

reduced TLC1 levels. However, the synergistic increases in GCR rates seen in the cdc73Δ tel1Δ
and cdc73Δ yku80Δ double mutants (and potentially the ctr9Δ and paf1Δ double mutants) is

unlikely to be explained solely by reduced TLC1 levels as these double mutants have the same

TLC1 levels as the cdc73Δ single mutant.

An internal 105 amino acid region of Cdc73 is necessary and sufficient

for Cdc73 function

Cdc73, like other members of the Paf1 complex, has no known enzymatic activity [24]. The N-

terminal region (S. cerevisiae residues 1–229) lacks identifiable domains; whereas the C-termi-

nal domain (S. cerevisiae residues 230–393) has a conserved GTPase-like fold [41,80] and has

been proposed on the basis of chemical crosslinking and cryo-electron microscopy to make

direct interactions with the RNA polymerase II subunit Rpb3 [81]. We replaced the wild-type

chromosomal copy of CDC73 with various CDC73 deletion mutations to gain insights into

Cdc73 function (Fig 5A; S20 Fig; S6 Table). We found that deletion of the C-terminal domain

(cdc73Δ230–393) resulted in wild-type dGCR rates, normal sensitivity to 6-azauracil and nor-

mal TPE. This result contrasts with a previous report suggesting that a cdc73Δ231-393-TAP
construct causes increased sensitivity to 6-azauracil relative to wild-type CDC73 [41]; this dif-

ference may be due to the presence of the TAP tag in the previous study. On the other hand,

deletion of the N-terminal region (cdc73Δ2–229), caused defects in all three assays that were

similar to those caused by the cdc73Δ single mutation.

Additional analysis of CDC73 (Fig 5A) defined a minimal deletion, cdc73Δ125–229, that

caused a similar fold-increase in the dGCR rate compared to that caused by the cdc73Δ single

mutation (17.3-fold increase vs. 9.3-fold increase) and caused a synergistic increase in the

dGCR rate when combined with the yku80Δmutation that was similar to that observed with the

cdc73Δmutation (98.1-fold increase vs. 162-fold increase). This minimal deletion also caused

increased sensitivity to 6-azauracil and reduced TPE (Fig 5A, S20A Fig) as well as reduced

TLC1 levels (Fig 5B) and shorter telomeres (Fig 5C) similar to that caused by the cdc73Δ single

mutation; as before, addition of sublethal concentrations of HU to distinguish TPE from 5FOA-

induced overexpression of ribonucleotide reductase verified that the cdc73Δ125–229mutation, like

the cdc73Δmutation, caused TPE defects (S20B Fig). As the effect of the cdc73Δ125–229mutation

could either have been due to loss of a functional region of Cdc73 or due to causing defects in fold-

ing Cdc73, we generated a gene construct that encoded only residues 125–229 (cdc73:125–229).

This gene construct, which encoded 105 residues from the center of Cdc73, was sufficient to sub-

stantially restore Cdc73 functions in suppressing GCRs, maintenance of TLC1 levels, TPE, and

telomere length homeostasis (Fig 5, S20 Fig). These results define a minimal functional Cdc73 con-

struct, Cdc73:125–229, and a minimal non-functional Cdc73 construct, Cdc73Δ125–229.

Residues 125–229 of Cdc73 precede the C-terminal GTPase domain and lie in a region that

is predicted to be less ordered by IUPRED [82] (S21A Fig) and that has reduced conservation
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(S21B Fig). Previous chemical crosslinking of the Paf1 complex bound to RNA polymerase II

identified 22 crosslinks between Cdc73 and other Paf1 subunits of which 19 were between

Cdc73 and Ctr9, which is primarily composed of tetratricopetide repeat (TPR) domains [81].

Analysis of these data also revealed that the Cdc73 region containing residues 125–229 had 9

crosslinks to Ctr9 (~50% of Cdc73-Ctr9 crosslinks), 2 crosslinks to Leo1, 2 crosslinks to

Rpb11, and 1 crosslink to Rpb2 (S21C Fig). Together these data are consistent with the possi-

bility that the TPR domains of Ctr9 bind to an unstructured Cdc73 peptide or Cdc73 alpha

helices, rather than a folded Cdc73 domain, like other known TPR-peptide interactions [83].

To test for a direct Cdc73-Ctr9 interaction in the Paf1 complex, we tested the ability of Paf1

and Cdc73 to co-immunoprecipitate in a wild-type strain or strains with deletions of LEO1,

RTF1, or CTR9 (S21D Fig). Consistent with this hypothesis, the Paf1-Cdc73 interaction was

Fig 5. Cdc73 residues 125–229 are necessary and sufficient for its function. a. Various Cdc73 deletion constructs are shown;

thin lines indicate deleted regions. Mutant constructs were tested for effects on GCR rates, transcription elongation as determined

by resistance to 6-azauracil, and telomere silencing as determined by sensitivity to 5-FOA. “+++” corresponds to wild-type, “–”

corresponds to a severe defect and “++” and “+” correspond to intermediate defects. b. Expression of TLC1 RNA was measured by

RT-qPCR. Both deletion of CDC73 and the cdc73Δ125–229 allele result in substantial reduction of TLC1 expression, whereas

cdc73:125–229 allele results in partial restoration of TLC1 expression. c. Telomere Southern Blot. The dashed line indicates the

wild-type telomere length.

https://doi.org/10.1371/journal.pgen.1007170.g005
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lost in the ctr9Δ strain, whereas deletions of LEO1 and RTF1 had only modest effects on the

Paf1-Cdc73 interaction.

Functional and non-functional Cdc73 truncations can be distinguished

by their ability to associate with the Paf1 complex

As the paf1Δmutation causes increased dGCR rates similar to those caused by the cdc73Δ
mutation, we sought to determine if the functional truncated Cdc73 proteins bound the Paf1

complex and if the defects associated with the minimal non-functional Cdc73Δ125–229 trun-

cation were due to loss of Paf1 complex association or due to defects in other functions. We

tested the ability of C-terminally Venus-tagged full-length Cdc73, Cdc73Δ230–393, Cdc73Δ2–

124, Cdc73Δ125–229, or Cdc73:125–229 to co-immunopreciptate with C-terminally myc-

tagged Paf1, Rtf1, Ctr9, or Leo1; all tagged proteins were expressed from the respective chro-

mosomal loci. Cell lysates from doubly tagged strains were prepared from log-phase cells and

immunoprecipitated with anti-myc antibodies, and then probed by Western blotting using

anti-GFP antibodies. Full-length Cdc73 co-immunoprecipitated with Paf1, Rtf1, Ctr9, and

Leo1 (Fig 6A), although the interaction with Rtf1 appeared to be weaker than the interaction

with the other Paf1 complex subunits, consistent with previous observations [22,43,84]. The

functional Cdc73 truncations, Cdc73Δ230–393, Cdc73Δ2–124, and Cdc73:125–229, all associ-

ated with Paf1, Ctr9, Leo1, and Rtf1 (Fig 6A). Reduced binding to Leo1 was observed with

both the Cdc73Δ230–393 and Cdc73:125–229 truncations, suggesting that the C-terminus of

Cdc73 may stabilize Leo1 in the complex. In contrast, the non-functional Cdc73 truncation,

Cdc73Δ125–229, had substantially reduced binding to each of the other Paf1 complex sub-

units; a low level of residual binding was only detected with Ctr9 and Leo1. Thus residues 125–

229 of Cdc73 appear to be necessary and sufficient for stable binding of Cdc73 to the Paf1

complex.

