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Abstract

Recent studies and guidelines have indicated that lipoprotein(a) [Lp(a)]was an indepen-

dent risk factor of arteriosclerotic cardiovascular disease (ASCVD). This study aimed to

determine the relationship between serum Lp(a) levels and the risk of periprocedural

myocardial injury following percutaneous coronary intervention (PCI) in coronary heart-

disease (CHD) patients. This study enrolled 528 nonacute myocardial infarction (AMI)

coronary heart disease (CHD) patients who successfully underwent PCI. Fasting serum

lipids including Lp(a) were tested before PCI. High-sensitivity cardiac troponin I (hs-cTnI)

was tested before PCI and 24 h after PCI. Univariate and multivariate logistic regression

analyses were used to determine the relationship between preprocedural Lp(a) levels

and postprocedural cTnI elevation from 1 × upper limit of normal (ULN) to 70 × ULN.

As a continuous variable, multivariate analyses adjusting for conventional covariates and

other serum lipids revealed that increased Lp(a) levels were independently associated

with the risk of elevated postprocedural cTnI values above 1 × ULN (odds ratio [OR] per

log-unit higher: 1.31, 95% confidence interval [CI]: 1.02–1.68, P = 0.033], 5 × ULN (OR:

1.25, 95%CI: 1.02–1.53, P = 0.032), 10 × ULN (OR: 1.48, 95%CI: 1.18–1.86, P = 0.001)

and 15 × ULN (OR: 1.28, 95%CI: 1.01–1.61, P = 0.038). As a categorical variable, Lp(a)

> 300 mg/L was an independent risk factor of postproceduralc TnI≥1 × ULN (OR 2.17,

95%CI 1.12–4.21, P = 0.022), ≥5 × ULN (OR 1.82, 95%CI 1.12–2.97, P = 0.017) and

≥10 × ULN (OR 2.17, 95%CI 1.33–3.54, P = 0.002). Therefore, it could be concluded

that elevated preprocedural Lp(a) levels were associated with the risk of PCI-related

myocardial injury in non-AMI CHD patients.
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1 | INTRODUCTION

Lipoprotein(a) [Lp(a)] is a lipoprotein composed of low-density lipopro-

tein (LDL) and an additional protein apolipoprotein(a).1 It is a member

of human plasma lipoproteins which also include chylomicrons, very

low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL),

LDL and high-density lipoprotein (HDL).2 LDL consisting of choles-

terol and apoB-100 delivers cholesterol from liver to peripheral tis-

sues.3 For decades, low-density lipoprotein cholesterol (LDL-C) has

already been proven to be the most important risk factor atheroscle-

rosis cardiovascular disease (ASCVD).2,4-7 Different to LDL, an addi-

tional apolipoprotein(a) [apo(a)] makes the physiological and vascular

effects of Lp(a) ambiguous.1 However, uncertain mechanism as it was,

studies have already reported the positive correlation between plasma

Lp(a) levels and the risk of ASCVD.8,9 Recent ESC/EAS guidelines for

the management of dyslipidaemias recommended at least once mea-

surement of Lp(a) in the lifetime to identify the persons who may have

a lifetime risk of ASCVD.2

Percutaneous coronary intervention (PCI) is the major therapeutic

strategy of coronary heart disease (CHD). Myocardial infarction

(MI) associated with PCI which was classified as type 4a MI in Fourth

Universal Definition of Myocardial Infarction was one of the major com-

plications of PCI.10 Previous studies have already confirmed that type

4a MI would cause a poor prognosis after PCI.11-13 Different to type 4a

MI, elevation of cardiac troponin (cTn) after PCI which was defined as

PCI-related myocardial injury was relatively common especially after

the use of high-sensitivity cTn (hs-cTn).14 Although the optimal cut-off

value of postprocedural cTn which was of prognostic significance was

still controversial, our previous study revealed that the higher the post-

procedural cTnI, the worse the prognosis of patients.15 The relationship

between LDL-C, high-density lipoprotein cholesterol (HDL-C) or non-

HDL-C and different levels of postprocedural cTn elevation have been

studied before.16-18 However, whether higher Lp(a) levels were associ-

ated with risk of PCI-related myocardial injury remained unknown.

