
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1607  | https://doi.org/10.1038/s41598-022-05544-w

www.nature.com/scientificreports

Weekly treatment with SAMiRNA 
targeting the androgen receptor 
ameliorates androgenetic alopecia
Sung‑Il Yun1,5, Sang‑Kyu Lee2,5, Eun‑Ah Goh2, Oh Seung Kwon2, Woorim Choi2, 
Jangseon Kim2, Mi Sun Lee2, Soon Ja Choi2, Seung Sik Lim1, Tae Kee Moon3, Sin Hae Kim3, 
Keeyeol Kyong4, Gaewon Nam4* & Han‑Oh Park1,2*

Androgenetic alopecia (AGA) is the most common type of hair loss in men and women. 
Dihydrotestosterone (DHT) and androgen receptor (AR) levels are increased in patients with AGA, 
and DHT-AR signaling correlates strongly with AGA pathogenesis. In this study, treatment with 
self-assembled micelle inhibitory RNA (SAMiRNA) nanoparticle-type siRNA selectively suppressed 
AR expression in vitro. Clinical studies with application of SAMiRNA to the scalp and massaging to 
deliver it to the hair follicle confirmed its efficacy in AGA. For identification of a potent SAMiRNA for 
AR silencing, 547 SAMiRNA candidates were synthesized and screened. SAMiRNA-AR68 (AR68) was 
the most potent and could be efficiently delivered to human follicle dermal papilla cells (HFDPCs) 
and hair follicles, and this treatment decreased the AR mRNA and protein levels. We confirmed that 
10 µM AR68 elicits no innate immune response in human PBMCs and no cytotoxicity up to 20 µM with 
HFDP and HaCaT cells. Clinical studies were performed in a randomized and double-blind manner 
with two different doses and frequencies. In the low-dose (0.5 mg/ml) clinical study, AR68 was applied 
three times per week for 24 weeks, and through quantitative analysis using a phototrichogram, 
we confirmed increases in total hair counts. In the 24-week long high-dose (5 mg/ml) clinical study, 
AR68 showed average additional hair growth of 1.3-1.9 hairs/cm2 per month, which is comparable to 
finasteride. No side effects were observed. Therefore, SAMiRNA targeting AR mRNA is a potential 
novel topical treatment for AGA.

Androgenetic alopecia (AGA), commonly known as male pattern hair loss (MPHL) in men and female pattern 
hair loss (FPHL) in women, is the most common type of progressive hair loss1–3. Androgens, male hormones, are 
one of the causes of AGA​4. Although the relationship between FPHL and androgen is unclear, FPHL is accom-
panied by hair follicle miniaturization and hair thinning, similar to MPHL5. The pathogenesis of both diseases 
is not yet completely understood, but its incidence has increased in recent years.

Androgen and AR signaling plays an essential role in regulating the hair cycle and skin pathogenesis, includ-
ing in AGA​6–8. Endogenous androgens include testosterone and dihydrotestosterone (DHT). DHT is a more 
potent androgen synthesized from testosterone by 5-α reductase and exhibits an ~ tenfold higher binding affin-
ity with the androgen receptor (AR). DHT and AR levels are elevated in patients with AGA, and it has been 
reported that DHT-AR signaling is closely related to AGA pathogenesis9–13. Finasteride and dutasteride, which 
were developed as 5-α reductase inhibitors, have been approved by the FDA and are being used as the main 
treatments for AGA. However, these drugs have several side effects, such as a decrease in libido via decreases 
in DHT14,15. Hence, there is a need for a new treatment for AGA without such side effects. Since 5-α reductase 
is produced in various cells, including the male and female reproductive tracts, testes, and ovaries, inhibition 
of DHT synthesis by local treatment is not effective, and only systemic administration will result in effective 
treatment. Therefore, the best way to block DHT-AR signaling without inhibition of systematic DHT synthesis 
is suppression of AR expression in hair tissue alone. This method constitutes an appropriate strategy for AGA 
treatment with minimal side effects.
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AR, a nuclear receptor, is mainly expressed in dermal papilla cells (DPCs) of the human hair follicle16–18. 
When DHT enters the cell, the AR protein forms a dimer with it in the cytosol, translocates to the nucleus and 
acts as a transcription factor to promote the expression of inhibitory proteins of hair growth (such as TGF-β 
and DKK-1)8,19–23. Naito and colleagues reported that DHT-induced inhibition of hair regrowth did not occur 
in AR knockout (ARKO) mice and that ARKO mice showed an extended anagen phase in the second hair cycle 
compared to wild-type mice24. DHT-AR signaling is also involved in hair follicular miniaturization2,4, leading to 
apoptosis of DPCs25 and keratinocytes26 and the progression of AGA. Based on the essential role of AR in AGA 
pathogenesis, suppression of AR expression may be an ideal approach for AGA treatment.

RNA interference (RNAi) has the advantage of enabling ‘disease-modifying drugs’, as it can reduce the expres-
sion of disease-causing genes in a sequence-specific manner. Therefore, siRNA-based cosmeceuticals have been 
evaluated for enhanced potency27–31. However, the RNAi formulations developed thus far have had low efficiency 
due to limited delivery to skin cells and hair follicles32–34. Additionally, siRNA has intrinsic inflammatory side 
effects, which may exacerbate alopecia due to the inflammatory response in hair tissues. FDA-approved siRNA 
drugs (Onpattro and Givlaari) are also associated with an inflammatory response due to nonspecific innate 
immune stimulation. Therefore, the use of conventional siRNA-based nanoparticle technology is limited in hair-
loss treatment. To overcome the hurdle of the delivery and side effects of siRNA for AGA treatment, we applied 
self-assembled micelle inhibitory RNA (SAMiRNA) technology.

