



# Association Between Antihypertensive Medication Use and Breast Cancer: A Systematic Review and Meta-Analysis

Yuxiu Xie<sup>1,2†</sup>, Men Wang<sup>3†</sup>, Peng Xu<sup>1,3</sup>, Yujiao Deng<sup>1,3</sup>, Yi Zheng<sup>1,3</sup>, Si Yang<sup>1,3</sup>, Ying Wu<sup>1,3</sup>, Zhen Zhai<sup>1,3</sup>, Dai Zhang<sup>3</sup>, Na Li<sup>3</sup>, Nan Wang<sup>1,3</sup>, Jing Cheng<sup>2\*</sup> and Zhijun Dai<sup>1,3\*</sup>

<sup>1</sup>Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, <sup>2</sup>Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, <sup>3</sup>Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China

#### **OPEN ACCESS**

#### Edited by:

Xian-Tao Zeng, Wuhan University, China

#### Reviewed by:

Jinhong Zhu, Harbin Medical University Cancer Hospital, China Jiang-Bo Liu, The First Affiliated Hospital of Henan University of Science and Technology, China

#### \*Correspondence:

Zhijun Dai dzj0911@126.com Jing Cheng chenjin1118@hotmail.com

<sup>†</sup>These authors have contributed equally to this work

#### Specialty section:

This article was submitted to Pharmacology of Anti-Cancer Drugs, a section of the journal Frontiers in Pharmacology

> Received: 26 October 2020 Accepted: 29 April 2021 Published: 13 May 2021

#### Citation:

Xie Y, Wang M, Xu P, Deng Y, Zheng Y, Yang S, Wu Y, Zhai Z, Zhang D, Li N, Wang N, Cheng J and Dai Z (2021) Association Between Antihypertensive Medication Use and Breast Cancer: A Systematic Review and Meta-Analysis. Front. Pharmacol. 12:609901 doi: 10.3389/fphar.2021.609901 **Background:** The prevalence rate of hypertension and breast cancer increases with advancing age. Renin-angiotensin system inhibitors (RASIs),  $\beta$ -blockers (BBs), calcium channel blockers (CCBs), and diuretics are widely used to treat patients with hypertension. Although, the association between the use of antihypertensive medication and breast cancer has been highly debated, recent evidence supporting this association remains controversial.

**Objective:** To evaluate the association between the use of antihypertensive medication and the risk of breast cancer and its prognosis.

**Methods:** This study was conducted using data from the PubMed, Embase, and Cochrane Library databases retrieved for the period from January 2000 to April 2021. Articles and their references were checked and summary effects were calculated using random- and fixed-effects models. Heterogeneity test and sensitivity analysis were also performed.

**Results:** This meta-analysis included 57 articles, which were all related to breast cancer risk or prognosis. Assessment of breast cancer risk using the pooled data showed that the use of BBs or CCBs or diuretics was associated with increased cancer risk [BB: relative risk (RR) = 1.20, 95% confidence interval (CI) = 1.09-1.32; CCBs: RR = 1.06, 95% CI 1.03-1.08; diuretics: RR = 1.06, 95% CI 1.01-1.11]. Long-term use of diuretic increased the risk of breast cancer (RR = 1.10, 95% CI 1.01-1.20), whereas long-term RASIs treatment reduced the risk (RR = 0.78, 95% CI 0.68-0.91). In addition, we found that diuretic users may be related to elevated breast cancer-specific mortality [hazard ratio (HR) = 1.18, 95% CI 1.04-1.33], whereas using other antihypertensive medications was not associated with this prognosis in patients with breast cancer.

**Conclusion:** Using CCBs, BBs, and diuretics increased the risk of breast cancer. In addition, diuretics may elevate the risk of breast cancer-specific mortality. The long-term use of RASIs was associated with a significantly lower breast cancer risk, compared with non-users. Thus, this analysis provides evidence to support the benefits of the routine use of RASIs in patients with hypertension, which has important public health implications.

Keywords: antihypertensive drugs, breast cancer, meta-analysis, prognosis, risk

## INTRODUCTION

In 2017, hypertension was identified as a major risk factor for cardiovascular disease globally, accounting for 10.4 (9.39–11.5) million deaths and 218 (198–237) million disability-adjusted lifeyears (Stanaway et al., 2018). Fortunately, antihypertensive therapy significantly reduces the risk of cardiovascular disease and death in various populations. A meta-analysis showed that reducing the systolic blood pressure by 10 mm Hg would reduce the risk of major cardiovascular disease, coronary heart disease, stroke, and heart failure by 20, 17, 27, and 28%, respectively, whereas all-cause mortality was reduced by 13% (Ettehad et al., 2016). As an effective measure to control blood pressure, antihypertensive medications are commonly prescribed worldwide, and many patients take these drugs for a long period.

Several studies have found that breast cancer is associated with a variety of antihypertensive medications, including angiotensinconverting enzyme inhibitors/angiotensin receptor blockers (ACEIs/ARBs), β-blockers (BBs), calcium channel blockers (CCBs), and diuretics. However, these results remain controversial. Raebel et al. (2017) concluded that long-term use of CCBs was not related to breast cancer risk and long-term use of ACEIs might protect against breast cancer. The Chang et al. (2016) conducted a nested case-control study of 794,533 women and did not find any relationship between antihypertensive medication use and breast cancer risk. In contrast, other studies found that longterm treatment with CCBs was associated with a higher risk of breast cancer; however, no association was observed with the use of diuretics, BB, and renin-angiotensin system inhibitors (RASIs) (Li et al., 2013; Gomez-Acebo et al., 2016). A population-based casecontrol study demonstrated that treatment with ACEIs for more than 5 years increased breast cancer risk by 14% [odds ratio (OR) = 1.14, 95% confidence interval (CI) = 1.06-1.22] (Hallas et al., 2012).

A recent systematic review of observational studies concluded that BB reduced the risk of breast cancer recurrence (Caparica et al., 2021), whereas ACEIs and CCBs were not associated with breast cancer development (Zhao et al., 2017a; Naghibzadeh et al., 2020). In addition, the result of a meta-analysis suggested an association between CCBs use and breast cancer risk (Wright et al., 2017). However, uncertainty still exists regarding the effect of long-term use of antihypertensive medications and a potential association between different populations, breast cancer subtypes, or both.

This question remains controversial and, therefore, in this updated meta-analysis, we aimed to assess the association between the use of various classes of antihypertensive medication and breast cancer risk, prognosis [breast cancer-specific mortality, recurrence, overall survival (OS), and disease specific survival (DSS)].

#### MATERIALS AND METHODS

#### **Data Sources and Search Strategy**

**Supplementary Table S1** shows the strategy we used to conduct a comprehensive literature search of the PubMed, Embase, and Cochrane Library electronic databases without any restriction regarding geographical parameters and publication type or language. We reviewed research articles published over a span of nearly 20 years rather than those published in the 1990s, because we considered that the technique and treatment strategies that affect patient prognosis and survival have improved with time. The search was based on the framework of adult populations exposed to antihypertensive medication compared with non-users and the articles were evaluated for diagnosis or progress of breast cancer. Based on a combination of MeSH terms, keywords, and substance names, we conducted the following string search: "antihypertensive medication," "calcium channel blockers," "beta blockers," "angiotensin-converting enzyme inhibitors," "angiotensin receptor blockers," "renin-angiotensin system inhibitors," or "diuretics" combined with "breast cancer" or "breast carcinoma." In addition, the reference lists of other reviews or meta-analyses were manually searched to identify additional related articles. This meta-analysis is not registered in the PROSPERO database, but the process is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021). The PRISMA 2020 checklist was shown in Supplementary Table S2.