Thus, this study sought to explore the association between prep-

rocedural serum Lp(a) levels and PCI-related myocardial injury. More-

over, as mentioned above, the cut-off value of postprocedural cTnI

with prognostic significance was controversial yet, therefore we investi-

gated the association between Lp(a) and different elevations of post-

procedural cTnI levels from 1 × ULN up to 70 × ULN.

2 | METHOD

2.1 | Study population

This is a multicenter retrospective study. CHD patients who successfully

underwent PCI at our hospital were screened for eligibility. Success of

PCI was defined as residual stenosis <20% with stenting by visual esti-

mation. Exclusion criteria included: (a) acute myocardial infarction (AMI)

occurred within 8 weeks before PCI; (b) cTnI level was higher than ULN

before PCI; (c) severe bleeding complications such as cerebral hemor-

rhage or gastrointestinal hemorrhage occurred after PCI; (d) acute stent

thrombosis occurred within 24 h after PCI which caused type 4b MI10;

(e) use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibi-

tors or nicotinic acid which could reduce the Lp(a) levels2,19; (f) insuffi-

cient clinical data. From January 2013 to December 2015, a total of

965 consecutive CHD patients successfully underwent PCI at the Third

Affiliated Hospital of Sun Yat-sen University and the Third Affiliated

Hospital of Sun Yat-sen University-Lingnan Hospital. Of these patients,

349 patients were diagnosed AMI and excluded from our study.

Besides, 43 patients were excluded because of elevated preprocedural

cTnI levels, 39 patients were excluded because their clinical data avail-

able were insufficient for the study, while four and two patients were

excluded respectively because of severe bleeding complications and

acute stent thrombosis after PCI. Eventually, 528 patients were included

in the present study (Figure 1). The current study was approved by the

Institutional Review Board of the hospital.

2.2 | Measurement of laboratory data

After admission, fasting blood samples were obtained from each patient

before the procedure. Serum lipids including total cholesterol (TC), tri-

glyceride (TG), LDL-C, HDL-C, apoAI, apoB100 and Lp(a) were deter-

mined by Hitachi 7600 automatic biochemical analyzer. LDL-C and

HDL-C were analyzed using the direct method. TC and TG were ana-

lyzed using enzyme colorimetry method. Lp(a) was determined by latex

immunoturbidimetry method. ApoAI and apoB100 were determined by

immunoturbidimetry method. Non-HDL-C levels were calculated from

TC minus HDL-C levels. Hs-cTnI was analyzed by chemiluminescence

method through Abbott ARCHITECT i2000SR chemiluminescence

immunoanalyzer. Upper limit of normal (ULN) which was defined as the

99th percentile of normal population was used to replace upper refer-

ence limit (URL). ULN of hs-cTnI was 0.04 ng/ml of our test. Blood

F IGURE 1 Flowchart illustrating study population. CHD, coronary
heart disease; PCI, percutaneous coronary intervention; AMI, acute
myocardial infarction
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samples were obtained before PCI and 24 h after PCI to determine

preprocedural and postprocedural cTnI levels.

2.3 | Coronary angiography and percutaneous
coronary intervention

Each patient received sufficient dose of aspirin and clopidogrel before

procedure (aspirin 0.1 g daily for at least 3 days or a loading dose of

0.3 g, clopidogrel 75 mg daily for at least 4 days or a loading dose of

300 mg). Unless there were absolute contraindications, all patients

received moderate-intensity statin therapy (atorvastatin 20 mg/d or

rosuvastatin 10 mg/d) before procedure. Patients underwent coronary

angiography (CAG) firstly and PCI indication was decided by two

experienced interventional cardiologists according to Chinese guide-

line for percutaneous coronary interventional.20 Severity of coronary

artery lesion was evaluated by Gensini Score.21 Firstly, concentric and

eccentric stenoses were assigned a corresponding numeric value from

1 to 100% obstruction. The value was then multiplied by a coefficient

corresponding to location of stenosis. Gensini score was summation

of all products of stenosis extent and location of stenosis. PCI was

performed by experienced interventional cardiologists. Patients

received 100 U/kg bolus unfractionated heparin (UFH) just before the

procedure and an additional bolus of 1000 U was given every hour if

the procedure lasted for >1 h. Activated clotting time (ACT) was mea-

sured 1 h after procedure finished to make clear the response of UFH

for each patient. Parameters of PCI including intervention vessels,

number of stents, total stent length, balloon expansion pressure after

procedure and intra-operative complications were recorded. All stents

were drug-eluting stents (DES).