Functional Cdc73 proteins are localized to the nucleus

The Paf1 complex has been localized to the nucleus in wild-type cells by immunofluores-

cence [85], so we monitored the cellular localization of Cdc73 truncations. The wild-type

and truncated forms of Cdc73 were C-terminally tagged with Venus, and functional versions

of Cdc73, including the minimal construct Cdc73:125–229, localized to the nucleus (Fig 6B),

with a high ratio of nuclear to cytoplasmic fluorescence (Fig 6C). In contrast, the non-func-

tional Cdc73 truncation Cdc73Δ125–229, which did not stably associate with the Paf1 com-

plex, had diffuse localization in both the nucleus and the cytoplasm, but was still expressed at

normal levels based on total cellular fluorescence (Fig 6D). Thus, residues 125–229 of Cdc73

either include a nuclear localization signal or are necessary for binding to a Paf1 complex

that is imported into the nucleus. Single mutant strains with deletions of PAF1, CTR9, RTF1,

and LEO1 appeared to have normal nuclear localization of a Cdc73-Venus fusion protein

(S22A Fig), although these mutations resulted in enlarged cells and abnormally elongated

buds, as previously described [18,86]. Similarly, deletion of CDC73 did not prevent the

nuclear localization of C-terminally Venus tagged Paf1, Rtf1, Ctr9, or Leo1 (S22B Fig), indi-

cating that defects caused by the cdc73Δmutation were not due to defects in the nuclear

localization of other Paf1 complex subunits. Finally, the cdc73Δmutation did not cause

major changes in the cellular levels of the other Paf1 complex subunits as measured by West-

ern blot (S22C Fig). These localization data are consistent with the observation that all Paf1

complex subunits other than Cdc73 are predicted to contain nuclear localization signals (S23

Fig); this is different from that seen with human Cdc73, which possesses a functional N-ter-

minal nuclear localization signal [87]. Together, these data suggest that Cdc73 does not
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regulate the cellular localization of the Paf1 complex, but instead mediates the suppression of

genome instability once the complex is already in the nucleus, potentially through contribu-

tions to overall complex stability or conformation.

Fig 6. Functional Cdc73 variants associate with the Paf1 complex and localize to the nucleus. a. Functional

Cdc73 variants can associate with the Paf1 complex. Wild-type and the indicated mutant Cdc73 proteins were tagged

with a C-terminal Venus and other Paf1 subunits were individually tagged with C-terminal myc tags. Whole cell lysates

were immunoprecipitated with anti-myc antibody and analyzed by Western blotting for coimmunoprecipitation using an

anti-Venus antibody. b-d. Functional Cdc73 variants specifically localize to the nucleus. b. Wild-type and the indicated

Cdc73 variants were tagged with C-terminal Venus and Nic96 (a member of the nuclear pore complex) was tagged with

mCherry, and the cells were imaged by deconvolution microscopy. The cdc73::Venus control replaces the CDC73 ORF

with the sequence encoding the Venus protein. Scale bar is 2 μm. c, d. The ratio of nuclear to cytoplasmic fluorescence

and total cellular fluorescence for each of the Cdc73 constructs was measured using ImageJ. The data represent

averages of at least 20 cells; the error bars are the SEM.

https://doi.org/10.1371/journal.pgen.1007170.g006
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Discussion

Transcription, and defects in transcription including those that lead to the accumulation of R-

loops, are becoming an increasingly well-appreciated source of genome instability [10,11].

Using a screen to identify genes that suppress the accumulation of GCRs, we found the loss of

CDC73 results in increased rates of accumulating GCRs in three different GCR assays. We also

found that a cdc73Δmutation resulted in synergistic increases in GCR rates and in increased

levels of telomere dysfunction when combined with either tel1Δ or yku80Δmutations. This is

reminiscent of the observation that tlc1Δ tel1Δ double mutants have synergistic increases in

GCR rates relative to the respective single mutants, although they show delayed senescence

and delayed loss of telomeres [88]; analysis of GCR rates and other telomere-related pheno-

types in tlc1Δ yku80Δ double mutants was not possible as these double mutants cannot be

propagated [59,89]. The fact that the cdc73Δ tel1Δ yku80Δ triple mutant appears to be highly

defective in telomerase function and also shows a large synergistic increase in the rate of accu-

mulating GCRs further suggests that telomere dysfunction is likely a hallmark of genome

instability in cdc73Δ strains and that cdc73Δ, tel1Δ, and yku80Δmutations all cause different

defects that contribute to increased rates of accumulation of GCRs. A role for CDC73 in con-

tributing to telomerase function is also consistent with our inability to observe GCRs formed

by de novo telomere additions relative to the large increase in the levels of different transloca-

tion GCRs among the GCRs selected in the sGCR assay in cdc73Δmutants. Consistent with

the observation that cdc73 defects result in reduced levels of the TLC1 RNA component of telo-

merase [32], overexpression of TLC1 partially suppressed the increased GCR rate of the

cdc73Δ tel1Δ double mutant. In contrast, over-expression of RNase H1, which degrades R-

loops, did not suppress the increased GCR rate of the cdc73Δ tel1Δ double mutant.

The absence of telomerase in S. cerevisiae results in shortening of telomeres and reduced

rates of cell growth until telomerase negative cells undergo crisis and survivors emerge in

which telomeres are maintained by one of two different HR-mediated telomere maintenance

pathways [61,63]. These surviving cells do not have increased rates of accumulating GCRs,

although additional genetic defects can result in synergistic increases in GCR rates in these tel-

omerase negative cells [55]. One exception where telomerase defects alone result in increased

GCRs is telomerase negative cells that have been stabilized by re-expression of telomerase dur-

ing crisis before the shortened telomeres have started to be maintained by HR [90]. In addi-

tion, tel1Δmutations, which by themselves result in shortened telomeres and small increases

in GCR rates, can result in large increases in GCR rates when combined with mec1 or other

mutations [91]. Under all of these conditions, the telomeres with altered structures fuse to the

ends of broken chromosomes, and the resulting fusion chromosomes then appear to undergo

breakage and additional rearrangement events [92]; these altered telomeres can also undergo

telomere to telomere fusion [93]. The structural analysis presented here showed that the

cdc73Δmutation that causes an increased GCR rate and the cdc73Δ tel1Δ and cdc73Δ yku80Δ
double mutation combinations that cause synergistic increases in GCR rates did not appear to

cause the accumulation of either de novo telomere addition-mediated GCRs or GCRs mediated

by fusion of altered telomeres to broken chromosome ends. Telomerase activity is likely

reduced but not absent in cdc73Δmutants [32], which would explain the presence of telomeres

that are shorter than normal and this is likely sufficient to result in modest increases in the rate

of accumulating GCRs as well as the absence of de novo telomere addition-mediated GCRs.