#### **Selection Criteria**

Studies fulfilling the following inclusion criteria were included: 1) the exposed group included individuals who had received antihypertensive medication; 2) the study had a comparative design: antihypertensive medication users vs. non-users; 3) the outcome was breast cancer risk, breast cancer-specific mortality, recurrence, or survival (DSS or OS); 4) the study reported the relative risk (RR), OR, or hazard ratio (HR) with corresponding 95% CIs or sufficient data to calculate these parameters. When the results of multiple studies were from the same database, the study including the largest number of participants was included. The following types of studies were excluded from this meta-analysis: meta-analyses, systematic or narrative reviews, case studies, experimental laboratory articles, conference abstracts, controlled commentaries, randomized trials, repeated publications, or if the reference group was administered another class of antihypertensive medication.

#### **Data Extraction and Quality Assessment**

Two of the authors (Yuxiu Xie and Men Wang) extracted data from the included studies and any disagreements between them were resolved by discussions with between the two other relevant co-authors. We extracted the following information from the selected articles: first author and year of publication, source of data, country, study design, duration of follow-up, study outcome, sample size of participants, and covariates used for the adjustment of confounders. The risk estimate adjusted for the largest number of confounding factors was extracted.

The nine-star Newcastle–Ottawa Scale (NOS) was used to assess the methodological quality of cohort studies and case-control studies (Stang, 2010; Ma et al., 2020). A score of  $\geq$ 7 was considered to indicate high quality.

#### Statistical Analysis

We conducted this meta-analysis to assess the association between the use of antihypertensive medication and breast cancer risk and prognosis. The summary risk estimates are presented as forest plots. The  $I^2$  test was used to assess potential heterogeneity between individual studies, and an  $I^2$  > 50% indicated significant heterogeneity (Higgins et al., 2003). A fixed-effects model was used when there was no significant heterogeneity among the studies; whereas, the random-effects models was used when there was. To explore the source of heterogeneity and evaluate the potential impact of variables, we conducted subgroup analyses based on study design, country, and duration of antihypertensive medication use in years (e.g., <5, 5-10,  $\geq 10$  years). Articles with results that showed separate risk estimates based on different classes of CCBs or a different pathological pattern of breast cancer without a summary result were treated as different studies according to the result. Funnel plots were generated and examined visually, and gauged Egger's tests were performed to assess publication bias (Egger et al., 1997). Sensitivity analyses were conducted excluding one study at a time to test the robustness of this association.

# RESULTS

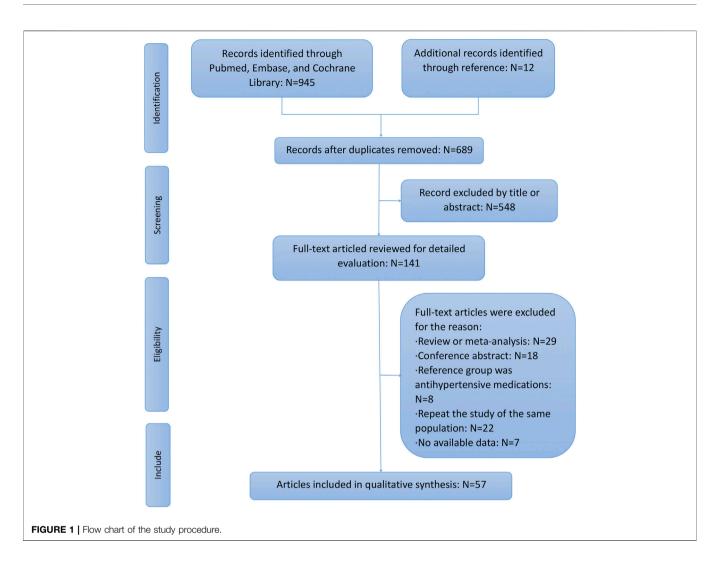
#### **Characteristics and Quality of Studies**

A total of 842 potentially eligible studies were retrieved from the selected databases during the initial search. After removing duplicates and further screening the titles and abstracts, 26 studies on breast cancer risk (Meier et al., 2000; Li et al., 2003; Gonzalez-Perez et al., 2004; Fryzek et al., 2006; Largent et al., 2006; Davis and Mirick, 2007; Van Der Knaap et al., 2008; Coogan et al., 2009; Largent et al., 2010; Huang et al., 2011; Hallas et al., 2012; Lee et al., 2012; Mackenzie et al., 2012; Biggar et al., 2013; Li et al., 2013; Saltzman et al., 2013; Devore et al., 2015; Numbere et al., 2015; Azoulay et al., 2016; Chang et al., 2016; Gomez-Acebo et al., 2016; Wilson et al., 2016; Brasky et al., 2017; Raebel et al., 2017; Busby et al., 2018b; Zheng et al., 2021), and 30 studies on breast cancer prognosis (Powe et al., 2010; Barron et al., 2011; Ganz et al., 2011; Melhem-Bertrandt et al., 2011; Shah et al., 2011; Şendur et al., 2012; Holmes et al., 2013a; Holmes et al., 2013b; Botteri et al., 2013; Cardwell et al., 2013; Chae et al., 2013; Sorensen et al., 2013; Boudreau et al., 2014; Cardwell et al., 2014; Sakellakis et al., 2014; Babacan et al., 2015; Chen et al., 2015; Springate et al., 2015; Cardwell et al., 2016; Choy et al., 2016; Chen et al., 2017; Spera et al., 2017; Busby et al., 2018a; Musselman et al., 2018; Cui et al., 2019; Takada et al., 2019; Modi et al., 2020; Santala et al., 2020; Shih et al., 2020; Wei et al., 2020) and one study on both risk and prognosis (Sorensen et al., 2000) finally met the inclusion criteria of this meta-analysis. The study selection process is depicted in a flow chart (Figure 1) and the characteristics of the included studies are summarized in Table 1. The sample sizes of the studies included for breast cancer risk ranged from 654 to 2,300,000 with a total of 3,726,281 participants, and that for breast cancer prognosis varied from 218 to 73,170 with a total of 270,745 participants. Although the

adjusted covariates of individual studies differed, most risk estimates were adjusted for age, body mass index (BMI), alcohol intake, and hormone replacement therapy use. The quality scores in this analysis ranged from 6 to 8 stars (**Supplementary Table S3**).