2.4 | Statistical analysis

Continuous data were expressed as mean ± SD and categorical data

were presented as frequencies with percentage. Student's t-test or

one-way analysis of variance was performed to determine the differ-

ences in continuous data between groups and chi-square test was

performed for categorical variables. Logistic regression analyses were

performed to explore the relationship between Lp(a) and different

times ULN of postprocedural cTnI elevations. Univariate logistic

regression analyses were performed firstly. Lp(a) was respectively ana-

lyzed as a continuous variable or a categorical variable with a cut-off

value as 300 mg/L according to Guidelines for the Prevention and

Treatment of Dyslipidemia in Chinese Adults.22 Since the distribution

of Lp(a) showed positive skewing (Figure 2), it was logarithmically

transformed when analyzed as a continuous variable and the results

of logistic regression analysis were represented by odds ratio (OR) per

log-unit increase. Multivariate logistic regression analyses were per-

formed in two different models. Model 1 was adjusted for conven-

tional covariates excluding other serum lipids. In model 2, we added

TG, LDL-C, non-HDL-C, HDL-C, apoAI, apoB100 as variables for the

purpose of assessing the independent association of Lp(a) and

PCI-related myocardial injury. Variables selection of multivariate logis-

tic regression models was done by stepwise forward method and

threshold values for F-to-enter and F-to-remove were 0.05 and 0.1,

respectively. All analyses were performed using Statistical Program

for Social Sciences (SPSS), version 22.0, software (Chicago, IL). p-value

of <0.05 was considered statistically significant.

3 | RESULTS

3.1 | Baseline characteristics and procedure
parameters

A total of 528 patients were included in our study. The baseline serum

Lp(a) levels ranged from 11 to 1797 mg/L (median = 153 mg/L, inter-

quartile range = 80-265 mg/L) (Figure 2). Patients were divided into

two groups according to Lp(a) ≤ 300 mg/L and > 300 mg/L. Several

baseline characteristics were compared between two groups

(Table 1). Patients with lower Lp(a) levels were older, more likely to

F IGURE 2 Distribution of
Lp(a) levels and ln[Lp(a)] levels in the
study population
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TABLE 1 Baseline characteristics
Variable Lp(a) ≤ 300 mg/L (n = 423) Lp(a)>300 mg/L (n = 105) p value

Male, n (%) 291 (69.9) 74 (66.7) 0.527

Age, y 67.51 ± 10.32 63.88 ± 9.40 0.001*

BMI, kg/m2 24.52 ± 3.27 23.73 ± 3.27 0.029*

Hypertension, n (%) 306 (73.4) 87 (78.4) 0.283

Diabetes, n (%) 154 (36.9) 26 (23.4) 0.008*

Prior PCI, n (%) 54 (12.9) 16 (14.4) 0.686

Smoking, n (%) 143 (34.3) 41 (36.9) 0.603

Family history of CHD, n (%) 36 (8.6) 11 (9.9) 0.675

Unstable angina, n (%) 117 (28.1) 32 (28.8) 0.873

Hemoglobin (g/L) 135.59 ± 15.56 134.70 ± 16.81 0.607

TC (mmol/L) 4.27 ± 1.19 4.96 ± 1.43 <0.001*

TG (mmol/L) 1.78 ± 1.74 1.60 ± 0.72 0.288

LDL-C (mmol/L) 2.60 ± 0.95 3.22 ± 1.27 <0.001*

HDL-C (mmol/L) 1.03 ± 0.25 1.15 ± 0.37 <0.001*

non-HDL-C (mmol/L) 3.25 ± 1.11 3.82 ± 1.50 <0.001*

apoAI (g/L) 1.26 ± 0.20 1.28 ± 0.25 0.382

apoB100 (g/L) 1.15 ± 0.75 1.21 ± 0.35 0.400

Creatine (umol/L) 88.22 ± 25.48 104.56 ± 134.03 0.019*

Uric Acid (umol/L) 411.73 ± 112.84 392.70 ± 103.68 0.117

Glycosylated hemoglobin (%) 6.39 ± 1.24 6.37 ± 1.38 0.908

HsCRP (mg/L) 5.68 ± 12.66 3.93 ± 6.02 0.255

NT-proBNPa 0.018*

normal, n (%) 359 (86.1) 84 (75.7)