SAMiRNA is a new type of siRNA nanoparticle that does not result in innate immune stimulation. It is a 
dual-conjugated DNA/RNA heteroduplex with hydrophilic and hydrophobic conjugates at each end of oligo-
nucleotides, and thus, SAMiRNA spontaneously assembles to form nanoparticles35–37. SAMiRNA nanoparticles 
have a size of less than 100 nm and a neutral charge, which is ideal for delivery into cells38. Nanoparticles can 
be more efficiently delivered to hair follicles than small molecules through the pumping effect of massage after 
application39,40. Additionally, SAMiRNA nanoparticles do not show innate immune stimulation effects, unlike 
conventional siRNA formulations. Indeed, an intrinsic problem with siRNA is that it acts as a Toll-like receptor 
3 (TLR3) ligand, and lipid nanoparticle (LNP) formulations cause additional stimulation by cationic lipids of 
LNP33,41,42. SAMiRNA spontaneously forms spherical nanoparticles without cationic lipids in an aqueous solu-
tion. Unlike siRNA, SAMiRNA also has no innate immune stimulation due to steric hindrance that prevents 
binding to TLR3 by the conjugates attached to both ends35–37. Therefore, SAMiRNA may be an ideal solution to 
overcome the above two problems of siRNA in the development of AGA treatment. Based on this theoretical 
background, we performed the following analyses.

In this study, 547 SAMiRNA nanoparticles containing each specific AR mRNA region were designed, synthe-
sized, and screened. Among the SAMiRNA candidates, SAMiRNA-AR68 (AR68) had the most potent silencing 
efficacy, lowering the levels of AR mRNA and protein in DPCs and hair follicles. In addition, human peripheral 
blood mononuclear cells (PBMCs) were treated with AR68 to confirm its safety through innate immune response 
analysis. After confirming its efficacy and safety in vitro, we further evaluated AR68 in clinical studies. Low-dose 
(0.5 mg/ml) treatment applied three times per week for 24 weeks showed efficacy and safety. For more potency 
and convenience, a clinical study with a high-dose (5 mg/ml) formulation applied once per week was performed 
for 24 weeks, and the high-dose data showed efficacy similar to that of finasteride without side effects.

Results
Screening of potent SAMiRNA for AR silencing.  SAMiRNA nanoparticles, as shown in Fig. 1a, consist 
of hydrophilic polymer polyethylene glycol (PEG) and hydrophobic hydrocarbon conjugates at each end of an 
unmodified DNA/RNA heteroduplex. For potent SAMiRNAs specifically targeting AR, SAMiRNAs containing 
19 base pairs of DNA/RNA heteroduplexes were designed by the sliding window algorithm and selected for 
specificity for AR mRNA. A total of 547 SAMiRNA candidate-conjugated sense strands and antisense strands 
were synthesized, purified and annealed to nanoparticles. The silencing effect of AR in LNCaP cells was ana-
lyzed for each SAMiRNA candidate by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). 
Fourteen SAMiRNA candidates were selected based on their knockdown efficiency (> 50% AR silencing effi-
cacy) (Supplementary Fig. S1 and Fig. 1b). In addition, we verified the decreased level of AR protein in fourteen 
SAMiRNA candidate-treated LNCaP cells (Fig. 1c). AR68 and AR109 were found to be the most potent SAMiR-
NAs.

To confirm efficacy in human hair cells, we treated human follicle dermal papilla (HFDP) cells with AR68 
and AR109, which significantly decreased AR mRNA and protein levels (Fig. 2a, b). As shown in Fig. 2b, AR68 
reduced AR protein levels more effectively than AR109 in HFDP cells, confirming that AR68 is the more potent 
siRNA sequence for AR silencing. Treatment of HFPD cells with AR68 reduced AR mRNA expression in a 
dose-dependent manner (Fig. 2c), and the AR protein inhibitory effect was confirmed by enzyme-linked immu-
nosorbent assays (ELISAs) (Fig. 2d).

SAMiRNA‑AR68 decreased the AR mRNA and protein levels in human hair follicles.  To evalu-
ate SAMiRNA nanoparticle delivery to human hair follicles, we applied fluorescein (FAM)-labeled AR68 to 
plucked hair and visualized the samples by confocal microscopy. Plucked hair often lacks the dermal papilla 
compared with microdissected hair follicles. We plucked multiple hairs and selected hairs with a hair bulb. 
FAM-labeled AR68 was added to plucked hairs with dermal papilla. As expected, FAM-labeled AR68 was effi-
ciently delivered to the outer root sheath (ORS) as well as the dermal papilla of the hair bulb (Fig. 3a). We con-
firmed AR silencing in hair follicles by RT-qPCR analysis (Fig. 3b). Immunofluorescence analysis of the AR68-
treated plucked hair showed a substantial reduction in AR protein expression (Fig. 3c). The AR protein is highly 
expressed in the dermal papilla, and transactivation of AR by binding to DHT in dermal papilla cells induces 
apoptosis that promotes AGA progression2,25. Therefore, we confirmed that AR68 nanoparticles at 10 µM could 
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be delivered and silenced AR in dermal papilla cells of hair follicles. We investigated the efficacy of AR68 at 
higher concentrations for a clinical study of AGA treatment.

The safety of SAMiRNA‑AR68 nanoparticles.  One of the limitations in developing RNAi therapeu-
tics for clinical applications is cytotoxicity and systemic toxicity, including innate immune stimulation34. To 
evaluate the cytotoxicity of AR68, we performed a cell viability assay in HFDP and keratinocyte HaCaT cells 
at effective concentrations (10 μM). Neither HFDP nor HaCaT cells showed cytotoxicity up to 20 μM AR68 
(Fig. 4a). We also evaluated whether AR68 induces nonspecific innate immune stimulation in human PBMCs. 
AR68 was treated at concentrations up to 10 μM, and proinflammatory cytokines related to TLR3 signaling were 
analyzed after 6 h. AR68 did not induce proinflammatory cytokines, including interleukin (IL)-1β, IL-6, inter-
feron-gamma (INF-γ), and tumor necrosis factor-alpha (TNF-α), in PBMCs compared to nonstimulated nega-
tive controls; as a positive control, concanavalin A significantly induced proinflammatory cytokines (Fig. 4b). 
Taken together, these results demonstrate that AR68 does not induce cytotoxicity or innate immune stimulation 
at 10 µM, and these results guided determination of the effective dose of AR68 to be used in clinical applications.