### Association of Antihypertensive Medication Use with Breast Cancer Risk

Pooled data from 18 studies related to breast cancer risk showed that the use of BBs was associated with increased cancer risk (RR = 1.20, 95% CI 1.09–1.32; **Figure 2A** and **Table 2**). A subgroup analysis showed a significant association with case-control (RR = 1.09, 95% CI 1.05–1.12), nested case-control (RR = 1.11, 95% CI 1.03–1.20) studies, and cohort (RR = 1.43, 95% CI 1.07–1.91) studies. In addition, a significant association was observed in Europe (RR = 1.41, 95% CI 1.16–1.70) and Asia (RR = 1.12, 95% CI 1.02–1.23), but not in North America (RR = 1.02, 95% CI 0.94–1.11). However, subgroup analysis of the duration of administration in years showed that the use of BBs even for  $\geq$ 10 years was not associated with breast cancer risk.


Twenty studies reported the relationship between CCBs and breast cancer risk (**Figure 2B**; **Table 2**). The pooled RR of breast cancer risk for CCBs use vs. non-use was 1.06 (95% CI 1.03–1.08), indicating a significant positive association. Case-control studies (RR = 1.09, 95% CI 1.05–1.13), nested case-control studies (RR = 1.18, 95% CI 1.03–1.36), and every area (North America: RR = 1.08, 95% CI 1.02–1.14; Europe: RR = 1.04, 95% CI 1.01–1.07; Asia: RR = 1.39, 95% CI 1.14–1.69) showed a positive association. There was no duration-response association between long-term use of CCB and breast cancer risk.

As shown in **Figure 2C**, exposure to diuretics (16 studies) showed a significant association where the pooled RR was 1.06 (95% CI 1.01–1.11). A significant relationship was noted in Europe (RR = 1.10, 95% CI 1.04–1.17) but not in North America (RR = 1.03, 95% CI 0.97–1.10). Notably, a significant association was observed with long-term use of diuretics ( $\geq$ 10 years; RR = 1.10, 95% CI 1.01–1.20, **Table 2**).

A total of 24 studies reported a connection between RASIs exposure of any duration and breast cancer risk. RASIs did not increase the risk of breast cancer with a pooled RR (0.98, 95% CI 0.93–1.04), as shown in **Figure 2D**. However, it is worth noting that RASIs played a protective role in breast cancer when studies were restricted to those where the duration of RASI use was <5 years (RR = 0.94, 95% CI 0.90–0.99) and ≥10 years (RR = 0.78, 95% CI 0.68–0.91). Fifteen and seven studies were related to ACEI and ARB use, respectively, and the results suggested that use of ACEI or ARB was not related to breast cancer risk (ACEI: RR = 0.99, 95% CI 0.93–1.04; ARB: RR = 0.98, 95% CI 0.81–1.19, **Table 2**).

### Association of Antihypertensive Medication Use with Breast Cancer Prognosis Breast Cancer-Specific Mortality

Twenty-nine independent studies examined the association between antihypertensive medication use and breast cancerspecific mortality, with a pooled HR of 1.04 (95% CI



0.98-1.10). When HRs for the individual antihypertensive medication (BBs, CCBs, and RASIs) were calculated in subgroup analyses, no significant results were observed (**Figure 3A**). However, a significant association was observed in diuretic users (HR = 1.18, 95% CI 1.04-1.33).

# OS

Twenty-one studies revealed no significant link between antihypertensive medication use and breast cancer OS (HR = 1.05, 95% CI 0.96–1.14, Figure 3B). Furthermore, a subgroup analysis of the classes of antihypertensive medication showed no significant association was observed.

# Recurrence

In total, 27 studies reported breast cancer recurrence with the use of antihypertensive medication. However, as shown in **Figure 3C**, no effect was observed for any type of antihypertensive medication (HR = 1.00, 95% CI 0.92-1.09).

# DSS

The results of the meta-analyses on DSS are summarized in forest plots for all 10 studies; no association was found between antihypertensive medication use and breast cancer DSS (HR = 0.82, 95% CI 0.63–1.08, Figure 3D).

# **Risk of Publication Bias**

The results of the Begg's funnel plot and Egger's regression test, showed no evidence of potential publication bias in articles reporting the use of BBs (P = 0.168), CCBs (P = 0.151), diuretics (P = 0.348), or RASIs (P = 0.397) in relation to the risk of breast cancer risk (**Supplementary Figure S1**). In addition, a potential publication bias was observed in studies on the use of antihypertensive medication with recurrence (P = 0.001), but not in other studies on prognosis (mortality: P = 0.717; OS: P = 0.096; DSS: P = 0.125) (**Supplementary Figure S2**).

# **Sensitivity Analysis**

A sensitivity analysis was performed as shown in **Supplementary Figures S3 and S4**. There was no significant alteration in the pooled RRs or HRs after sequentially deleting a single study from the overall pooled analyses each time. In the sensitive analysis of diuretics users with risk of breast cancer, the pooled RR was not statistically significant after the deletion of an article (RR = 1.03, 95% CI 0.98–1.08) (Biggar et al., 2013).

Xie ф. <u>0</u>

Antihypertensive Medication and Breast Cancer

NOS

Author,

Year

| Azoulay et al. (2016) | United Kingdom | CCB vs. non                | 1995–2010 | The United Kingdom General Practice<br>Research Database  | 27,315  |
|-----------------------|----------------|----------------------------|-----------|-----------------------------------------------------------|---------|
|                       |                |                            |           |                                                           |         |
| Biggar et al. (2013)  | Denmark        | Diuretics vs. non          | 1995–2010 | The Danish Register of Medicinal<br>Products Statistics   | 2300000 |
| Brasky et al. (2017)  | United States  | CCB vs. non                | 1993–2010 | Women's Health Initiative                                 | 28,561  |
| Busby et al. (2018a)  | United Kingdom | CCB (verapamil)<br>vs. non | 1995–2010 | The United Kingdom Clinical Practice<br>Research Datalink | 90,294  |
|                       |                |                            |           |                                                           |         |
|                       |                |                            |           |                                                           |         |
|                       |                |                            |           |                                                           |         |

TABLE 1 | Characteristics of the articles included in the meta-analysis.