gray zone, n (%) 38 (8.6) 14 (12.6)

high, n (%) 22 (5.3) 13 (11.7)

LVEF<50%, n (%) 36 (8.6) 14 (12.6) 0.203

E/A ratio < 0.8, n (%) 179 (42.9) 42 (37.8) 0.334

MAPb (mmHg) 95.86 ± 10.98 95.97 ± 11.15 0.926

Baseline cTnI levels (ng/ml) 0.009 ± 0.009 0.007 ± 0.008 0.073

Drug therapies

ACEI/ARB, n (%) 333 (78.7) 91 (86.7) 0.067

β-blocker, n (%) 200 (48.0) 50 (45.0) 0.584

CCB, n (%) 175 (42.0) 52 (46.8) 0.356

Trimetazidine, n (%) 256 (61.4) 65 (58.6) 0.587

Nitrates, n (%) 161 (38.6) 47 (42.3) 0.474

Statin intensityc 0.542

Moderate-intensity, n (%) 415 (98.1) 101 (96.2)

Low-intensity, n (%) 6 (1.4) 3 (2.8)

No statins, n (%) 2 (0.5) 1 (1.0)

Abbreviations: BMI, body mass index; HsCRP, high-sensitivity C-reactive protein; MAP, mean arterial

pressure; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB,

calcium channel blocker.
aNT-proBNP was calculated using the following classification: “normal” was <300 pg/ml; “gray zone” was

300–450 pg/ml for<50 years, 300–900 pg/ml for 50–75 years and 300–1800 pg/ml for >75 years;

“high” was >450 pg/ml for <50 years, >900 pg/ml for 50–75 years and > 1800 pg/ml for >75 years.
bMAP = 1/3*(systolic pressure) + 2/3*(diastolic pressures).
cModerate-intensity statin therapy: atorvastatin 20 mg/d, rosuvastatin 10 mg/d. Low-intensity statin

therapy: fluvastatin 40 mg/d, simvastatin 10 mg/d, pravastatin 20 mg/d.

*p < 0.05.
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have diabetes, higher BMI, lower NT-proBNP and creatine levels.

CHD drug therapies were not significantly different between two

groups. As for serum lipids, patients with lower Lp(a) levels also had

lower TC, LDL-C, HDL-C, non-HDL-C levels while TG levels were of

no difference. CAG and PCI parameters were shown in Supplemen-

tary Table 1. There were no significant differences between two

groups in terms of procedure parameters.

3.2 | Association between Lp(a) levels and
postprocedural cTnI levels

Postprocedural cTnI ≥1 × ULN, ≥5 × ULN, ≥10 × ULN, ≥25 × ULN,

≥70 × ULN was detected in 321 (60.8%), 166 (31.4%), 114 (21.6%),

76 (14.4%), and 45 (8.5%) patients, respectively. As a continuous vari-

able, univariate logistic regression analyses revealed that increasing

Lp(a) level was positively correlated to risk of each postprocedural

cTnI elevation (Figure 3).

After adjustment of conventional covariates excluding other

serum lipids in model 1, increasing Lp(a) level was positively correlated

to risk of postprocedural cTnI ≥1 × ULN, ≥5 × ULN, ≥10 × ULN,

≥15 × ULN, ≥20 × ULN but not cTnI ≥25 × ULN and ≥ 70 × ULN. In

model 2 including other serum lipids as covariates together, increasing

Lp(a) level was still positively correlated to risk of postprocedural cTnI

greater than 1 × ULN up to 15 × ULN, while it was not correlated to

cTnI ≥20 × ULN, 25 × ULN or 70 × ULN (Table 2). For comparison,

adjusted OR per 1 mmol/L increment of LDL-C in model 2 was also

shown in Table 2. Increasing LDL-C level was positively correlated to

risk of postprocedural cTnI greater than 1 × ULN up to 20 × ULN. Of

cTnI ≥25 × ULN and ≥ 70 × ULN, none of serum lipids was found

relevant, while LVEF<50%, Gensini Scores, total stent length, intra-

operative complications were found positively relevant and hemoglo-

bin was found negatively (Supplementary Figure 1).