The stability of SAMiRNA‑AR68 nanoparticles.  We investigated the storage stability of SAMiRNA 
solution at various temperatures. The nanoparticle size of SAMiRNA was monitored by qNano Gold to evaluate 

Figure 1.   Screening of potent SAMiRNAs targeting human AR. (a) Schematic of SAMiRNA nanoparticles. (b, 
c) LNCaP cells were treated with PBS or 14 SAMiRNA candidates for 48 h. Total RNA extracts were subjected 
to quantitative polymerase chain reaction (qPCR) assays to evaluate AR knockdown efficacy, and AR expression 
was normalized to the expression of the ribosomal protein lateral stalk subunit P0 (RPLP0) gene (b). Whole-cell 
lysates were subjected to immunoblot analysis to compare the protein levels of AR and GAPDH. The intensity 
of the AR and GAPDH bands was quantified by ImageJ software, and AR protein expression was normalized 
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) values (c, lower panel). Statistical significance was 
assessed by two-sided Student’s t test, ***p < 0.001.
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the long-term stability of AR68 nanoparticles. The average size of the AR68 nanoparticles was approximately 
99.2 ± 5.1 nm (22 °C, 55% ± 5 humidity) and 105.0 ± 2.5 nm (40 °C, 75% ± 5 humidity). The AR68 formulation 
remained stable for 6 months (Supplementary Fig. S2a). We further investigated AR knockdown by RT-qPCR 
using AR68 samples stored for 6 months under the indicated conditions. As expected, we observed a similar 
inhibitory effect of AR mRNA in HFDPCs (Supplementary Fig. S2b).

Clinical study I: low‑dose SAMiRNA‑AR68 (0.5 mg/ml) treatment three times per week.  Gen‑
eral characteristics of the subjects.  A total of 48 male and female subjects diagnosed with moderate androge-
netic alopecia were recruited and randomly assigned to an AR68 low-dose treatment group (test group) (n = 24) 
or placebo group (n = 24). In the AR68 low-dose treatment group, 2 of 24 subjects dropped out (withdrawal of 
consent); thus, 22 subjects completed the study. The mean age was 42.4 ± 8.10 years, and the male to female ratio 
was 8:14. In the placebo group, one of 24 subjects dropped out (withdrawal of consent), with 23 completing the 
study. The mean age of the placebo group was 42.4 ± 6.69 years, and the male to female ratio was 6:17. There was 
no statistically significant difference between the two groups based on group homogeneity analysis performed to 
confirm the validity of randomization (Supplementary Fig. S3 and Table 1).

Analysis of hair density and total hair counts.  Photographic assessment revealed increased hair density in the 
AR68 low-dose treatment group compared with that at baseline (Fig. 5a, Table 2a). As shown by phototricho-
gram analysis, the total hair count increased at 24 weeks after treatment with AR68 compared to that at baseline 
(from 133.14 to 135.41 hairs/cm2; p < 0.01) (Table 2b). The mean change and rate of total hair count increased by 

Figure 2.   The efficacy of SAMiRNA-AR68 in reducing AR expression in HFDP cells. (a, b) Human follicle 
dermal papilla (HFPD) cells were treated with PBS, SAMiRNA-AR68, or SAMiRNA-AR109 for 48 h. Total RNA 
extracts were subjected to RT-qPCR assays, and AR expression was normalized to that of the RPLP0 gene (a). 
Whole-cell lysates were subjected to immunoblot analysis (b, left panel). The intensity of the AR and GAPDH 
bands was quantified by ImageJ software, and AR protein expression was normalized to GAPDH values (b, right 
panel). (c) HFDP cells were treated with PBS, SAMiRNA control, or the indicated doses of SAMiRNA-AR68 
for 48 h. Total RNA extracts were subjected to qPCR assays, and AR expression was normalized to that of the 
RPLP0 gene. (d) HFDP cells were treated with PBS, SAMiRNA control, or 10 μM SAMiRNA-AR68 for 48 h. 
Whole-cell lysates were subjected to enzyme-linked immunosorbent assays (ELISAs) to measure AR protein. 
Statistical significance was assessed by two-sided Student’s t test, **p < 0.01; ***p < 0.001.
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2.273 ± 3.089 and 1.870% at 24 weeks in the AR68 0.5 mg/ml treatment group, respectively, compared to those 
at baseline (Fig. 5b, Table 3).

Subject self‑assessment questionnaires.  There was no significant difference between the AR68 0.5 mg/ml treat-
ment group and the placebo group.

Safety assessments.  In the safety assessment, no adverse events in any of the 45 subjects were observed during 
the clinical study period.

Figure 3.   AR silencing efficacy of SAMiRNA-AR68 in human hair follicles. (a) Plucked human hair follicles 
were treated with PBS or 10 μM FAM-labeled SAMiRNA-AR68 in culture medium for 24 h. Hair follicles were 
subjected to immunofluorescence (IF) analysis and counterstained with 4′,6-diamidino-2-phenylindole (DAPI). 
Scale bars = 100 μm. (b) Plucked human hair follicles were treated with PBS or 10 μM SAMiRNA-AR68 for 48 h. 
Total RNA extracts from hair bulbs were subjected to qPCR assays, and AR expression was normalized to that of 
the RPLP0 gene. (c) Plucked human hair follicles were treated with PBS or 10 μM SAMiRNA-AR68 for 48 h. IF 
analysis of the plucked vertex hair follicle section incubated with an anti-AR antibody and counterstained with 
DAPI. Scale bars = 100 μm. Levels of AR protein were measured by the mean fluorescence intensity using ZEN 
software. Data are shown as the mean value ± SD (n = 8 hairs/group) normalized for DAPI intensity. Statistical 
significance was assessed by two-sided Student’s t test, *p < 0.05 and **p < 0.01.
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Figure 4.   The safety of SAMiRNA-AR68. (a) HFDP and HaCaT cells were treated with PBS or the indicated 
dose of SAMiRNA-AR68 for 72 h. WST-1 assays were performed to measure cell viability. (b) Human PBMCs 
were treated with 20 μg/ml concanavalin A (ConA) as a positive control, PBS, or the indicated doses of 
SAMiRNA-AR68 for 6 h. Total RNA extracts were subjected to qPCR assays to evaluate the expression of 
proinflammatory cytokines, including IL-1β, IL-6, INF-γ and TNF-α, normalized to that of the ribosomal 
protein L13A (RPL13A) gene.