Class

of medication

vs. reference group

Study

period

Source

of data

Participants

Design

type

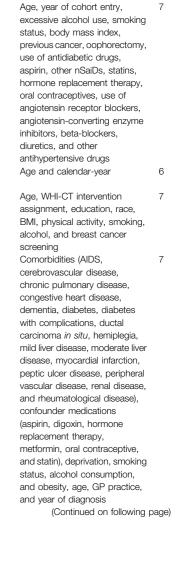
Cohort study

Cohort study

Case-control

Case-control

Outcomes


Risk

Risk

Risk

Risk

Country



Adjustment/match

for covariates

| Author,<br>Year            | Country                     | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period  | Source<br>of data                                   | Participants | Design<br>type          | Outcomes          | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOS                                          |        |              |      |                                                                                                                                                                         |   |
|----------------------------|-----------------------------|-----------------------------------------------------|------------------|-----------------------------------------------------|--------------|-------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|--------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Chang et al. (2016)        | China                       | BB, CCB, RASI<br>vs. non                            | 2001–2011        | Taiwan National Health Insurance<br>claims database | 46,985       | nested Case-<br>control | Risk              | socioeconomic status, diabetes<br>mellitus, ischemic heart disease,<br>myocardial infarction, heart<br>failure, cerebrovascular disease,<br>chronic kidney disease, chronic<br>liver disease, chronic lung<br>disease, depression, Charlson's<br>index, diuretics, human insulin,<br>statin, fibrates, aspirin, hormone<br>replacement therapy, number of<br>lipid measurements, number of<br>mammography, number of<br>outpatient visits, number of<br>hospitalizations, and length of<br>hospital admission more than<br>7 days matched on age (within 5<br>years) and follow-up duration | 8                                            |        |              |      |                                                                                                                                                                         |   |
| Coogan et al. (2009)       | et al. (2009) United States | (2009) United States                                | 9) United States |                                                     |              |                         | Diuretics vs. non | 1976–2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boston, New York, Philadelphia and Baltimore | 11,493 | Case-control | Risk | Race (white, non-white), years of<br>education, menopausal status,<br>parity, body mass index, use of<br>female hormones, use of oral<br>contraceptives and alcohol use | 8 |
| Davis and Mirick<br>(2007) | United States               | BB, CCB vs. non                                     | 2000–2001        | The Seattle metropolitan area                       | 1247         | Case-control            | Risk              | Parity, age at first pregnancy,<br>mother/sister breast cancer,<br>early double oophorectomy, oral<br>contraceptive use, ever upper<br>gastro-intestinal series, and ever<br>smoker (all subjects); mother/<br>sister breast cancer younger<br>than age 45 and alcohol intake;<br>hormone replacement therapy.<br>5-year age                                                                                                                                                                                                                                                                | 6                                            |        |              |      |                                                                                                                                                                         |   |
| Devore et al. (2015)       | United States               | BB, CCB, ACEI<br>vs. non                            | 1988–2012        | The Nurses' Health Study                            | 148668       | Cohort study            | Risk              | Age and body-mass index,<br>height, oral contraceptive use,<br>menopausal status, age at<br>menopause, postmenopausal<br>hormone use, parity and age at<br>first birth, age at menarche,<br>family history of breast cancer,<br>history of benign breast disease,<br>alcohol intake, physical activity<br>level, smoking<br>(Continued on following p                                                                                                                                                                                                                                       | 8<br>page)                                   |        |              |      |                                                                                                                                                                         |   |

| Author,<br>Year                 | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                                                                                                                                         | Participants | Design<br>type          | Outcomes | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                     | NOS |
|---------------------------------|----------------|-----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fryzek et al. (2006)            | Denmark        | BB, CCB, ACEI, ARB,<br>Diuretics vs. non            | 1990–2002       | The Central Population Register, The<br>Danish Cancer Registry, The<br>Pharmaco-Epidemiologic Prescription<br>Database of North Jutland                                   | 20,088       | Cohort study            | Risk     | Age, calendar period, HRT use,<br>NSAID use, parity, and age at<br>first birth                                                                                                                                                                                                                                                                                                         | 7   |
| Gomez-Acebo et al.<br>(2016)    | Spain          | BB, CCB, ACEI, ARB,<br>Diuretics vs. non            | 2008–2013       | The Multi Case-Control-Spain Study                                                                                                                                        | 3631         | Case-control            | Risk     | Age, area of resident, education,<br>body mass index, active<br>smoking, alcohol intake, family<br>history of breast cancer, age of<br>menarche, age first full-term<br>births, number of full-term births,<br>menopausal status, hormonal<br>therapy                                                                                                                                  | 7   |
| Gonzalez-Perez<br>et al. (2004) | United Kingdom | BB, CCB, ACEI,<br>Diuretics vs. non                 | 1995–2001       | The United Kingdom General Practice<br>Research Database                                                                                                                  | 23,708       | Nested case-<br>control | Risk     | Age, calendar year, BMI, alcohol<br>intake, smoking status, HRT<br>use, prior breast lump and/or<br>biopsy, hypertension and all the<br>variables in the table using<br>logistic regression                                                                                                                                                                                            | 8   |
| Hallas et al. (2012)            | Denmark        | ACEI, ARB vs. non                                   | 2000–2005       | The Danish Cancer Registry, the<br>Danish National Registry of Patients,<br>the Prescription Database of the<br>Danish Medicines Agency and the<br>Danish Person Registry | 97,573       | Case-control            | Risk     | A prior discharge diagnosis of<br>chronic obstructive pulmonary<br>disease as a crude marker of<br>heavy smoking, a prior<br>discharge diagnosis of<br>inflammatory bowel disease, a<br>modified Charlson Index that<br>contains 19 categories of co-<br>morbidity, match age and<br>gender                                                                                            | 8   |
| Huang et al. (2011)             | China          | ARB vs. non                                         | 1998–2007       | The Taiwan National Health Insurance database                                                                                                                             | 109344       | Cohort study            | Risk     | Age, gender, co-morbidities,<br>and medications for<br>hypertension control                                                                                                                                                                                                                                                                                                            | 7   |
| Largent et al. (2010)           | United States  | CCB, ACEI, Diuretics<br>vs. non                     | 1995–2006       | The California Teachers Study cohort                                                                                                                                      | 118700       | Cohort study            | Risk     | Race, family history of breast<br>cancer, age at first full-term<br>pregnancy and number of full-<br>term pregnancies combined<br>variable, hormone therapy and<br>menopausal status combined<br>variable, lifetime physical activity,<br>diabetes, body mass index,<br>smoking history, alcohol use,<br>hysterectomy, breastfeeding,<br>and quartiles of percent calories<br>from fat | 7   |

(Continued on following page)

Antihypertensive Medication and Breast Cancer

| TABLE 1   (Continued) Characteristics of | f the articles included in the meta-analysis. |
|------------------------------------------|-----------------------------------------------|
|------------------------------------------|-----------------------------------------------|