When a cdc73Δmutation is combined with other mutations like tel1Δ and yku80Δ, which

affect telomere maintenance in different ways and also cause shortened telomeres, there is an

increased defect in telomere maintenance and an increased alteration of telomere chromatin

structure as indicated by synergistic increases in TPE defects and a synergistic increase in the
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rate of accumulating GCRs. A hypothesis that explains the increased GCR rates and the

spectrum of GCRs observed is that in these mutants reduced telomere maintenance com-

bined with alterations in telomere chromatin structure results in a fraction of chromosome

ends that escape protection and undergo extensive degradation (Fig 7). These degraded

Fig 7. Formation of GCRs in strains lacking CDC73 and strains lacking both CDC73 and TEL1 or YKU80. Deletion of CDC73 (and likely CTR9 and

PAF1) gives rise to an increased frequency of dysfunctional telomeres that are subject to degradation. This frequency of these dysfunctional telomeres

increases when TEL1 or YKU80 is additionally deleted. The degraded telomere is then processed to form inverted duplication GCRs, HR-mediated

translocation GCRs, or microhomology-mediated translocation GCRs. The observed inverted duplications can be generated by invasion of the exposed 3’

end into sequences on the same chromosome followed by Break-Induced Replication until copying reaches the end of the chromosome or until it reaches a

duplication that allows template switching and duplication of a second chromosome. The same products can also be generated through the formation of a

dicentric chromosome generated via replication of a capped chromosome; breakage of the dicentric chromosome gives rise to at least one additional round

of HR-mediated rearrangements involving duplications on the broken chromosome and a second, potentially intact, chromosome. HR-mediated

translocation GCRs can be formed when the dysfunctional telomere is degraded to the position of a duplication, which then can mediate HR with a second

chromosome. Microhomology-mediated translocations can be formed when degradation reaches a short sequence capable of mediating HR with a target

or when end joining occurs to a second broken chromosome; the junctions with microhomologies likely involve base pairing between exposed single-

stranded DNAs in both broken chromosomes.

https://doi.org/10.1371/journal.pgen.1007170.g007
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chromosome ends can then be processed by end joining to other DSBs, hairpin formation or

short sequence-mediated HR resulting in the GCRs selected in the sGCR assay or longer

sequence non-allelic HR resulting in the translocations selected in the dGCR assay. This mech-

anism also accounts for the increased GCR rates seen in paf1Δ and ctr9Δ single and double

mutants analyzed as these mutations also cause telomere maintenance and telomere chromatin

structure defects as evidenced by reduced TLC1 levels, short telomeres and TPE defects [32].

The lack of or limited increased GCR rates seen in rtf1Δ and leo1Δ single and double mutants

is also accounted for by this mechanism as these latter mutations have smaller effects on TLC1

levels and telomere shortening [32], and in the case of leo1Δmutations, no defect in TPE

reflective of alterations in telomere chromatin structure.

The Paf1 complex promotes transcription elongation, 3’-end mRNA maturation, and his-

tone modification [16,21–24]. Our results demonstrate that different subunits of the Paf1 com-

plex subunits promote different Paf1 complex functions: (1) suppression of GCRs primarily

requires Paf1, Ctr9, and Cdc73; (2) resistance to 6-azauracil inhibition of transcriptional elon-

gation primarily requires Paf1 and Ctr9; and (3) silencing of telomere-proximal genes requires

Cdc73, Paf1, Ctr9 and Rtf1 to differing degrees. The rather disparate effects of deleting genes

encoding different Paf1 complex subunits observed here mirrors previous observations of dif-

ferent requirements for individual Paf1 complex subunits under different stress conditions

[37]. Using an assay that detected chromosome loss and GCRs but did not distinguish between

the two, a previous study showed that deletions of CDC73 and LEO1, but not PAF1, resulted in

increased genome instability that could be suppressed by increased expression of RNase H1

[12]. The relatively important role of Paf1 in all of the Paf1 complex functions (our results as

well as in previous studies [37]) is consistent with the idea that Paf1 functions by mediating

recruitment of the other Paf1 subunits to the different processes they functions in. Alterna-

tively, Paf1 may provide the major function of the Paf1 complex and may be recruited to dif-

ferent processes by different Paf1 complex subunits: Leo1 and Rtf1 bind RNA [94]; Rtf1 binds

phosphorylated Spt5, which is a component of TFIIS and binds the elongating RNA polymer-

ase II complex [95,96]; and the Cdc73 C-terminal domain mediates binding to the phosphory-

lated C-terminal domain (CTD) of RNA polymerase II [97].

The importance of the interaction of Cdc73 with Paf1 is demonstrated by the deletion anal-

ysis of Cdc73. The C-terminal domain and the N-terminal regions of Cdc73 were found to be

dispensable for CDC73 function. However, the central 105 amino acid region (residues 125–

229) was necessary and sufficient to: (1) suppress the defects of cdc73Δ strains studied here; (2)

mediate incorporation into the Paf1 complex; and (3) promote nuclear localization of Cdc73.

Remarkably, the C-terminal region, which binds the phosphorylated RNA polymerase II CTD

[97] and contributes to suppression of Ty element expression [41], was not required for any of

the functions analyzed here. The dispensable nature of the Cdc73 C-terminal domain could be

consistent with the redundancy of recruitment of the Paf1 complex to RNA polymerase II by

either Cdc73 binding to the phosphorylated RNA polymerase II CTD or by Rtf1 binding to

phosphorylated Spt5 [97]. This redundancy also explains the synergistic defect in 6-azauracil

sensitivity caused by combining a deletion of the C-terminal domain of Cdc73 with loss of

Rtf1 [41]. Moreover, the available data suggest that the central 105 amino acid region (residues

125–229) of Cdc73 plays some previously unappreciated function in the Paf1 complex. Exten-

sive chemical crosslinking between this region of Cdc73 and the TPR domain containing pro-

tein Ctr9 [81] and the requirement for Ctr9 for coimmunoprecipitation of Cdc73 with Paf1

suggest that the Ctr9-Cdc73 interaction recruits Cdc73 to the Paf1 complex. The fact we were

unable to computationally predict a function-associated motif or domain structure within the

central 105 amino acid region and that the N-terminus of S. cerevisiae Cdc73 up to residue 236

is highly sensitive to partial proteolysis [41] suggests the central 105 amino acid region of

Cdc73 suppresses genome instability

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007170 January 10, 2018 20 / 36

https://doi.org/10.1371/journal.pgen.1007170


Cdc73 is likely unstructured in the absence of the Paf1 complex. This is consistent with the

role of TPR domains in binding alpha-helices and unstructured peptides [83]. Together these

data are also consistent with the fact that ctr9Δmutations, like cdc73Δmutations, also cause

increased GCR rates, cause synergistic increases in GCR rates when combined with yku80Δ
and tel1Δmutations, have TPE defects, and defects in TLC1 expression [32].