3.3 | Association of Lp(a) categories with
postprocedural cTnI elevation

Univariate and multivariate logistic regression analyses were also per-

formed to determine the association of Lp(a) > 300 mg and post-

procedural cTnI elevation. As the small sample size of patients with

both Lp(a) > 300 mg and cTnI≥70 × ULN, we have not investigated

the association between Lp(a) > 300 mg and postprocedural

cTnI≥70 × ULN. Univariate analyses found Lp(a) > 300 mg was posi-

tively correlated to risk of postprocedural cTnI≥1 × ULN, ≥5 × ULN,

≥10 × ULN, ≥15 × ULN, ≥20 × ULN but not ≥25 × ULN (Figure 3). In

model 1 adjusting for conventional covariates excluding other serum

lipids, Lp(a) > 300 mg was correlated to risk of postprocedural cTnI

greater than 1 × ULN up to 15 × ULN, while it was not relevant to

cTnI ≥20 × ULN and ≥ 25 × ULN. After adjusting for covariates

including serum lipids, Lp(a) > 300 mg was still associated with post-

procedural cTnI≥1 × ULN, ≥5 × ULN, ≥10 × ULN. Patients with Lp(a)

> 300 mg were 1.2, 0.8, 1.2 times more likely to have postprocedural

cTnI≥1 × ULN, ≥5 × ULN, ≥10 × ULN comparing to those with

F IGURE 3 Univariate logistic
regression analysis results of
correlation between preprocedural
serum Lp(a) and postprocedural cTnI
elevations. OR, odds ratio; ULN,
upper limit of normal. #Results of
continuous Lp(a) were represented by
OR per log-unit increase. *The

association between Lp(a) > 300 mg
and postprocedural cTnI≥70 × ULN
was not investigated because of the
small sample size
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Lp(a) ≤ 300 mg, respectively. In this model, however, there were no

relationships between Lp(a) > 300 mg/L and cTnI greater than

15 × ULN, 20 × ULN, 25 × ULN. (Table 2).

4 | DISCUSSION

Our study demonstrated the positive correlation of preprocedural

Lp(a) levels and postprocedural cTnI levels in non-AMI CHD patients

undergoing elective PCI, indicating that Lp(a) was an independent risk

factor of PCI-related myocardial injury.

For these years, the status of Lp(a) in risk of ASCVD have been

receiving increasing attention. As we know, cigarette smoking, dia-

betes, hypertension and elevated LDL-C level were the major risk

factors promoting ASCVD.23 However, after controlling these risk

factors, cardiovascular events still occurred in some people. There-

fore, other factors correlating to ASCVD have been being explored

for decades, which called residual cardiovascular risk.24 Lp(a) was

considered to be a useful marker for identifying and evaluating the

residual cardiovascular risk.25 Although the first epidemiological

study was conducted by Dahlén G et al in 1972,26 the studies inves-

tigating the association between Lp(a) and cardiovascular disease

TABLE 2 Multivariate Logistic
Regression Analyses Results of the
Correlation between Preoperative Lp(a)
and Postoperative cTnI