Table 1.   Demographic characteristics of the subjects in clinical study I.

Characteristics

AR68 0.5 mg/ml (n = 22) Placebo (n = 23)

p valuen (%) n (%)

Sex
Male 8 (36.36) 6 (26.09)

0.530
Female 14 (63.64) 17 (73.91)

Age Mean ± SD 42.4 ± 8.10 42.4 ± 6.69 0.546

Median 44.00 43.00

Min, Max 22.00, 53.00 26.00, 53.00

20 <  0 (0.00) 0 (0.00)

20–29 2 (9.09) 1 (4.35)

30–39 3 (13.64) 6 (26.09)

40–49 14 (63.63) 13 (56.52)

 ≥ 50 3 (13.64) 3 (13.04)
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Figure 5.   Images of the change in hair loss following 24 consecutive weeks of application of SAMiRNA-AR68 at 
0.5 mg/ml and placebo products. (a) Representative photographs of the forehead hairline and vertex of the two 
groups at baseline and 8, 16 and 24 weeks after 0.5 mg/ml AR68 and placebo treatment three times per week. 
The phototrichogram analysis was performed at baseline and at 16 and 24 weeks. (b) Representative graph of the 
percentage of total hair count increments at 16 and 24 weeks compared to baseline.

Table 2.   Descriptive statistical analysis of hair density (a) and total hair counts (b) between time points 
in clinical study I. a Increment of mean value represents improvement of hair condition on hairline and 
vertex. b Increment of mean value represents improvement of hair counts. c Significantly different at **p < 0.01 
compared with baseline.

Baseline 8 weeks 16 weeks 24 weeks

(a)

AR68 0.5 mg/ml (n = 22)

Meana 0.000 0.000 0.045 0.045

SD 0.000 0.000 0.213 0.375

p value – 0.317 0.083 0.317

Placebo (n = 23)

Mean 0.000 0.000 0.043 0.087

SD 0.000 0.000 0.209 0.417

p value – 1.000 1.000 0.317

(b)

AR68 0.5 mg/ml (n = 22)

Mean (n/cm2)b 133.14 – 134.00 135.41

SD 25.64 – 24.21 25.48

p valuec – – 0.078 0.002**

Placebo (n = 23)

Mean (n/cm2) 129.26 – 129.70 129.57

SD 22.64 – 22.66 22.96

p value – – 0.441 0.588
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Clinical study II: high‑dose SAMiRNA‑AR68 (5 mg/ml) treatment once a week.  General charac‑
teristics of the subjects.  To increase efficacy and user convenience, we designed and conducted a clinical study 
with high-dose (5  mg/ml) treatment once per week. A total of 60 male and female subjects diagnosed with 
moderate androgenetic alopecia participated and were randomly assigned to an AR68 5 mg/ml treatment group 
(n = 30) or a placebo group (n = 30). During the study period, six subjects withdrew (withdrawal of consent or 
loss to follow-up), ten subjects withdrew at the investigator’s discretion (hair perm, dyeing, etc.), and one subject 
dropped out due to an adverse reaction; thus, 43 subjects completed the clinical study. In the AR68 treatment 
group, 8 of 30 subjects dropped out, and 22 completed the study. The average age was 44.77 ± 10.88 years, and the 
male to female ratio was 9:13. In the placebo group, 9 of 30 subjects dropped out, and 21 completed the study; 
the mean age was 46.48 ± 7.93 years, and the male to female ratio was 10:11. There was no statistically significant 
difference between the two groups, validating the randomization (Supplementary Fig. S4 and Table 4).

Analysis of total hair counts and photographic assessments.  Hair density by photo assessment was significantly 
increased at eight weeks (0.091 ± 0.294), 16 weeks (0.159 ± 0.29; p < 0.05), and 24 weeks in the AR68 5 mg/ml 
treatment group compared to that at baseline (before the assessment). There was a significant improvement 
at week 24 (0.250 ± 0.551; p < 0.05) (Fig.  6a, Table 5a). Phototrichogram analysis showed significantly higher 
total hair counts for the AR68 treatment group at 16 weeks (from 182.182 to 189.727 hairs/cm2; p < 0.001) and 
24 weeks (from 182.182 to 189.909 hairs/cm2; p < 0.001) (Table 4b) than that at baseline. The mean change and 
rate of total hair count increased by 7.545 ± 7.896 and 4.264% (p < 0.001) at 16  weeks and 7.727 ± 8.659 and 
4.421% (p < 0.001) at 24 weeks in the AR68 5 mg/ml treatment group, respectively, compared to those at baseline 
(Fig. 6b, Table 6).

Subject self‑assessment questionnaires.  Regarding the efficacy of product use, the subjects in the AR68 5 mg/ml 
treatment group gave positive feedback in the subject self-assessment questionnaires. The participants responded 
that they were “satisfied with the sample used” at 8 (72.73%), 16 (81.82%), and 24 (59.09%) weeks. At weeks 8 
(36.36%), 16 (63.64%) and 24 (50.00%), “the feeling of fuller hair in the vertex area” was reported, and hair loss 
decreased at weeks 8 (45.45%), 16 (54.55%) and 24 (72.73%).

Safety assessments.  In the safety assessment, one subject in the AR68 5  mg/ml treatment group developed 
erythema, edema, and itching at the test site, but the symptoms were relieved after diagnosis and treatment by 
a dermatologist. The dermatologist’s diagnosis determined that the relationship between the symptoms and the 
test substance was slight.