Mutations in human CDC73 (also called HRPT2) identified in cases of sporadic and heredi-

tary parathyroid carcinomas appear to primarily be loss-of-function mutations including

frameshifts, premature stop codons, and deletions that result in truncated proteins. In many

cases, the heterozygous germline mutations observed are associated with events leading to

loss-of-heterozygosity in tumors; however, some tumors appear to have amplification of the

mutant copy of CDC73, suggesting a dominant genetic phenotype [28–30,98–100]. The region

of human Cdc73 (also called parafibromin) responsible for Paf1 complex binding [29] is in a

region that is similar to the central 105 amino acid region in S. cerevisiae Cdc73 identified

here, and at least some mutant versions of human Cdc73 seen in parathyroid carcinomas have

lost their ability to interact with the Paf1 complex [101]. The 3 mutations in CTR9 found in

Wilms tumor families comprised a nonsense mutation and 2 splice site mutations, all of which

were consistent with causing loss-of-function [31]. Our results suggest that the CDC73 muta-

tions seen in sporadic and hereditary parathyroid carcinomas and the CTR9 mutations found

in Wilms tumor could cause increased genome instability; however, it is not currently known

if these defects in human CDC73 and CTR9 cause genome instability and telomere dysfunction

in human cells as observed here for the S. cerevisiae cdc73Δmutation. Given the ability of the

Paf1 complex to affect transcriptional elongation, RNA 5’ end maturation, and histone modifi-

cation, inherited and sporadic CDC73 mutations and inherited CTR9 mutations in human

cancers could have pleiotropic effects in which increased genome instability might not play the

only role in carcinogenesis.

Materials and methods

Construction and propagation of strains and plasmids

All S. cerevisiae strains used in this study were derived from S288c and were constructed by

standard PCR-based gene disruption methods or by mating to strains containing mutations of

interest (S7 Table; [102,103]). GCR assays were performed using derivatives of RDKY7635

(dGCR assay), RDKY7964 (sGCR assay), and RDKY6677, (uGCR assay) (S7 Table; [6,51]).

The Venus, mCherry and 9myc tags were amplified from pBS7, pBS35, and pYM19, respec-

tively [102,104], inserted at the 3’ end of the indicated genes using standard methods. For

determining GCR rates of strains transformed with the RNase H1 tet-off overexpression plas-

mid pCM184RNH1 (a gift from Andrés Aguilera, Universidad de Sevilla, Seville, Spain [105])

or the ADH1 promoter TLC1 overexpression plasmid pVL2679 (a gift from Victoria Lundblad,

Salk Institute), transformants were cultured overnight in complete synthetic medium (CSM)–

Trp liquid media and plated onto either CSM–Trp medium or CSM–Arg–Trp medium sup-

plemented with 1 g/L 5FOA and 60 mg/L canavanine. To test for transcription elongation

defects, 6-azauracil (Sigma-Aldrich) was added to synthetic complete medium at a final con-

centration of 50 μg/ml.

CDC73, including 998 bp upstream and 536 bp downstream, was amplified by PCR using

the primers 5’-CAC CGA ATT GCA AGC GCT TGC AAC TTG TTC TTT CTG TGC -3’ and

5’-GAA TTG CAA GCG CTC CCA TGG AAA TGA GAG AAG C-3’ (AfeI cut site underlined)

and cloned into the pENTR/D-TOPO vector (Thermo Fisher Scientific) to generate pRDK1705.

The hygromycin B resistance gene was amplified from the plasmid pFA6a-hphNT1 with the

primers 5’-GAA TTG CAA AGC TTC GGA TCC CCG GGT TAA TTA A-3’ and 5’-GAA TTG
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CAA AGC TTT AGG GAG ACC GGC AGA TCC G-3’ (HindIII cut site underlined) and

inserted into pRDK1705 at a HindIII cut site located 693 bp upstream of the CDC73 start codon

to make plasmid pRDK1706. The cdc73 alleles were made in pRDK1706 using the GeneArt

Site-Directed Mutagenesis kit (Life Technologies) to generate pRDK1708 (cdc73Δ230–393),

pRDK1770 (cdc73Δ2–229), pRDK1771 (cdc73Δ92–229), pRDK1772 (cdc73Δ2–91), pRDK1781

(cdc73Δ92–147), pRDK1782 (cdc73Δ148–229), pRDK1784 (cdc73:92–229), pRDK1788

(cdc73Δ2–124), pRDK1789 (cdc73Δ125–229), and pRDK1790 (cdc73:125–229). These plasmids

were integrated at the endogenous CDC73 locus by transformation with AfeI-digested plasmid

DNA. Integrants were confirmed by PCR and Sanger sequencing.

Systematic double mutant generation

We crossed a strain containing the dGCR assay and a cdc73Δ or rtf1Δmutation against 638

strains from the S. cerevisiae deletion collection and obtained haploid progeny by germinating

spores generated from the resulting diploids, as previously described [6].

DNA content measurement by flow cytometry

Systematically generated cdc73Δ double mutants and control haploid and diploid strains

were screened by flow cytometry for DNA content to exclude diploid isolates. Briefly,

10 μL aliquots of overnight cultures grown in YPD were added to 190 μL of fresh YPD, and

the cells were incubated in a 30˚C shaker for 3 hours. Cells were washed, resuspended in

60 μL of dH2O, and fixed with 140 μL of cold absolute ethanol. Fixed cells were sonicated

and resuspended in 150 μL of 50 mM sodium citrate with 1 mg/mL Proteinase K (Sigma-

Aldrich) and 0.25 mg/mL RNase A (Sigma-Aldrich) and incubated at 37˚C overnight.

Treated cells were washed, resuspended in 100 μL of 50 mM sodium citrate containing

1 μM Sytox Green (Life Technologies), and analyzed using a BDS LSR II flow cytometer at

The Scripps Research Institute flow cytometry core facility. Data were analyzed using

FlowJo v10 [106].

Determination of GCR patch scores and rates

Patch tests for identifying systematically generated double mutants with increased GCR rates

were performed as described [6]. GCR rates were determined using at least 14 independent

cultures from 2 independent biological isolates of each strain using the fluctuation method as

previously described [107]. Significantly different GCR rates were identified through analysis

of the 95% confidence intervals.

Analysis of dGCR structures

The t(V;XIV) and t(V;IV or X) homology-mediated translocation GCRs were identified by

PCR, as previously described [51].