Model 1a Model 2b

OR (95%CI) p value OR (95%CI) p value

cTnI ≥ 1 × ULN

Continuous Lp(a)c 1.38 (1.08–1.76) 0.011 1.31 (1.02–1.68) 0.033*

Lp(a)>300 mg/L 2.56 (1.36–4.83) 0.004 2.17 (1.12–4.21) 0.022*

Continuous LDL-Cd — — 1.56 (1.22-2.01) <0.001*

cTnI ≥ 5 × ULN

Continuous Lp(a)c 1.29 (1.05–1.59) 0.014 1.25 (1.02–1.53) 0.032*

Lp(a)>300 mg/L 1.90 (1.17–3.08) 0.009 1.82 (1.12–2.97) 0.017*

Continuous LDL-Cd — — 1.63 (1.34-1.98) <0.001*

cTnI ≥ 10 × ULN

Continuous Lp(a)c 1.62 (1.29–2.03) <0.001 1.48 (1.18–1.86) 0.001*

Lp(a)>300 mg/L 2.56 (1.59–4.12) <0.001 2.17 (1.33–3.54) 0.002*

Continuous LDL-Cd — — 1.56 (1.27-1.91) <0.001*

cTnI ≥ 15 × ULN

Continuous Lp(a)c 1.33 (1.06–1.67) 0.013 1.28 (1.01–1.61) 0.038*

Lp(a)>300 mg/L 1.66 (1.03–2.69) 0.039 1.26 (0.76–2.10) 0.369

Continuous LDL-Cd — — 1.45 (1.17-1.79) 0.001*

cTnI ≥ 20 × ULN

Continuous Lp(a)c 1.33 (1.04–1.69) 0.016 1.24 (0.98–1.58) 0.080

Lp(a)>300 mg/L 1.48 (0.89–2.47) 0.134 1.28 (0.76–2.16) 0.359

Continuous LDL-Cd — — 1.32 (1.07-1.64) 0.011*

cTnI ≥ 25 × ULN

Continuous Lp(a)c 1.22 (0.95–1.57) 0.123 1.16 (0.90–1.51) 0.260

Lp(a)>300 mg/L 1.15 (0.66–2.00) 0.630 1.04 (0.59–1.84) 0.891

Continuous LDL-Cd — — 1.20 (0.95-1.50) 0.127

cTnI ≥ 70 × ULN

Continuous Lp(a)c 1.41 (0.98–2.01) 0.063 1.35 (0.94–1.93) 0.103

Continuous LDL-Cd — — 1.19 (0.93-1.52) 0.171

aMultivariate Model 1 adjusted for gender, age, BMI, type of CHD (unstable angina or not), diabetes,

hypertension, smoking history, prior PCI history, family history of CAD, hemoglobin, creatinine, uric acid,

glycosylated hemoglobin, hsCRP, NT-proBNP, LVEF<50%, E/A ratio < 0.8, MAP, drugs, Gensini Score,

number of intervention vessels, intervention vessel location, number of stents, total stent length,

maximum inflation pressure, ACT 1 h after PCI finished, intra-operative complication.
bMultivariate Model 2 adjusted for covariates in Model 1 and LDL-C, HDL-C, non-HDL-C, TG, apoAI,

apoB100.
cPer log-unit increment in Lp(a) levels.
dPer mmol/L increment in LDL-C levels analyzed in models with continuous Lp(a).

*p < 0.05.
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were obstructed as the unclear mechanism and nonstandard mea-

surement approaches of this lipoprotein. Hence, Lp(a) was rarely

mentioned in the earlier guidelines about serum lipids.27-29 Fortu-

nately, the First World Health Organization (WHO)/International

Federation of Clinical Chemistry and Laboratory Medicine (IFCC)

International Reference Reagent for Lp(a) for Immunoassay emerged

in 2000 and was accepted by WHO in 2003.30,31 Afterwards, a large

scale meta-analysis including 126 634 participants in 36 prospective

studies revealed the continuous, independent and modest associa-

tions of Lp(a) levels with risk of CHD and ischemic stroke.32 Further-

more, Lp(a) levels were found largely genetically determined by the

LPA gene,33 making mendelian randomization analyses demonstrat-

ing the relationship of Lp(a) and CHD feasible.34-36 The most recent

mendelian randomization analysis including 13 781 individuals from

the Lp(a)-GWAS-Consortium from five primarily population-based

studies and 20 793 CHD cases and 27 540 controls from a subsam-

ple of the CHD Exome+ consortium estimated a required reduction

in Lp(a) effect size of 65.7 mg/dL to reach the same effect as a

1 mmol/L lowering of LDL-C.37

Highly related as it was between lipids and CHD, previous studies

have also focused on the relationship between serum lipids and type

4a MI or PCI-related myocardial injury. Elevated LDL-C or non-HDL-C

levels have been found to be positively correlated to postprocedural

cTnI levels.16 Another study considered non-HDL-C was more valu-

able in predicting PCI-related myocardial injury than LDL-C in type

2 diabetes patients.18 Moreover, higher HDL-C levels were reported

to be associated with less risk of PCI-related myocardial injury in

patients with LCL-C < 70 mg/dL.17 Our previous study15 exploring

the risk factors of type 4a MI found LDL-C was an independent risk

factor and 1-SD increment of LDL-C (1.05 mmol/L in the study)