| Author,<br>Year            | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                         | Participants | Design<br>type | Outcomes | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOS |
|----------------------------|----------------|-----------------------------------------------------|-----------------|-----------------------------------------------------------|--------------|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Largent et al. (2006)      | United States  | Diuretics vs. non                                   | 1994–1999       | The Cancer Surveillance Program of<br>Orange County       | 654          | Case-control   | Risk     | Age, body mass index (BMI),<br>diabetes, smoking, alcohol use,<br>menopausal status, family<br>history of breast or ovarian<br>cancer, age at first full-term<br>pregnancy and education                                                                                                                                                                                                                                                                                                                                         | 6   |
| _ee et al. (2012)          | China          | ACEI vs. non                                        | 2002–2008       | The Taiwan National health Insurance<br>Research Database | 67,388       | Case-control   | Risk     | Urbanization, income, diabetes<br>mellitus, metformin usage, statin<br>usage, estrogen usage, and<br>progesterone usage                                                                                                                                                                                                                                                                                                                                                                                                          | 7   |
| Li et al. (2003)           | United States  | BB, CCB, RASI,<br>Diuretics vs. non                 | 1997–1999       | The westeren Washington State                             | 1982         | Case-control   | Risk     | Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7   |
| Li et al. (2013)           | United States  | BB, CCB, ACEI, ARB,<br>Diuretics vs. non            | 2000–2008       | The three-county Seattle-Puget Sound metropolitan area    | 2763         | Case-control   | Risk     | Age, reference year, county,<br>race/ethnicity, and recency of<br>alcohol use                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8   |
| Mackenzie et al.<br>(2012) | United Kingdom | Spironolactone<br>vs. non                           | 1987–2010       | The United Kingdom General Practice<br>Research Database  | 85,452       | Cohort study   | Risk     | Age, calendar year of entry to<br>study, Townsend score, use of<br>combined oral contraceptive pill<br>or hormone replacement<br>therapy, history of benign breast<br>disease, alcohol intake, body<br>mass index, family history of<br>breast cancer, use of drugs that<br>may protect against breast<br>cancer (aspirin, metformin), use<br>of drugs causing gynecomastia<br>(digoxin, finasteride, cimetidine,<br>nifedipine), and history of<br>hypertension, heart failure, or<br>diabetes mellitus,<br>socioeconomic score | 7   |
| Meier et al. (2000)        | United Kingdom | BB, CCB, ACEI<br>vs. non                            | 1992–1997       | The United Kingdom General Practice<br>Research Database  | 17,861       | Case-control   | Risk     | Smoking and body mass index,<br>match age (same year of birth),<br>physician practice, calendar<br>date, and number of years of<br>medical history                                                                                                                                                                                                                                                                                                                                                                               | 7   |
| Numbere et al.<br>(2015)   | United Kingdom | BB, CCB vs. non                                     | 1987–2012       | The Clinical Practice Research<br>Datalink                | 320251       | Case-control   | Risk     | Age, sex, smoking, alcohol use,<br>and a number of potentially<br>confounding comorbidities and<br>coprescriptions<br>(Continued on following)                                                                                                                                                                                                                                                                                                                                                                                   |     |

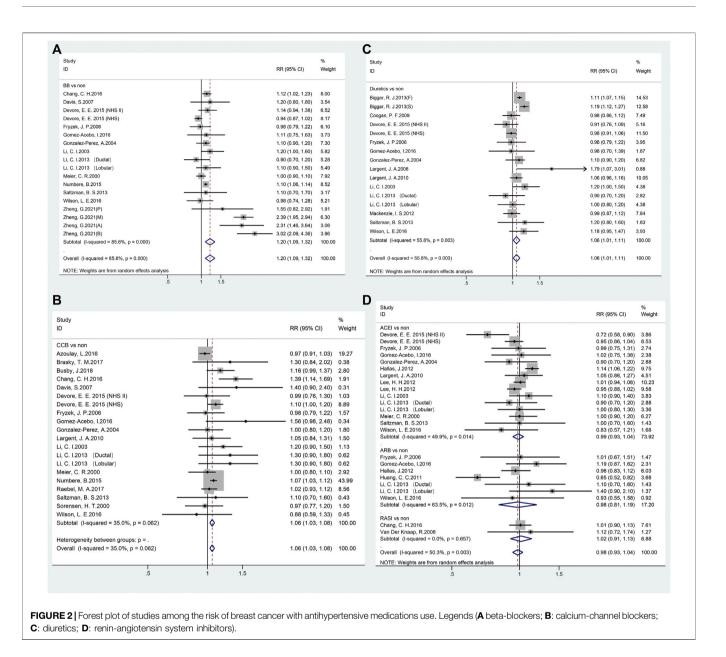
Xie et al.

| Author,<br>Year                | Country       | Class<br>of medication<br>vs.<br>reference<br>group                 | Study<br>period | Source<br>of data                                                       | Participants | Design<br>type | Outcomes | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO |
|--------------------------------|---------------|---------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------|--------------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Raebel et al. (2017)           | United States | CCB, ACEI vs. non                                                   | 1997–2012       | The Kaiser Permanente health-care system                                | 111882       | Cohort study   | Risk     | Age, body mass index,<br>hysterectomy, diabetes, alcohol<br>abuse, estrogen replacement,<br>use of statins, mammography,<br>and use of angiotensin receptor<br>blockers, β-blockers, and/or<br>diuretics, Kaiser Permanente<br>site, race/ethnicity, education,<br>and year of cohort entry, match<br>Length of follow-up                                                                                                                                                                                                                                                                                          | 6  |
| Saltzman et al.<br>(2013)      | United States | BB, CCB, ACEI,<br>Diuretics vs. non                                 | 1989–2001       | Cardiovascular health study                                             | 3389         | Cohort study   | Risk     | Age, alcohol use, income, age at menopause, waist-hip ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7  |
| Van Der Knaap et al.<br>(2008) | Netherlands   | RASI vs. non                                                        | 1991–2004       | The Rotterdam Study                                                     | 7821         | Cohort study   | Risk     | Age, BMI, total pack-years, age<br>at menarche and menopause,<br>use of hormone-replacement<br>therapy, number of children,<br>diabetes mellitus, NSAID use,<br>physical activity, hypertension,<br>and myocardial infarction                                                                                                                                                                                                                                                                                                                                                                                      | 7  |
| Wilson et al. (2016)           | United States | CCB vs. non                                                         | 2003–2013       | The Sister Study                                                        | 17,782       | Cohort study   | Risk     | Race/ethnicity, categorized<br>body mass index, parity, age at<br>menarche, menopause status,<br>statin use, smoking status,<br>hormone therapy use, and<br>reported hours of physical<br>activity per week                                                                                                                                                                                                                                                                                                                                                                                                        | 8  |
| Zheng, G et al.<br>(2021)      | Sweden        | BB (propranolol,<br>metoprolol, atenolol<br>and bisoprolol) vs. non | 2005–2014       | The Swedish Prescribed Drug<br>Registry, The Swedish Cancer<br>Registry | 38,282       | Cohort study   | Risk     | For propranolol was use of lipid-<br>modifying agents, for metoprolol<br>were family history of breast<br>cancer, education level, income<br>and use of cardiac therapy,<br>antihypertensive, diuretics,<br>calcium channel blockers,<br>hormone replacement therapy<br>and aspirin, for atenolol were<br>family history of breast cancer,<br>education level and use of<br>antihypertensive, and for<br>bisoprolol were use of cardiac<br>therapy, diuretics, lipid-<br>modifying agents and hormone<br>replacement therapy, and<br>personal history of chronic<br>pulmonary disease<br>(Continued on following p |    |