Whole genome sequencing

Multiplexed paired-end libraries were constructed from 5 μg of genomic DNA purified using the

Purgene kit (Qiagen). The genomic DNA was sheared by sonication and end-repaired using the

End-it DNA End-repair kit (Epicentre Technologies). Common adaptors from the Multiplexing

Sample Preparation Oligo Kit (Illumina) were then ligated to the genomic DNA fragments, and

the fragments were then subjected to 18 cycles of amplification using the Library Amplification

Readymix (KAPA Biosystems). The amplified products were fractionated on an agarose gel to

select 600 bp fragments, which were subsequently sequenced on an Illumina HiSeq 2000 using the

Cdc73 suppresses genome instability

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007170 January 10, 2018 22 / 36

https://doi.org/10.1371/journal.pgen.1007170


Illumina GAII sequencing procedure for paired-end short read sequencing. Reads from each read

pair were mapped separately by bowtie version 2.2.1 [108] to a reference sequence that contained

revision 64 of the S. cerevisiae S288c genome [109], hisG from Samonella enterica, and the

kanMX4 marker (S3 Table). Reads are available from National Center for Biotechnology Informa-

tion Sequence Read Archive under accession number: SRP107803.

Analysis of sGCR structures from sequencing data

GCR structures were determined using mapped reads using version 0.6 of the Pyrus suite

(http://www.sourceforge.net/p/pyrus-seq) [52]. Rearrangements relative to the reference

S288c genome were identified by analyzing the read depth distributions (S5–S8 Figs), the

discordantly mapping read pairs (S2–S4 Figs; S4 Table), and/or extracting the sequences of

the novel junctions (S9–S13 Figs). Associated junction-sequencing reads, which were reads

that did not map to the reference but were in read pairs in which one end was adjacent to

discordant reads defining a junction, were used to sequence novel junctions. Most hairpin-

generated junctions (S12 Fig) could be determined using alignments of junction-sequenc-

ing reads. For junctions formed by HR between short repetitive elements (S9–S11 Figs) and

for problematic hairpin-generated junctions (S12 Fig), the junction sequence could be

derived by alignment of all reads in read pairs where one read was present in an “anchor”

region adjacent to the junction of interest and the other read fell within the junction to be

sequenced.

Junctions indicated by copy number changes, discordant read pairs, and junction sequencing

were identified with a high degree of confidence; however, previous analyses have indicated that

even junctions inferred from only copy number changes can be experimentally verified at high

frequency [52,92,110,111]. Analysis of the sequencing data identified all of the genetic modifica-

tions introduced during construction of the starting strains, such as the his3Δ200 deletion, (S2–

S4 Figs) as well as the molecular features associated with the selected GCRs (S5–S13 Figs; S4

Table). Several inverted duplications (isolates 307, 324, and 331) with a YCLWdelta5/YELW-
delta1 junction copied very little sequence in the vicinity of YELWdelta1, and had an additional

HR-mediated translocation between YELWdelta1 and an unannotated delta sequence on chrV

R, which we term here “YERWdelta27” (S14 Fig).

Telomere Southern blotting

Telomere Southern blots were performed using a modified version of a previously described

protocol [112]. Genomic DNA was purified from 50 mL overnight cultures using the Purgene

kit (Qiagen). 5 μg of DNA was digested with XhoI (New England Biolabs) in a 50 μL reaction

for 2 hr at 37˚C. The reaction was stopped by adding 8 μL of loading buffer, and the samples

were run on a 0.8% agarose gel in 0.5X TBE for 16 hr at 50 V. The DNA in the gel was trans-

ferred to Amersham Hybond-XL membranes (GE) by neutral capillary blotting, allowed to

run overnight. The DNA was crosslinked to the membrane by UV irradiation in a Stratalinker

(Stratagene) apparatus at maximum output for 60 seconds. Biotinylated TG probes were pur-

chased from ValueGene. Probe hybridization was performed with ULTAhyb oligo hybridiza-

tion buffer (Life Technologies) at 42˚C for 1 hr. The membrane was then washed extensively

and developed with a chemiluminescent nucleic acid detection kit (Life Technologies) and

imaged with a Bio-Rad Imager.

Pulse Field Gel Electrophoresis (PFGE)

DNA plugs for PFGE were prepared as described [113]. Strains were grown to saturation in 50

mL of YPD at 30˚C for 3 days. Cell counts were measured by optical density at 600 nm, and
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7.5 x 108 cells from each strain were washed and resuspended in 200 μL of 50 mM EDTA, then

mixed with 70 μL of 1 M sorbitol, 1 mM EDTA, 100 mM sodium citrate, 0.5% β-mercaptoetha-

nol, 8 U/mL of zymolase. The cells were then mixed with 330 μL of liquefied 1% ultrapure aga-

rose (Bio-Rad) to prepare multiple 80 μL plugs. The plugs were incubated in 15 mL conical

tubes in 750 μL of 10 mM Tris pH 7.5, 500 mM EDTA pH 8, 1% β-mercaptoethanol for 16 hr

at 37˚C. The plugs were then incubated in 750 μL 10 mM Tris pH 7.5, 500 mM EDTA pH 8,

1% sodium N-lauryl sarcosine, 0.2% sodium dodecyl sulfate containing 2 mg/ml Proteinase K

(Sigma-Aldrich) for 6 hr at 65˚C. Finally, the plugs were washed in 50 mM EDTA pH 8 prior

to resolving the chromosomes in a 1% agarose gel run in a CHEF (clamped homogeneous elec-

tric field electrophoresis) apparatus in chilled (14˚C) 0.5x TBE (89 mM Tris-borate, pH 8.3, 25

mM EDTA). Electrophoresis was performed using a Bio-Rad CHEF-DRII apparatus at 6 V/

cm, with a 60 to 120 s switch time for 24 h. The gels were stained with ethidium bromide and

imaged.

Telomere Position Effect (TPE) assay

The TPE assay was constructed by transforming BY4742 (MATalpha leu2Δ0 his3Δ1 ura3Δ0
lys2Δ0) with pADH4UCA ([38], a gift from Virginia Zakian, Princeton University) digested

with SalI and EcoRI. Integration of URA3 into ADH4, which was verified by PCR, generated

the strain RDKY8230, and mutant derivatives were constructed by PCR-mediated gene dis-

ruption (S7 Table). TPE was assayed by culturing strains overnight in YPD at 30˚C followed

by spotting 1.5 μL of 10-fold serial dilutions onto CSM, and CSM supplemented with 1 g/L of

5FOA (CSM+5FOA). Plates were incubated at 30˚C for 3 days before imaging. In some experi-

ments, the plates also contained either 10 mM or 30 mM HU [42].