increased the risk of type 4a MI by 44%. In the study we have already

noticed that Lp(a) levels seemed to be higher in patients with type 4a

MI but the difference was not statistically significant. Therefore, we

expanded the sample size and finished our present study. In this

study, we analyzed 528 non-AMI CHD patients and finally we found

elevating Lp(a) was associated with risk for postprocedural cTnI levels

above 1 × ULN up to 15 × ULN after adjustment of covariates includ-

ing other serum lipids, indicating that Lp(a) was associated to

PCI-related myocardial injury independently of other serum lipids.

Definition and prognostic significance of PCI-related myocardial

infarction or injury have been developing for these years.10,38-40 The

preferred biomarker has been identified as cTn rather than CK-MB10,38

considering to the better sensitivity and specificity. Among the assays,

high-sensitivity cTn was more recommended.41 According to the most

recent universal definition of MI,10 in patients with normal prep-

rocedural cTn level, PCI-related MI was defined as elevation of post-

procedural cTn levels more than 5 × ULN with evidence of

new myocardial ischemia. As mentioned above, PCI-related MI would

cause a poor prognosis after PCI.11-13 Unlike PCI-related MI, elevation

of cTn values after PCI which was arbitrarily defined as PCI-related

myocardial injury was of controversially significance.11,39,42-46 In our

previous study,15 we found patients with postprocedural cTnI

levels≥10 × ULN had a higher incidence of major adverse cardiovascu-

lar events (MACE) in 3 years after PCI comparing to those with normal

postprocedural cTnI levels, while postprocedural cTnI levels from

1 × ULN up to 10 × ULN seemed to be no prognostic significance.

Zeitouni et al found patients with postprocedural cTnT from 1 × ULN

up to 5 × ULN with evidence of ischemia or cTnT≥5 × ULN without

ischemic findings who could be diagnosed as periprocedural myocardial

injury according to the Third universal definition of MI had an

increased rate of cardiovascular events at 30 days and 1 year.11 While

Ndrepepa et al found elevation of postprocedural cTnT levels did not

offer prognostic information.46 Another expert consensus proposed by

the Society for Cardiac Angiography and Intervention (SCAI)39 pro-

posed that postprocedural cTn≥70 × ULN was “clinically relevant MI”.
Since the postprocedural cTn levels reflected the mass of new myocar-

dial injury,47 it could be inferred that the prognosis after PCI would

positively correlate to the postprocedural cTn levels though there were

still not absolute cut-off values.