Table 3.   Statistical analysis of Δ total hair counts (weeks-Baseline) between SAMiRNA-AR68 0.5 mg/ml 
treated and placebo groups. a Significantly different at *p < 0.05 compared with AR 0.5 mg/ml treated group and 
placebo group at same time point.

Δ Total hair counts (n/cm2)

AR68 0.5 mg/ml (n = 22) Placebo (n = 23)

p valueaMean ± SD Mean ± SD

16 weeks 0.864 ± 2.189 0.435 ± 2.660 0.477

24 weeks 2.273 ± 3.089 0.304 ± 2.653 0.043*

Table 4.   Demographic characteristics of the subjects in clinical study II.

Characteristics

AR68 5 mg/ml (n = 22) Placebo (n = 21)

n (%) n (%)

Sex
Male 9 (40.90) 10 (47.62)

Female 13 (50.10) 11 (52.38)

Age Mean ± SD 44.77 ± 10.88 46.48 ± 7.93

Median 49.50 48.00

Min, Max 22.00, 54.00 25.00, 54.00

20 <  0 (0.00) 0 (0.00)

20–29 4 (18.18) 2 (9.52)

30–39 1 (4.55) –

40–49 6 (27.27) 9 (42.86)

 ≥ 50 11 (50.00) 10 (47.62)
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Figure 6.   Images of the change in hair loss following 24 consecutive weeks of application of SAMiRNA-AR68 
at 5 mg/ml and placebo products. (a) Representative photographs of the forehead hairline and vertex of the 
two groups at baseline and 8, 16 and 24 weeks after 5 mg/ml AR68 and placebo treatment once a week. The 
phototrichogram analysis was performed at baseline and at 16 and 24 weeks. (b) Representative graph of the 
percentage of total hair count increments at 16 and 24 weeks compared to baseline.

Table 5.   Descriptive statistical analysis of hair density (a) and total hair counts (b) between time points in 
clinical study II. a Increment of mean value represents improvement of hair condition on hairline and vertex. 
b Increment of mean value represents improvement of hair counts. c Significantly different at *p < 0.05 compared 
with AR68 5 mg/ml treated group and placebo group at same time point. d Significantly different at ***p < 0.001 
compared with baseline.

Baseline 8 weeks 16 weeks 24 weeks

(a)

AR68 5 mg/ml (n = 22)

Meana 0.000 0.091 0.159 0.250

SD 0.000 0.294 0.358 0.551

Placebo (n = 21)

Mean 0.000 − 0.095 − 0.071 − 0.071

SD 0.000 0.340 0.396 0.396

p valuec – 0.098 0.039* 0.035*

(b)

AR68 5 mg/ml (n = 22)

Mean(n/cm2)b 182.182 – 189.727 189.909

SD 26.626 – 27.216 27.154

p valued – –  < 0.001***  < 0.001***

Placebo (n = 21)

Mean(n/cm2) 181.714 – 185.429 181.524

SD 32.661 – 35.778 36.371

p value – – – –
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Discussion
This study demonstrates that inhibiting AR expression using SAMiRNA nanoparticles targeting human AR 
mRNA is an effective method for AGA treatment. AR68 treatment significantly reduced the AR mRNA and 
protein levels in HFDPCs and human hair follicles. In two clinical studies, quantitative phototrichogram analysis 
confirmed that the total hair count increased in the AR68-treated test group but decreased in the placebo group.

Although siRNA therapeutics still have some limitations, including nonspecific innate immune 
stimulation32–34, AR68 showed efficacy and safety in HFDPCs and human PBMCs. This treatment did not induce 
inflammatory cytokines at the effective dose. Our group recently reported the preclinical toxicity results of 
another SAMiRNA for fibrosis treatment. After intravenous administration, the no observed adverse effect level 
(NOAEL) in mice and non-human primates (NHPs) were determined to be 300 mpk and 100 mpk or higher, 
respectively43,44. SAMiRNA is thus a very safe siRNA modality.

For the development of AGA treatment using AR68, AR68 (Cosmerna-68) is listed as a cosmetic ingredi-
ent in cosmetic ingredients (ICID) and the Cosmetic Ingredient Dictionary, which are reviewed by the PCPC 
(Personal Care Products Council) and KCA (Korea Cosmetic Association), respectively. The stability of AR68 
nanoparticles in a hair tonic formulation containing cosmetic ingredients was studied by measuring the size of 
AR68 nanoparticles that remained stable for more than six months.

Before the clinical study, a primary dermal irritation study was performed on 35 healthy volunteers (13 male 
and 22 female). Twenty microliters of the formulation containing AR68 at 0.5 mg/ml or 5 mg/ml was adminis-
tered to a patch applied to the back and removed at 30 min and 24 h, and no skin dermal reaction was observed 
(data not shown).

In low-dose (0.5 mg/ml) clinical study I, the total hair count of the AR68 treatment group increased by 1.870% 
(from 133.14 to 135.41 hairs/cm2) at 24 weeks after application three times per week. To increase efficacy and user 
convenience, we performed high-dose (5 mg/ml) treatment once per week for 24 weeks in clinical study II. The 
high-dose (5 mg/ml) AR68 treatment group’s total hair counts increased significantly to 4.421% (from 182.182 
to 189.909 hairs/cm2) after 24 weeks, whereas the placebo group’s total hair counts decreased slightly at 24 weeks 
(from 181.714 to 181.524 hairs/cm2). The AR68 high-dose treatment group showed approximately 240% efficacy 
compared with the low-dose group (7.727 and 2.273 total hair counts, respectively) at 24 weeks, despite one 
application per week. Although low-dose AR68 treatment was applied three times per week, it did not result in 
remarkable improvement. In the photographic assessment score, there was no statistically significant difference 
between the placebo group and the 0.5 mg/ml AR68 treatment group compared to the baseline, but in the 5 mg/
ml AR68 treatment group, a significant improvement was confirmed at 16 weeks (0.159 ± 0.358) and 24 weeks 
(0.250 ± 0.551). In the high-dose AR68 group, the total hair count increased significantly at 24 weeks compared 
to that at the baseline (4.421%; p < 0.001). Additionally, many of the high-dose AR68 group subjects expressed 
satisfaction in the self-assessment questionnaire. As the activity of siRNA is maintained for a long time due to 
an RNA-induced silencing complex (RISC) in cells, efficient delivery is more important than frequent applica-
tions. We confirmed through two independent clinical studies that a high-dose single application per week is 
much more potent than low-dose frequent applications. Weekly application is a convenient benefit of SAMiRNA 
for AGA treatment. In the safety assessment, one subject in the high-dose AR68-treated group had an adverse 
reaction, but it was confirmed that the symptoms were not caused by the test substance. The other subjects had 
no adverse effects during 24 weeks of treatment, and the safety of AR68 in scalp treatment was confirmed.