RNA isolation and quantitative real-time PCR (qRT–PCR)

RNA isolation and qRT-PCR for TLC1 and TERRA RNA levels were performed using pub-

lished techniques [114,115]. Cells were grown in YPD to an OD600 of 0.6 to 0.8. 1 mL samples

were used for RNA isolation with the RNeasy kit (Qiagen), with on-column DNase I treatment

using the RNase-Free DNase Set (Qiagen). 1 μg RNA was reverse transcribed with the iScript

cDNA Synthesis Kit (Bio-Rad), which uses random primers. cDNA was diluted 1:10 with dis-

tilled H2O. qPCR was performed with 2 μL of the dilution in a final volume of 20 μL using the

iTaq Universal SYBR Green Supermix (Bio-Rad) in a Bio-Rad CFX96 Touch Real-Time PCR

Detection System. Reaction conditions: 95˚C for 10 min, 95˚C for 15 sec, 50˚C for 1 min, 40

cycles. Primer concentrations and sequences were the same as previously described [115].

Immunoprecipitation

The μMACS anti-c-myc magnetic bead IP kit (Miltenyi Biotec) was used in immunoprecipita-

tion experiments. Lysates were generated from strains in which one or two Paf1 complex

genes in the S. cerevisiae strain BY4741 (MATa leu2Δ0 his3Δ1 ura3Δ0 met15Δ0) were tagged

with Venus or c-myc. Strains were grown to mid-log phase in 50 mL YPD, harvested, resus-

pended in 1 mL of the supplied lysis buffer, and incubated on ice for 30 minutes. Cells were

lysed with the addition of 100 μL of glass beads and vortexed four times for 1 minute with cool-

ing. Lysates were clarified at 14,000 rpm for 10 minutes at 4˚C. Protein concentrations were

determined using the DC Protein Assay (Bio-Rad). For the input analysis, 500 μg of protein

was trichloroacetic acid (TCA) precipitated, resuspended in 100 μL of 2x SDS gel loading

buffer (100 mM Tris-Cl (pH 6.8), 4% SDS, 20% glycerol, 200 mM DTT, 0.2% bromophenol

blue) and 10 μL was used for Western Blotting. For the immunoprecipitation, 1000 μg of pro-

tein was incubated with 50 μL anti-c-myc MicroBeads (Miltenyi Biotec) for 30 minutes on ice,

Cdc73 suppresses genome instability

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007170 January 10, 2018 24 / 36

https://doi.org/10.1371/journal.pgen.1007170


then passed through the μMACS separator column. The column was washed twice with

200 μL of lysis buffer, washed twice with 200 μL of wash buffer 1, then washed once with

100 μL of wash buffer 2. The column was then incubated with 20 μL of heated elution buffer

for 5 minutes, before the proteins were eluted with 50 μL of heated elution buffer. Of the eluted

volume, 12 μL was used for Western Blotting.

Western blotting

Proteins were resolved on a 4–15% SDS-PAGE gel (Bio-Rad) and transferred overnight onto

nitrocellulose membrane (Bio-Rad). Venus-tagged proteins were detected with the rabbit

monoclonal antibody ab290 (Abcam, 1:2000) and myc-tagged proteins were detected with

71D10 rabbit monoclonal antibody (Cell Signaling, 1:1000). Horseradish peroxidase-conju-

gated goat anti-rabbit secondary antibody (Jackson Laboratories, 1:5000) was used, followed

by chemiluminescence detection with SuperSignal Femto Sensitivity Substrate (Life Technolo-

gies) and imaged with a Bio-Rad Imager. Venus-tagged protein levels were also detected using

mouse monoclonal antibody B34 (Covance, 1:1000) and mouse monoclonal anti-Pgk1 anti-

body (ab113687, Abcam, 1:5000) was used to detect Pgk1 as a loading control.

Live-cell imaging and image analysis

Exponentially growing cultures were washed and resuspended in water before being placed on

minimal media agar pads, covered with a coverslip, and sealed with valap (a 1:1:1 mixture of

Vaseline, lanolin, and paraffin by weight). Cells were imaged on a Deltavision (Applied Preci-

sion) microscope with an Olympus 100X 1.35NA objective. Fourteen 0.5 μm z sections were

acquired and deconvolved with softWoRx software. Further image processing, including

intensity measurements were performed using ImageJ. Intensity levels were quantified by tak-

ing the mean intensity in the nucleus, the cytoplasm, and a background measurement outside

of the cell using a 3-pixel diameter circle. The ratio of background-subtracted nuclear fluores-

cence to background-subtracted cytoplasmic fluorescence was then calculated per cell. The

total fluorescence was estimated by taking the background-subtracted nuclear fluorescence

and adding it to 12.5 times the background-subtracted cytoplasmic fluorescence as an approxi-

mation of the ratio cytoplasmic to nuclear volume.

Supporting information

S1 Fig. Analysis of transcription elongation defects and loss of telomeric silencing in Paf1

complex subunit mutants. a. Ten-fold serial dilutions of log-phase cultures of strains with the

indicated mutations in genes encoding Paf1 complex subunits were spotted onto non-selective

complete synthetic medium (CSM), CSM + 50 μg/mL 6-azauracil (6-AU) to monitor for

defects in transcriptional elongation, and CSM + 1 mg/mL 5-fluoroorotic acid (5FOA) to

monitor for defects in silencing of a telomeric URA3 gene. Plates were incubated at 30˚C for 4

days before being photographed. b. The sensitivity of the cdc73Δmutant to 5FOA in the TPE

assay cannot be suppressed by sublethal concentrations of HU, indicating that loss of CDC73
directly affects telomeric silencing rather indirectly causing 5FOA resistance through ribonu-

cleotide reductase overexpression as seen for the pol30-8 and cac1Δ alleles [42].

(PDF)

S2 Fig. Identification of the starting chromosomal features on chromosome V by whole-

genome sequencing. For each junction along chromosome V (junctions 5-A to 5-H), the evi-

dence for each junction in the paired-end sequencing data is reported. The number preceding

the slash is the number of junction-defining read pairs (those for which one read maps to one
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side of the junction and the other read maps to the other side of the junction). The number fol-

lowing the slash is the number of junction-sequencing reads (those that can be aligned to

derive the sequence of the junction). “-/-” indicates a junction that could have been observed

but was not observed, which is typically due to a GCR-related deletion. Note that some

sequences are short enough that some read pairs span multiple junctions, e.g. junction 5-DE

contains read pairs that span both junctions 5-D and 5-E.

(PDF)

S3 Fig. Identification of the deletions of CDC73,TEL1, and YKU80 by whole-genome

sequencing. Left. Junctions are annotated as in S2 Fig with the addition that “n.a.” indicates a

junction that could not have been observed as it was not present in the parental strain, such as

the junctions associated with the deletions of TEL1, CDC73 and YKU80. Right. Read depth

analysis of the regions including TEL1, CDC73, and YKU80 indicating that the expected dele-

tions were observed for strains of each relevant genotype.

(PDF)

S4 Fig. Identification of the starting chromosomal features on chromosomes other than

chromosome V by whole-genome sequencing. Junctions are annotated as in S2 Fig.