In our present study, after adjustment of other covariates

excluding lipid profile indices, increased preprocedural Lp(a) was

correlated to the elevation of postprocedural cTnI above 1 × ULN

up to 15 × ULN but not ≥25 × ULN and ≥ 70 × ULN. The results

were similar after adjusted covariates including TG, LDL-C, non-

HDL-C and HDL-C. Therefore, it can be deduced that Lp(a) was cor-

related to the minor myocardial injury after PCI. Larger mass of

myocardial injury, however, was much more strongly correlated to

the heart function, complexity of coronary artery lesion and acute

damage of PCI procedure as previous article reported.15 The major

risk factors of PCI-related myocardial injury could be grouped as

lesion-related, patient-related and procedure-related which contrib-

uted almost equally. Lp(a) was a patient-related risk factor. The

underlying mechanisms for the association between Lp(a) and minor

myocardial injury after PCI remained uncertain yet, as well as the

mechanisms for the association between Lp(a) and ASCVD. The

structure of Lp(a) has already been illustrated clearly. It was com-

posed of an LDL-like particle and a specific component apo(a) via a

single disulphide bond.1 LDL with its apolipoprotein apoB-100 has

already been proven to play the key role in ASCVD.2 However, exis-

tence of apo(a) made Lp(a) having relatively different physiological

and pathological mechanisms to LDL. Similarly to LDL, Lp(a) could

be oxidized then phagocytosed by macrophages, making it trans-

form into foam cells and release proinflammatory cytokines.8 The

proinflammatory effects of Lp(a) were mainly mediated by its com-

ponent oxidized phospholipids which were covalently bound with

apo(a).9 Moreover, studies have already showed high Lp(a) levels

were linked to the risks of both coronary thrombosis and venous

thrombosis.8 Because apo(a) moiety and plasminogen was of struc-

tural similarities, the reasons why Lp(a) caused thrombosis were

speculated to be inhibiting fibrinolysis by interfering with the con-

version of plasminogen to plasmin.8,9,48 Therefore, besides the ath-

erogenic risk of LDL particles, the proinflammatory and thrombotic

effects of Lp(a) might cause the myocardial injury after PCI. How-

ever, further definitive mechanisms how Lp(a) promotes
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atherosclerotic lesions require more appropriate animal models and

basic researches to figure out.

As mentioned above, plasma Lp(a) levels were mainly genetically

determined,33 which were insensitive to lifestyle such as diet and

exercise.8 Effects of statins on Lp(a) metabolism remained uncertain

and controversial.2 Therefore, Lp(a) levels were much more stable

than LDL-C. Since there were plenty of evidences demonstrating the

association between Lp(a) and ASCVD, it could be expected as a good

predictor in the risk of cardiovascular events. Lowering Lp(a) therapies

has been developing for these years. Appropriate dose of nicotinic

acid which was unique in lowering Lp(a) levels have been showed no

beneficial effects.19 PCSK9 inhibitors could reduce Lp(a) levels by

25–30% while LDL-C by 50–60% according to the clinical trials.9 The

treatment of PCSK9 inhibitors could significantly decrease the ASCVD

events but whether it was due to lowering of Lp(a) or simply due to

lowering LDL-C to levels remained controversial.49-51 Our study rev-

ealed the association of elevated Lp(a) levels and risk of PCI-related

myocardial injury but further interventional studies were absent.

Therefore, further studies were of expectation to investigate whether

lowering of Lp(a) levels could reduce the risk of PCI-related myocar-

dial injury.

There were still some limitations in this study. First, although this

was a multicenter study, the sample size of patients with post-

procedural cTnI≥25 × ULN and ≥ 70 × ULN was still relatively small

due to the low incidences. Thus the results in postprocedural

cTnI≥25 × ULN and ≥ 70 × ULN were not very convincing. Second, as

it was a retrospective study, the confounders might be complex.

Although we adjusted the factors which might affect postprocedural

cTnI levels as many as possible in the multivariable logistic regression

analyses, there were still potential confounders might have been not

entirely eliminated. Third, our study was an observational study with-

out intervention on Lp(a) levels. Thus although we found the positive

correlation between elevated Lp(a) levels and postprocedural cTnI

above 1 × ULN up to 15 × ULN, the effects of periprocedural myocar-

dial injury by lowering Lp(a) levels remained unclear. Fourth, since a

lot of studies had already investigated the prognostic significance of

different elevation of postprocedural cTn levels, we have not con-

ducted further survival analyses of the patients in our study. Whether

the postprocedural cTnI elevation could increase the cardiovascular

events after PCI of these patients remained uncertain yet.

5 | CONCLUSION

In non-AMI CHD patients who successfully underwent PCI, this study

found that elevated preprocedural Lp(a) levels were correlated to the

risk of postprocedural cTnI greater than 1 × ULN up to 15 × ULN but

not 20 × ULN, 25 × ULN and 70 × ULN. As a categorical variable with

a cut-off value 300 mg/L, Lp(a) > 300 mg/L was an independent risk

factor of postprocedural cTnI≥1 × ULN, ≥5 × ULN and ≥ 10 × ULN.

Therefore, we can draw a conclusion that Lp(a) was associated to the

risk of minor myocardial injury after PCI and could be a good predictor

of PCI-related myocardial injury.
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