This study demonstrates the efficacy and safety of SAMiRNA-AR68 through an in vitro analysis of SAMiRNA-
AR68 and two clinical studies. In comparison to the ~9.3 hairs/cm2 average hair growth seen with daily oral 
administration of 1 mg finasteride over a 24-week period45–47, high-dose AR68 treatment per week over 16-week 
period led to average hair growth of 7.5 hairs/cm2, indicating comparable efficacy as finasteride. AR68 has no 
adverse effects and is more convenient as a weekly treatment. This study has limitations in a number of subjects 
and a spectrum of races. We plan to perform a clinical study with Caucasian subjects with a higher AGA inci-
dence. In conclusion, SAMiRNA-AR68 is a promising new treatment for AGA.

Methods
Cell culture and regents.  Human prostate cancer LNCaP and human keratinocyte HaCaT cells were pur-
chased from the American Type Culture Collection (ATCC), and human follicle dermal papilla cells (HFDPCs) 
were purchased from PromoCell (C-12071). Human peripheral blood mononuclear cells (PBMCs) were obtained 
from Cellular Technology Limited (CTL-UP1). LNCaP cells were cultured in RPMI medium (HyClone) sup-
plemented with 1% penicillin–streptomycin (HyClone) and 10% fetal bovine serum (FBS, HyClone). HaCaT 
cells were cultured in DMEM (HyClone) supplemented with 1% penicillin–streptomycin and 10% FBS. HFD-
PCs were maintained in follicle dermal papilla cell growth medium (PromoCell). Individual human hairs were 

Table 6.   Statistical analysis of Δ total hair counts (weeks-Baseline) between SAMiRNA-AR68 5 mg/ml treated 
and placebo groups. a Significantly different at *p < 0.05 compared with AR68 5 mg/ml treated group and 
placebo group at same time point.

Δ Total hair counts (n/cm2)

AR68 5 mg/ml (n = 22) Placebo (n = 21)

p valueaMean ± SD Mean ± SD

16 weeks 7.545 ± 7.896 3.714 ± 10.335 0.279

24 weeks 7.727 ± 8.659 − 0.190 ± 12.875 0.026*
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pulled out with forceps in the occipital area of the scalp, and plucked hairs with visible bulbs were selected by 
microscopy. The plucked hair follicles were cultured in DMEM/F12 (Gibco) supplemented with 1% penicillin–
streptomycin, 10% FBS, 10 µg/mL insulin-transferrin-selenium-X supplement (Gibco), 2.5 µg/mL amphotericin 
B (Gibco), 1% GlutaMAX (Gibco), 20 ng/mL fibroblast growth factor (FGF, PeproTech), 20 ng/mL epidermal 
growth factor (EGF, Sigma), and 10 ng/mL hydrocortisol (Tokyo Chemical Industry). Plucked human hair fol-
licles were treated with 10 μM SAMiRNA-AR68 for 48 h followed by qPCR and immunofluorescence analysis. 
The synthesis and quality control of the SAMiRNA nanoparticles were previously described35,37.

Measurement of SAMiRNA nanoparticle size.  For determination of the long-term stability of 
SAMiRNA, the nanoparticle size was monitored by qNano Gold (Izon Science) according to standard operating 
procedures. Briefly, 35 μl of SAMiRNA-AR68 was analyzed with qNano Gold equipment using an NP80 Nano-
pore (Izon Science) and applying a 47 mm stretch, a current of 140 nA, and 10 mBar parametric conditions. 
The calibration particles (CPC100, Izon Science) were assayed before the experimental samples under identical 
conditions. Particle counts (≥ 50 events each) were finally determined using the qNano software provided by 
Izon Science (Izon Control Suite Version 3.3).

Reverse transcription and quantitative polymerase chain reaction (RT‑qPCR).  RT-qPCR was 
performed according to the MIQE guidelines48. Total RNA from cells was extracted using an AccuPrep® Univer-
sal RNA Extraction Kit (K-3140, Bioneer) according to the manufacturer’s instructions. For total RNA extraction 
from hair follicles, SAMiRNA-AR68-treated plucked hair follicles were washed with PBS, resuspended in TRIzol® 
reagent (Invitrogen), homogenized with a Biomasher II® Disposable Micro Tissue Homogenizer (Polyscience), 
and purified with an AccuPrep® Universal RNA Extraction Kit (K-3140, Bioneer) according to the manufacturer’s 
instructions. Total RNA (1 μg) was reverse transcribed using Accupower® RocketScript™ Cycle RT PreMix (dT20) 
in a 20 μl reaction (K-2201, Bioneer) according to the manufacturer’s instructions. For qPCR analysis, 10 μl of 
tenfold diluted cDNA was amplified using AccuPower® 2X GreenStar™ qPCR MasterMix (K-6253, Bioneer). The 
following primer sets were used: AR, forward 5′-TTG​TAC​ACG​TGG​TCA​AGT​GG-3′ and reverse 5′-TGG​AGT​
TGA​CAT​TGG​TGA​AGG-3′; RPLPO, forward 5′-TGC​CAT​TGC​CCC​ATG​TGA​AG-3′ and reverse 5′-AGC​TGC​
ACA​TCA​CTC​AGG​ATT-3′; IL-1B, forward 5′-CTG​AGC​TCG​CCA​GTG​AAA​T-3′ and reverse 5′-CTG​TAG​TGG​
TGG​TCG​GAG​A-3′; IL-6, forward 5′-AGA​TGC​AAT​AAC​CAC​CCC​TG-3′ and reverse 5′-TGC​GCA​GAA​TGA​
GAT​GAG​TT-3′; TNF, forward 5′-CTG​TAG​CCC​ATG​TTG​TAG​CA-3′ and reverse 5′-GGT​TAT​CTC​TCA​GCT​
CCA​CG-3′; IFNG, forward 5′-GAA​TGT​CCA​ACG​CAA​AGC​AA-3′ and reverse 5′-ACC​TCG​AAA​CAG​CAT​
CTG​AC-3′; RPL13A, forward 5′-TGC​CAT​TGC​CCC​ATG​TGA​AG-3′ and reverse 5′-AGC​TGC​ACA​TCA​CTC​
AGG​ATT-3′; IL-1B, forward 5′-GTG​TTT​GAC​GGC​ATC​CCA​CC-3′ and reverse 5′-TAG​GCT​TCA​GAC​GCA​
CGA​CC-3′. PCR amplification was performed in a 50 μl reaction as follows: one cycle at 95 °C for 10 min, fol-
lowed by 40 cycles at 95 °C for 5 s, 58 °C for 25 s, and 72 °C for 30 s, with one final extension step at 72 °C for 
5 min. All experiments were performed in triplicate. The delta-delta Ct method was used to determine relative 
fold changes, and all data were normalized to the internal control gene.