(PDF)

S5 Fig. Analysis of GCRs selected in the sGCR assay in a wild-type strain. Copy number

analysis of the sequenced parental strain and GCR-containing strains shows that GCRs are

associated with deletion of the CAN1/URA3-containing terminal portion of chromosome V L

(left) and either duplication of a terminal region of a target chromosome or the junction

sequence associated with a de novo telomere (right). The thick hashed blue arrow indicates

sequences within the GCR; the thin dashed blue arrow indicates connectivity between portions

of the GCR that map to different regions of the reference chromosome. Duplicated sequence

involved in GCR-related HR events are shown as triangles; red triangles are Ty-related homol-

ogies and blue triangles are other homologies. Sequences in red correspond to the recovered

sequence of the GCR junction; sequences in black are from the reference genome.

(PDF)

S6 Fig. Analysis of GCRs selected in the sGCR assay in a cdc73Δ single mutant. Copy num-

ber analysis and breakpoint junction sequences of the sequenced parental strain and GCR-

containing strains displayed as for S5 Fig. A hairpin-mediated inversion is indicated by the U-

shaped arrow.

(PDF)

S7 Fig. Analysis of GCRs produced in a cdc73Δ tel1Δ double mutant in the sGCR assay.

Copy number analysis and breakpoint junction sequences of the sequenced parental strain

and GCR-containing strains displayed as for S5 Fig and S6 Fig.

(PDF)

S8 Fig. Analysis of GCRs selected in in the sGCR assay in a cdc73Δ yku80Δ double mutant.

Copy number analysis and breakpoint junction sequences of the sequenced parental strain

and GCR-containing strains displayed as for S5 Fig and S6 Fig.

(PDF)

S9 Fig. Sequences of translocation junctions mediated by HR between the PLEU2-NAT
YCLWdelta5 fragment and Ty-related sequences elsewhere in the genome. a, c, e, g. Dia-

gram of the HR event. b, d, f, h. Junction sequences and alignments between the GCR and the

participating chromosomes identifies the novel junction sequences. Sequence of the junction
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between YCLWdelta5 (yellow) and other delta sequence (red) that fuse chromosome V (light

magenta) with the other target (light grey). Sequence that could have been derived from either

YCLWdelta5 or the other delta sequence is displayed with an orange background.

(PDF)

S10 Fig. Sequences of translocation junctions mediated by HR between the PLEU2-NAT
SUP53 tRNA gene and tRNA genes elsewhere in the genome. a, c. Diagram of the HR event.

b, d. Junction sequences and alignments between the GCR and the participating chromosomes

identifies the novel junction sequences. Sequence of the junction between SUP53 (blue) and

other tRNA gene (green) that fuses chromosome V (light magenta) with the other target (light

grey). Sequence that could have been derived from either SUP53 or the other tRNA is dis-

played with a cyan background.

(PDF)

S11 Fig. Sequences of YCLWdelta5/YELWdelta1 junctions involved in formation of HR-

mediated inverted duplications. a. Diagram of the HR event. b. Junction sequences displayed

as in S9 Fig.

(PDF)

S12 Fig. A mechanism that can explain the formation of the hairpin-mediated inverted

duplication junctions observed. a, c, e, g, i. Inversion junction sequences identified in differ-

ent GCRs. b, d, f, h, j. The inversion junction can be formed by 5’ resection from a DSB to gen-

erate a 3’-overhang. Intramolecular loop formation mediated by intra-strand base pairing

generates a 3’ primer terminus that can be extended by DNA polymerases. This initial hairpin-

capped chromosome will generate a dicentric chromosome upon replication, which is unstable

and undergoes additional rounds of rearrangement. See Fig 7 for an alternative mechanism

involving Break-induced Replication.

(PDF)

S13 Fig. Sequences of secondary rearrangements involved in the resolution of inversion

GCRs that are initially dicentric. a, c, e, g, i, k, m, o. Diagram of the secondary HR event. b,

d, f, h, j, l, n, p. Junction sequences and alignments between the GCR and participating chro-

mosomes identifies the novel junction sequences displayed as in S9 Fig. See Fig 7 for an alter-

native mechanism involving Break-induced Replication.

(PDF)

S14 Fig. Identification of an unannotated delta, “YELWdelta27”, on the right arm of chro-

mosome V. a. Dot plot comparing the sequence of YELWdelta6 (y-axis) and chrV coordinates

448,000–450,000. All bases between the sequences are compared, regions of local similarity are

shown as dots, and stretches of similar regions run diagonally. The annotated YERCdelta20 is

in the opposite orientation of the unannotated delta homology termed here “YELWdelta27”. b.

Diagram of HR events between YELWdelta1 and “YELWdelta27”. c. Junction sequences dis-

played as in S9 Fig.

(PDF)

S15 Fig. Read depth histograms for cdc73Δ yku80Δ isolates containing a GCR. Copy num-

ber histograms for all sixteen chromosomes in the sequenced cdc73Δ yku80ΔGCR-containing

isolates are shown. Duplicated chromosomes and chromosomal regions have twice the read

depth as non-duplicated regions. Chromosomes duplicated by GCR-related events show a

bimodal distribution (see for instance the partial duplication of chrXII in isolate 352). Only

isolate 345 has a duplication of an entire chromosome, indicating disomy of chrXVI.

(PDF)
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S16 Fig. Evidence of senescence in the cdc73Δ single mutant and cdc73Δ yku80Δ and

cdc73Δ tel1Δ double mutant strains. Sequential restreaking of freshly-generated cdc73Δ single

mutant and cdc73Δ yku80Δ and cdc73Δ tel1Δ double mutant strains reveals a rapid loss in

growth rate by restreak number 4, consistent with senescence due to defects in telomere main-

tenance. By restreak number 11, the cdc73Δ single mutant had an obvious improvement in

growth, whereas the cdc73Δ yku80Δ and cdc73Δ tel1Δ double mutant strains continued to have

growth defects and showed some recovery of growth but less than seen with the cdc73Δ single

mutant. In contrast, the wild-type and tel1Δ single mutant strains showed no signs of growth

defects.