| Author,<br>Year           | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                                                                                             | Participants | Design<br>type | Outcomes            | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO         |
|---------------------------|----------------|-----------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Babacan et al.<br>(2015)  | Turkey         | RASI vs. non                                        | 2005–2012       | Hacettepe Cancer Institute                                                                                                    | 218          | Cohort study   | OS, DFS             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7          |
| Barron et al. (2011)      | Ireland        | BB (Propranolol,<br>Atenolol) vs. non               | 2001–2006       | The National Cancer Registry Ireland                                                                                          | 5801         | Case-control   | BCSM                | age, stage, grade, and comorbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8          |
| Botteri et al. (2013)     | Italy          | BB vs. non                                          | 1997–2008       | The European Institute of Oncology in Milan                                                                                   | 800          | Cohort study   | BCSM,<br>recurrence | Age, tumor stage, and<br>treatment, peritumoral vascular<br>invasion and use of other<br>antihypertensive drugs, anti-<br>thrombotics, and statins                                                                                                                                                                                                                                                                                                                                    | 7          |
| Boudreau et al.<br>(2014) | United States  | ACEI, BB, CCB,<br>Diuretics vs. non                 | 1990–2008       | The western Washington Cancer<br>Surveillance System                                                                          | 4216         | Cohort study   | recurrence          | All other medication classes of<br>interest, age; diagnosis year;<br>AJCC stage; hormone receptor<br>status; primary treatment for<br>initial breast cancer; endocrine<br>therapy for the incident breast<br>cancer); BMI; smoking;<br>menopausal statu; Charlson co-<br>morbidity score; diabetes;<br>prescription non-steroidal anti-<br>inflammatory medication use,<br>Cox-2 inhibitors, and aspiri; and<br>receipt of screening<br>mammogram in the 12 months<br>prior to events | 8          |
| Busby et al. (2018b)      | United Kingdom | CCB vs. non                                         | 1998–2012       | United Kingdom the Clinical Practice<br>Research Datalink, and to death<br>records from the Office for National<br>Statistics | 23,669       | Cohort study   | BCSM                | Age at diagnosis, year of<br>diagnosis, deprivation quintile,<br>comorbidities, prior use of HRT<br>or oral contraceptives, and<br>treatment within six months of<br>diagnosis<br>(Continued on following                                                                                                                                                                                                                                                                             | 7<br>page) |

| Author,<br>Year        | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                             | Participants | Design<br>type          | Outcomes | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO |
|------------------------|----------------|-----------------------------------------------------|-----------------|---------------------------------------------------------------|--------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Cardwell et al. (2013) | United Kingdom | BB vs. non                                          | 1998-2007       | United Kingdom clinical practice<br>research datalink cohort  | 7132         | nested Case-<br>control | BCSM     | Surgery within 6 months of<br>diagnosis, chemotherapy within<br>6 months, radiotherapy within 6<br>months, tamoxifen, aromatase<br>inhibitors, NSAID use, ACEI use,<br>ARB use, statin use, hormone<br>replacement therapy,<br>comorbidities (pre-diagnosis,<br>including myocardial infarction,<br>cerebrovascular disease,<br>congestive heart disease,<br>chronic pulmonary disease,<br>peripheral vascular disease,<br>peptic ulcer disease and<br>diabetes), and smoking, stage,<br>restricted to individuals with an<br>available stage record. match<br>year and age at diagnosis | 8  |
| Cardwell et al. (2014) | United Kingdom | ARB, ACEI vs. non                                   | 1998–2006       | United Kingdom clinical practice<br>research datalink cohort  | 8541         | Nested case-<br>control | BCSM     | Surgery, chemotherapy,<br>radiotherapy, low dose aspirin,<br>statins, comorbidities<br>(myocardial infarction,<br>cerebrovascular disease,<br>congestive heart disease,<br>chronic pulmonary disease,<br>peripheral vascular disease,<br>renal disease, peptic ulcer<br>disease and diabetes), and<br>smoking, tamoxife, aromatase<br>inhibitors, hormone replacement<br>therapy                                                                                                                                                                                                         | 8  |
| Cardwell et al. (2016) | European       | BB vs. non                                          | 1998–2012       | The European Cancer                                           | 55,252       | Cohort study            | BCSM     | Age, year, stage and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7  |
| Chae et al. (2013)     | United States  | ACEI, ARB, BB<br>vs. non                            | 1995–2007       | Pharmacoepidemiology Network<br>The MD Anderson Cancer Center | 1449         | Case-control            | DSS, OS  | confounders<br>Age, stage of disease, tumor<br>grade, tumor subtype, LVI,<br>and BMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7  |

(Continued on following page)


| Author,<br>Year                         | Country                | Class<br>of medication<br>vs.<br>reference<br>group    | Study<br>period        | Source<br>of data                                                          | Participants | Design<br>type                       | Outcomes               | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                              | NOS        |
|-----------------------------------------|------------------------|--------------------------------------------------------|------------------------|----------------------------------------------------------------------------|--------------|--------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Chen et al. (2017)                      | United States          | ACEI, ARB, BB, CCB,<br>Diuretics vs. non               | 2007–2011              | The linked Surveillance, Epidemiology<br>and End-Results-Medicare database | 14,766       | Cohort study                         | BCSM,<br>recurrence    | Age at diagnosis, year of<br>diagnosis, cancer stage,<br>estrogen receptor status, receipt<br>of complete first course<br>treatment, receipt of<br>chemotherapy, use of adjuvant<br>hormone therapy, baseline<br>diabetes, baseline hypertension<br>at breast cancer diagnosis and<br>use of other classes of<br>antihypertensive medications                                   | 7          |
| Chen et al. (2015)                      | United States          | ACEI, BB, CCB,<br>Diuretics vs. non                    | 1990–2005              | The Cancer Surveillance System                                             | 1010         | Nested case-<br>control              | recurrence             | adjuvant hormone therapy,<br>radiation therapy and<br>chemotherapy, match age, year<br>of diagnosis, county, race/<br>ethnicity, and cancer stage                                                                                                                                                                                                                               | 7          |
| Choy et al. (2016)<br>Cui et al. (2019) | United States<br>China | BB vs. non<br>ACEI, ARB, BB, CCB,<br>Diuretics vs. non | 2000–2010<br>1996–2000 | The City of Hope Cancer Center<br>The Shanghai Women's Health Study        | 1029<br>2891 | Cohort study<br>prospective<br>study | Recurrence<br>OS, DSS  | NA<br>Age at diagnosis, sex,<br>education, annual family income,<br>body mass index, alcohol<br>consumption, cigarette smoking<br>status, Charlson Comorbidity<br>Index score, year of cancer<br>diagnosis, cancer stage, and<br>cancer treatment. In model 2, we<br>added a 6-month lag period into<br>defining exposure in order to<br>address potential reverse<br>causation | 6<br>7     |
| Ganz et al. (2011)                      | United States          | ACEI, BB vs. non                                       | 1997–2010              | The LACE Study cohort                                                      | 1779         | Cohort study                         | BCSM,<br>recurrence,OS | Age at diagnosis, race, stage of<br>disease, pre-diagnosis BMI,<br>adjuvant treatment, hormone<br>receptor status, tamoxifen use,<br>and self-reported hypertension<br>and diabetes                                                                                                                                                                                             | 7          |
| Holmes et al. (2013a)                   | 013a) United States AC | ACEI, BB vs. non                                       | 1988–2008              | The Nurses' Health Study                                                   | 4661         | Cohort study                         | BCSM                   | Calendar year, disease stage,<br>smoking status, body mass<br>index, age at first birth and<br>parity, oral contraceptive use,<br>menopausal status and use of<br>hormone replacement, radiation<br>treatment, systemic treatment<br>with chemotherapy and/or<br>hormonal therapy<br>(Continued on following p                                                                  | 8<br>page) |