Immunoblot analysis.  LNCaP and HFDP cells were collected and lysed using cell lysis buffer (Cell Sign-
aling Technology) with protease inhibitor cocktail (Thermo Fisher Scientific). Proteins were separated by 10% 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a PVDF membrane 
(Bio-Rad). After the membranes were blocked with 5% skim milk in Tris-buffered saline (TBS) for at least 1 h, 
they were incubated with the indicated antibodies overnight, washed with TBS three times, and then incubated 
with horseradish peroxidase-conjugated secondary antibodies for 2  h. Immunoblotting was performed with 
the following antibodies: anti-AR (ab133273, Abcam), anti-GAPDH (2118, Cell Signaling Technology), and 
horseradish peroxidase-conjugated anti-rabbit (7074, Cell Signaling Technology). Immunoblot band intensities 
of AR and GAPDH were quantified by ImageJ software, and the level of AR protein expression was normalized 
to the GAPDH values.

Enzyme‑linked immunosorbent assay (ELISA).  ELISA to detect the AR protein was performed using 
a human AR ELISA kit (LS-F4505, LSBio) according to the manufacturer’s manual. In brief, HFDP cells (5 × 104 
cells/well) were collected and lysed using cell lysis buffer (Cell Signaling Technology), and then, 100 μl of cell 
lysate was added to each well for 1 h at 37 °C. After incubation, a biotin-conjugated detection antibody (detec-
tion reagent A) was added that bound to the captured antigen. An avidin-horseradish peroxidase conjugate 
(detection reagent B) that binds to biotin was then added. The TMB substrate reacts with the HRP enzyme, 
resulting in color development. A sulfuric acid solution (stop solution) terminated the color development reac-
tion, and the optical density (OD) of each well was measured at a wavelength of 450 nm. The OD of samples was 
computed with an OD standard curve generated using known standard AR concentrations (0.313 ~ 20 ng/ml) to 
determine its AR concentration. The incubation and washing steps were performed according to the supplier’s 
manual. Absorbance at 450 nm was monitored with a FLUOstar Omega microplate reader (BMG Labtech).

Cell viability assay.  For the cell viability assay, HaCaT and HFDP cells were seeded at a density of 
4 × 103 cells/well in a 96-well plate and then treated with the indicated conditions for 72 h. After incubation, 10 μl 
of WST (water soluble tetrazolium salt) reagent (EZ-Cytox, DoGen) was added to each well for 30 min at 37 °C. 
Absorbance at 450 nm was monitored with a FLUOstar Omega microplate reader (BMG Labtech).
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Immunofluorescence (IF).  Plucked hairs from healthy donors were obtained from the occipital area of the 
scalp. After incubation, hair follicles were washed three times with 0.05% Tween-20 (Sigma) in PBS for 5 min 
and permeabilized in 0.1% Triton X-100 (Sigma) in PBS for 1 min. Hair follicles were fixed in 4% formaldehyde 
(Sigma) in PBS for 20 min, placed on a cryotray and covered with OCT compound (Tissue-Tek). The mold was 
slowly placed in liquid nitrogen until the entire tissue block was completely frozen. The frozen tissue blocks were 
sectioned at 10 µm using a cryotome (Leica Biosystems). Hair follicle sections were incubated overnight at 4 °C 
with an anti-AR antibody (ab133273, Abcam). The sections were subsequently incubated with anti-rabbit Fluor 
568 (A11011, Invitrogen) secondary antibody for 1 h at room temperature. After at least three washes, the sec-
tions were counterstained with DAPI (D9542, Sigma-Aldrich) and mounted in Immu-Mount solution (Thermo 
Fisher Scientific). All incubations were conducted in dark and humid chambers. The fluorescence signal was 
visualized using a confocal microscope (LSM880, Carl Zeiss) at excitation wavelengths of 568 nm (Alexa Fluor 
568) and 405 nm (DAPI). At least three fields per section were analyzed. ZEN software (Zeiss) was used to ana-
lyze images of the desired area to measure the intensity on a pixel-by-pixel basis and calculate the mean intensity 
automatically.

Statistical analysis.  All data are presented as the mean ± standard deviation (SD), and the number of sam-
ples is indicated in each figure legend. The statistical significance of differences was assessed using the two-sided 
Student’s t test. The results shown are representative of at least three independent experiments. Significance was 
denoted as *p < 0.05, **p < 0.01, and ***p < 0.001.