(PDF)

S17 Fig. Telomere defects in cdc73Δ, tel1Δ, and yku80Δ double mutants. a. TPE was tested

in wild-type, tel1Δ, yku80Δ, cdc73Δ, cdc73Δ tel1Δ, and cdc73Δ yku80Δ strains with a telomeric

URA3 marker by monitoring growth of 10-fold serial dilutions strains on medium containing

5FOA. The sensitivity of strains with TPE defects could not be suppressed by sublethal concen-

trations of HU, indicating that loss of CDC73 directly affects telomeric silencing rather indi-

rectly causing 5FOA resistance through overexpression of ribonucleotide reductase as seen for

the pol30-8 and cac1Δ alleles [42]. b. TLC1 levels in wild-type, tel1Δ, yku80Δ, cdc73Δ, cdc73Δ
tel1Δ, and cdc73Δ yku80Δ strains. Measurement of TLC1 was done in three biological repli-

cates, and RNA levels were normalized against actin mRNA levels. Error bars are standard

deviations. c. TERRA levels in wild-type, tel1Δ, yku80Δ, cdc73Δ, cdc73Δ tel1Δ, and cdc73Δ
yku80Δ strains. Measurement of TERRA was done in triplicate and RNA levels relative to wild

type of at least three independent biological replicates were normalized against actin mRNA

levels. Error bars are standard deviations. One set of TERRA probes monitored TERRA

expressed from 6 different telomeres that contain subtelomeric Y’ elements (6� Y’: from 8L,

8R, 12L, 12R, 13L, and 15R), and the other set of TERRA probes were specific to TERRA

expressed from the telomere at the left arm of chromosome 15, which contains only X-ele-

ments. Primer concentrations and sequences were as previously described [115].

(PDF)

S18 Fig. Only a subset of mutations causing short telomeres result in synergistic increases

in GCR rates when combined with a cdc73Δmutation. a. Genes in which mutations are

known to cause short telomeres [46,47] and cause synergistic increases in GCR rates when

combined with a cdc73Δmutation as measured by patch tests in the dGCR assay [6] or as mea-

sured by fluctuation analysis in multiple GCR assays (Table 1). b. Genes in which mutations

are known to cause short telomeres and do not cause synergistic increases in GCR rates when

combined with a cdc73Δmutation.

(PDF)

S19 Fig. Introduction of a TLC1 overexpression plasmid causes higher TLC1 levels and

increased the telomere length in the cdc73Δ single mutant and modestly increased lengths

in the cdc73Δ tel1Δ double mutant. Southern blot of XhoI-digested genomic DNA isolated

from strains of the indicated genotypes transformed either with an empty vector or with the

TLC1 overexpression plasmid. TLC1 levels were also measured in these stains by quantitative

reverse-transcription PCR. Introduction of the TLC1 overexpression plasmid increased the

levels of TLC1 relative to the empty vector in all strains tested. In the wild-type strain raised

the relative TLC1 levels from 1.0 ± 0.05 to 132.0 ± 5.3 fold, where the range is the standard

error of the mean. In the cdc73Δ single mutant strain, the relative TLC1 levels raised from

0.2 ± 0.01 to 9.4 ± 0.3 fold. In the cdc73Δ tel1Δ double mutant strain, the relative TLC1 levels
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raised from 0.3 ± 0.02 to 6.9 ± 0.4 fold. In the cdc73Δ yku80Δ double mutant stain, the relative

TLC1 levels raised from 0.5 ± 0.01 to 11.5 ± 0.7 fold.

(PDF)

S20 Fig. Analysis of transcription elongation defects and loss of telomeric silencing in Paf1

complex subunit mutants. a. The cdc73 truncation mutants that were tested in dilution analysis

for defects in transcription elongation, as seen by sensitivity to 6-azauracil, and defects in telo-

meric silencing assessed in the telomere position effect assay, as seen by sensitivity to 5FOA.

10-fold dilutions of log phase cells were spotted onto non-selective complete synthetic medium

(CSM), CSM + 50 μg/mL 6-azauracil, and CSM + 1 mg/mL 5FOA and incubated at 30˚C for 4

days. The results are summarized in Fig 5A. b. To determine if the growth defects of cdc73 trun-

cation mutations were due to overexpression of ribonucleotide reductase [42], the wild-type

strain and strains containing the cdc73Δ, cdc73Δ125–229, and cdc73:125–229 alleles were grown

on CSM, CSM + 1 mg/mL 5FOA, and plates with sublethal concentrations of HU. Consistent

with a true TPE defect, sublethal levels of HU did not restore growth on plates containing 5FOA.

(PDF)

S21 Fig. Analysis of the minimal function region (residues 125–229) of Cdc73. a. The long-

range disorder of the Cdc73 protein as predicted by IUPRED [82] reveals that the minimal

functional region is more disordered on average than the folded C-terminal GTPase domain.

b. Average conservation of residues in S. cerevisiae Cdc73 from an alignment of 191 fungal

Cdc73 homologs generated by Clustal Omega [116] that reveals more extensive conservation

in the C-terminal GTPase domain as well as a few conservation blocks in the N-terminal

region. c. Chemical crosslinks to the minimal functional region of Cdc73 identified using the

data of Xu et al. [81]. d. Lysates of S. cerevisiae strains containing a Paf1-myc fusion and a

Cdc73-Venus fusion were subjected to immuneprecipitation with anti-myc antibodies, and

the precipitated proteins were then probed with anti-Venus antibodies. Coimmunoprecipita-

tion of Paf1 and Cdc73 was observed in the wild-type strain, the leo1Δ strain, and the rtf1Δ
strain, but not the ctr9Δ strain.

(PDF)

S22 Fig. The Paf1 complex has multiple nuclear localization signals. a. Cdc73 localizes to the

nucleus in the absence of each other individual Paf1 complex subunit. Wild-type Cdc73 was

tagged with Venus and each other Paf1 complex subunit was deleted, then cells were imaged by

deconvolution microscopy. Scale bar is 2 μm. b. Cdc73 is not required for the nuclear localiza-

tion of each other Paf1 complex subunit. Analogous to the experiments in panel a, each other

complex subunit was tagged with Venus and imaged in a wild-type and cdc73Δmutant strain. c.

Deletion of CDC73 has little if any effect on the levels of the other Paf1 complex subunits. For

each of the strains shown in b, whole cell extracts were made by TCA extraction and individual

complex subunit levels were determined by Western blot using an anti-GFP antibody. Pgk1 was

monitored by Western blot with anti-Pgk1 antibodies as a loading control.

(PDF)

S23 Fig. Computational predictions suggest nuclear localization signals are present in all

Paf1 complex subunits except for Cdc73. Nuclear localization signals for the Paf1 complex

subunits were predicted using cNLS Mapper (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_

Mapper_form.cgi; [117]). Positions of the predicted signals are indicated in the subunit

sequences (panels a, c, e, g, i), and the individual signals and their scores are displayed (panels

b, d, f, h, j).

(PDF)
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S1 Table. Effect of deleting Paf1 complex-encoding genes on dGCR rates.

(PDF)

S2 Table. Effect of the cdc73Δmutation on dGCR rates.

(PDF)

S3 Table. Statistics from whole genome sequencing of sGCR-containing isolates.

(PDF)

S4 Table. Summary of the evidence for the GCR-associated rearrangements in sGCR-con-

taining isolates.

(PDF)

S5 Table. Effects of overexpressing RNH1 and TLC1 on genome instability in the uGCR

assay.

(PDF)

S6 Table. Effect of CDC73 truncations on dGCR rates.

(PDF)

S7 Table. S. cerevisiae strains used in this study.

(PDF)
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