#### TABLE 1 | (Continued) Characteristics of the articles included in the meta-analysis.

| Author,<br>Year                   | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                                    | Participants | Design<br>type             | Outcomes           | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                               | NO        |                                                                                     |     |              |         |    |   |
|-----------------------------------|----------------|-----------------------------------------------------|-----------------|----------------------------------------------------------------------|--------------|----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|-----|--------------|---------|----|---|
| Holmes et al.<br>(2013b)          | Canada         | ACEI, ARB, BB, CCB,<br>Diuretics vs. non            | 2004–2010       | Provincial Cancer Registry data                                      | 4019         | Retrospective cohort study | BCSM               | Age, stage at diagnosis, history<br>of previous cancer, and urban/<br>rural residence                                                                                                                                                                                                                                                            | 7         |                                                                                     |     |              |         |    |   |
| Melhem-Bertrandt<br>et al. (2011) | United States  | ACEI, ARB, BB<br>vs. non                            | 1995–2007       | The Breast Cancer Management<br>System Database                      | 1413         | Cohort study               | OS,RFS             | Age, race, stage, grade,<br>receptor status, lymphovascular<br>invasion, body mass index,<br>diabetes, hypertension, and<br>angiotensin-converting enzyme<br>inhibitor use                                                                                                                                                                       | 7         |                                                                                     |     |              |         |    |   |
| Modiet al. (2020)                 | Australia      | BB vs. non                                          | -               | Clinical trials EMILIA, TH3RESA,<br>MARIANNE, and CLEOPATRA          | 2777         | Retrospective<br>study     | OS                 | Age, Race, BMI, Albumin count,<br>ECOG PS, ER/PR Status,<br>Presence of Visceral Disease<br>and Brain Metastasis,<br>Arrhythmia, Coronary Artery<br>Disease, Heart Failure,<br>Hypertension, Cerebrovascular<br>disease, Diabetes and Other<br>Cardiovascular diseases, Prior<br>treatment to anthracyclines,<br>taxanes and trastuzumab         | 8         |                                                                                     |     |              |         |    |   |
| Musselman et al.<br>(2018)        | Canada         | BB vs. non                                          | 2002–2010       | The Institute for Clinical and Evaluative Sciences                   | 4876         | Cohort study               | BCSM               | Statin use and socioeconomic status                                                                                                                                                                                                                                                                                                              | 7         |                                                                                     |     |              |         |    |   |
| Powe et al. (2010)                | United Kingdom | BB vs. non                                          | 1987–1994       | The Nottingham City Hospital                                         | 466          | Cohort study               | DSS,<br>recurrence | Adjuvant therapy and age                                                                                                                                                                                                                                                                                                                         | 6         |                                                                                     |     |              |         |    |   |
| Sakellakis et al.<br>(2014)       | Greece         | BB vs. non                                          | 1983–2013       | Department of Medicine, University<br>Hospital Patras Medical School | 610          | Retrospective study        | DFS                | Age, tumor stage, hormone receptor status                                                                                                                                                                                                                                                                                                        | 6         |                                                                                     |     |              |         |    |   |
| Şendur et al. (2012)              | Turkey         | ·                                                   | ·               | ·                                                                    | ·            | Turkey                     | Turkey             | ARB vs. non                                                                                                                                                                                                                                                                                                                                      | 2004–2011 | Department of Medical Oncology,<br>Ankara Numune Education and<br>Research Hospital | 486 | Cohort study | OS, DFS | NA | 7 |
| Shah et al. (2011)                | United Kingdom | BB vs. other AHT                                    | 1997–2007       | The Doctors Independent Network<br>Database                          | 3462         | Cohort study               | OS                 | Age, gender, year of diagnosis,<br>smoking status, number of<br>medications received in the year<br>before diagnosis, area<br>deprivation and national region                                                                                                                                                                                    | 7         |                                                                                     |     |              |         |    |   |
| Shih et al. (2020)                | China          | CCB vs. non                                         | 2007–2015       | The National Health Insurance<br>Research Database                   | 4840         | Case-control               | recurrence         | Demographic characteristics,<br>comorbidities, and tumor-node-<br>metastasis stage, age, monthly<br>income, geographic region,<br>urbanization level, hypertension,<br>hyperlipidemia, diabetes,<br>chronic kidney disease, tumor-<br>node-metastasis (TNM)<br>classification of malignant<br>tumors, and index date<br>(Continued on following) | 7         |                                                                                     |     |              |         |    |   |

| Author,<br>Year            | Country        | Class<br>of medication<br>vs.<br>reference<br>group | Study<br>period | Source<br>of data                                                                           | Participants | Design<br>type         | Outcomes   | Adjustment/match<br>for covariates                                                                                                                                                                                                                                                                                                                                  | NOS |
|----------------------------|----------------|-----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|--------------|------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Santala et al. (2020)      | Finland        | ACEI, ARB, BB, CCB,<br>Diuretics vs. non            | 1995–2013       | Finnish Cancer Registry                                                                     | 73,170       | Cohort study           | BCSM       | Age at diagnosis, tumor extent,<br>charlson-comorbidity index,<br>primary treatment of breast<br>cancer, obesity, participation in<br>national screening program and<br>use of hormone-receptor<br>antagonists after breast cancer<br>diagnosis                                                                                                                     | 7   |
| Sorensen et al.<br>(2013)  | Denmark        | ACEI, ARB, BB<br>vs. non                            | 1996–2003       | The Danish Breast Cancer<br>Cooperative Group registry                                      | 18,733       | Cohort study           | recurrence | Age at diagnosis, menopausal<br>status at diagnosis, UICC stage,<br>histologic grade, ER status and<br>receipt of adjuvant endocrine<br>therapy, receipt of adjuvant<br>chemotherapy, type of primary<br>surgery received, Charlson<br>comorbidity index, prediagnosis<br>combination HRT, and<br>coprescriptions of any BB, ACEI,<br>ARB, aspirin, and simvastatin | 8   |
| Spera et al. (2017)        | Canada         | BB vs. non                                          | NA              | The ROSE/TRIO-012 study, BCIRG-<br>005 data                                                 | 1144         | Retrospective study    | PFS, OS    | Age, Eastern Cooperative<br>Oncology Group performance<br>status and menopausal status                                                                                                                                                                                                                                                                              | 7   |
| Springate et al.<br>(2015) | United Kingdom | BB vs. other AHT                                    | 1997–2006       | The Clinical Practice Research<br>Datalink (CPRD) and Doctors'<br>Independent Network (DIN) | 14,964       | Cohort study           | BCSM       | Patient age, gender, year of<br>diagnosis, smoking status,<br>number of medications received<br>in year prior to diagnosis,<br>Regional Health Authority, and<br>practice postcode Index of<br>Multiple Deprivation, cancer site<br>prevalence, year of diagnosis<br>and area deprivation                                                                           | 7   |
| Sorensen et al.<br>(2000)  | Denmark        | CCB vs. non                                         | 1989–1995       | The Danish Cancer Registry, and the Danish Death Registry                                   | 23,167       | Cohort study           | Risk, BCSM | NA                                                                                                                                                                                                                                                                                                                                                                  | 6   |
| Takada et al. (2019)       | Japan          | CCB, RASI vs. non                                   | 2007–2018       | The Osaka City University Hospital                                                          | 338          | Retrospective study    | DFS, OS    | NA                                                                                                                                                                                                                                                                                                                                                                  | 7   |
| Wei et al. (2020)          | United States  | Diuretics vs. non                                   | 2005–2017       | Humana Insurance database                                                                   | 1492         | Retrospective<br>study | recurrence | Age, spironolactone, alopecia,<br>acne vulgaris, hirsutism,<br>hypertension, congestive heart<br>failure, primary aldosteronism,<br>nephrotic syndrome, ascites,<br>alcohol abuse, smoking, illicit<br>drug abuse, and insurance plan                                                                                                                               | 7   |

Abbreviations: NOS, Newcastle-Ottawa Scale; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers; CCB, calcium-channel blockers; BB, beta-blockers; RASI, renin-angiotensin system inhibitors; BCSM, breast cancer-specific mortality; OS, overall survival; DSS, disease-specific survival; DFS, disease-free survival; NA, Not Available.