Clinical study I: low‑dose SAMiRNA‑AR68 (0.5 mg/ml) treatment three times per week.  Clin-
ical study I was a double-blind, randomized, placebo-controlled study in accordance with the Korea Ministry of 
Food and Drugs Safety (MFDS) Guidelines on the Efficacy Study of Cosmetics for Hair Loss Relief (July 2018). 
The study was approved by the Institutional Review Board of the local committee, Seowon Skin Research Center, 
and was conducted on 10/09/2020 (IRB No. 1040820–202,009-HR004–02) and all experimental protocols were 
carried out in accordance with relevant guidelines and regulations. All subjects provided written informed con-
sent for publication of identifying information/images in an online open-access publication prior to study par-
ticipation. Summary information of the study is listed and available at CRIS Registration No. KCT0005501: 
https://​cris.​nih.​go.​kr/​cris/​search/​detai​lSear​ch.​do/​20301. Subjects were selected on the basis of inclusion and 
exclusion criteria and consisted of 48 Korean males and females ranging from 22 to 53 years of age. Male subjects 
were diagnosed with more than the M1, C1 and U1 range as the basic type and more than the V1 and F1 range as 
the specific type according to the basic and specific (BASP) classification49. Female subjects were diagnosed with 
more than the F1 and L1 ranges according to the BASP and Ludwig classification, respectively. The exclusion 
criteria were participation in a previous study within 6 months, prior surgical correction of scalp hair loss, use of 
topical minoxidil or finasteride within 6 months, and other skin diseases of the scalp, including severe seborrheic 
dermatitis, psoriasis, lichenoid eruption or other scalp infections. Alterations in hair styling and dyeing of the 
hair were not allowed during the study.

Clinical study II: high‑dose SAMiRNA‑AR68 (5  mg/ml) treatment once a week.  The second 
clinical study was conducted as a double-blind, randomized, placebo-controlled study in accordance with the 
Korea MFDS Guideline on the Efficacy Study of Cosmetics for Hair Loss Relief (July 2018). A summary of 
the study details is available through the following link: https://​cris.​nih.​go.​kr/​cris/​search/​detai​lSear​ch.​do/​20367 
(CRIS Registration No. KCT0005618). Clinical study II was approved by the Institutional Review Board of the 
local committee, Ellead Skin Research Center, and was conducted on 07/09/2020 (IRB No. 200804T001) and 
all experimental protocols were carried out in accordance with relevant guidelines and regulations. All subjects 
provided written informed consent for publication of identifying information/images in an online open-access 
publication prior to study participation. The subjects were selected on the basis of inclusion and exclusion crite-
ria and consisted of 60 Korean males and females ranging from 22 to 54 years of age. The AR68 high-dose (5 mg/
ml) formulation was the same as the composition used in clinical study I, and randomly blinded products were 
applied once per week after shampooing. The measurement and analysis of hair density and total hair counts 
were conducted using the same protocol as described for clinical study I. The total hair count was measured 
using a Folliscope® 5.0 phototrichogram system (LeadM). Statistical analysis was also performed using the same 
program, statistical software SPSS statistics version 26.0 (IBM), as in clinical study I.

SAMiRNA‑AR68 formulation and treatment.  SAMiRNA-AR68 was formulated as a hair tonic aque-
ous solution with ethanol (15%, v/v), niacinamide (1% w/v), betaine (1% w/v), biotin (0.02% w/v) and buffer. 
The AR68 hair tonic was packaged in a piston-type bottle with a silicon adaptor for massage (Supplementary 
Fig. S5). The placebo was prepared in the same manner as the formula except for the addition of AR68 and 
packaged in the same bottle. In clinical study I, randomly selected products (AR68, 0.5 mg/ml) were used three 
times per week after shampooing, whereby the scalp was massaged for 5 min after application. In clinical study 
II, randomly selected products (AR68, 5 mg/ml) were used once a week after shampooing, whereby the scalp 
was massaged for 5 min after application. Product usage and compliance were monitored for each subject by 
reviewing subject diaries and weighing the returned test products at each scheduled visit (weeks 8, 16 and 24).

Measurement of hair density and total hair count.  All subjects placed their head into a hair photo-
graph device (Canfield Scientific), and photographs were taken at fixed distance, angle and lighting with an EOS 
Rebel T6i digital camera (Canon). Global evaluation was performed by comparing clinical images at baseline 

https://cris.nih.go.kr/cris/search/detailSearch.do/20301
https://cris.nih.go.kr/cris/search/detailSearch.do/20367
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with those at 8, 16 and 24 weeks after treatment with the test product. The investigator qualitatively assessed 
clinical images on a 7-point scale (− 3, marked decrease; − 2, intermediate decrease; − 1, slight decrease; 0, no 
change; + 1, slight increase; + 2, intermediate increase; and + 3, marked increase).

For evaluation of total hair counts, the hair was clipped approximately 2 mm after a red spot tattoo in the 
evaluation area (1 cm2) of the hair loss region (forehead hairline or vertex). The total hair counts were assessed 
using a Folliscope® 2.8 phototrichogram system (magnification 14 times, LeadM) at baseline and at 16 weeks 
and 24 weeks after treatment. The total hair count (number/cm2) was calculated as the number of hairs within 
an area50.

Subject self‑assessment questionnaires.  Subject self-assessment questionnaires on efficacy and safety 
at 8 weeks, 16 weeks, and 24 weeks after using the product were collected.

Safety assessments.  Dermatologists observed and assessed the subjects for the occurrence of objective 
irritation, such as edema, itching, and burning. The details, including start and end dates of occurrence, degree 
of severity, treatment, and causal relationship with the test product, were recorded on the form. If any adverse 
reaction occurred, the dermatologist’s assessment of the adverse reaction was further conducted in accordance 
with the standard operating procedures for adverse reactions.

Statistical analysis.  Data are expressed as the mean and a changing rate between the baseline value and the 
value obtained at each time point. All statistical analyses were performed using the SPSS® package (IBM). For 
photographic assessment of hair density, statistical analysis for variables for comparison between time points or 
groups was conducted using the Wilcoxon signed-rank test and Mann–Whitney U test (p < 0.05). For analysis of 
total hair counts, the significance of a difference between time points was calculated using the paired t test, with 
p < 0.05 as the significance level.
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