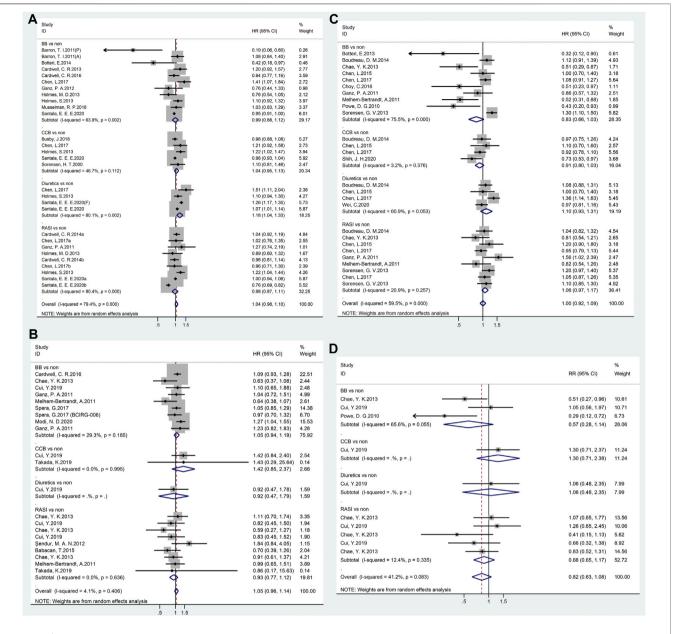


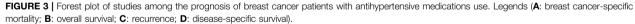
## DISCUSSION

Our meta-analysis showed that the use of BBs, CCBs, or diuretics was associated with a moderate increase in the risk of breast cancer. Diuretic therapy for  $\geq 10$  years could increase breast cancer risk by 10%. Long-term use of RASIs exerted a protective effect against breast cancer, especially when used for  $\geq 10$  years. In addition, this meta-analysis indicated that diuretics are related to elevated breast cancer-specific mortality, but antihypertensive medication use did not affect recurrence, OS, or DSS.

Our conclusion that BBs were associated with increased breast cancer risk was consistent with this highly influential and large studies (Numbere et al., 2015; Chang et al., 2016; Zheng et al., 2021). The prospective study data minimizes the recall bias and in the study in question, some important confounders such as alcohol status, smoking status, BMI, medication and comorbidities, were adjusted. Similarly, the positive association between diuretics and breast cancer risk mainly depended on the study that evaluated cancer risk in 2.3 million Danish women who were followed-up for 28.8 million person-years (Biggar et al., 2013). The study reported that breast cancer risk increased in the first-year of diuretic use, but the association was attributed to reverse causality, such as where symptoms of cancer, including abdominal swelling or incidental findings such as hypertension, led to diuretic exposure. To exclude care practices that affect the risk from true etiologic impact, the study further examined risk only in women who were exposed to drugs for more than one year prior to diagnosis, and found a slightly increased risk of breast cancer with increasing duration of diuretic exposure. Consistent TABLE 2 | The results of the association between antihypertensive medication use and breast cancer risk.

| Comparison                  |    | BB vs. non          |                       |       |    | CCB vs. non         |           |       |    | Diuretics vs. non   |                       |       |    | RASI vs. non        |                       |       |  |
|-----------------------------|----|---------------------|-----------------------|-------|----|---------------------|-----------|-------|----|---------------------|-----------------------|-------|----|---------------------|-----------------------|-------|--|
| Category                    | Ν  | RR (95%CI)          | 1 <sup>2</sup><br>(%) | Ρ     | Ν  | RR (95%CI)          | /²<br>(%) | Ρ     | Ν  | RR (95%CI)          | 1 <sup>2</sup><br>(%) | Ρ     | Ν  | RR (95%CI)          | 1 <sup>2</sup><br>(%) | Ρ     |  |
| Risk                        | 19 | 1.20<br>(1.09–1.32) | 32.4                  | 0.116 | 20 | 1.06<br>(1.03–1.08) | 35.0      | 0.062 | 16 | 1.06<br>(1.01–1.11) | 55.8                  | 0.003 | 24 | 0.98<br>(0.93–1.04) | 50.3                  | 0.003 |  |
| Study design                |    |                     |                       |       |    |                     |           |       |    |                     |                       |       |    |                     |                       |       |  |
| Case-control study          | 7  | 1.09<br>(1.05–1.12) | 0.0                   | 0.455 | 9  | 1.09<br>(1.05–1.13) | 7.7       | 0.371 | 6  | 1.04<br>(0.92–1.18) | 39.3                  | 0.144 | 12 | 1.03<br>(0.97–1.09) | 40.0                  | 0.074 |  |
| Cohort study                | 9  | 1.43<br>(1.07–1.91) | 0.0                   | 0.457 | 9  | 1.01<br>(0.97–1.05) | 0.0       | 0.648 | 9  | 1.06<br>(1.00–1.13) | 66.7                  | 0.002 | 10 | 0.89<br>(0.80–1.01) | 48.6                  | 0.041 |  |
| Nest case-<br>control study | 2  | 1.11<br>(1.03–1.20) | 0.0                   | 0.837 | 2  | 1.18<br>(1.03–1.36) | 80.8      | 0.022 | 1  | 1.10<br>(0.95–1.27) | -                     | -     | 2  | 0.99<br>(0.89–1.10) | 0.0                   | 0.440 |  |
| Geographic area             | 1  |                     |                       |       |    |                     |           |       |    |                     |                       |       |    |                     |                       |       |  |
| North America               | 8  | 1.02<br>(0.94–1.11) | 17.5                  | 0.292 | 11 | 1.08<br>(1.02–1.14) | 0.0       | 0.661 | 10 | 1.03<br>(0.97–1.10) | 35.8                  | 0.122 | 11 | 0.96<br>(0.88–1.05) | 24.9                  | 0.206 |  |
| Europe                      | 9  | 1.41<br>(1.16–1.70) | 0.0                   | 0.434 | 8  | 1.04<br>(1.01–1.07) | 45.3      | 0.077 | 6  | 1.10<br>(1.04–1.17) | 47.5                  | 0.090 | 9  | 1.07<br>(1.00–1.13) | 5.8                   | 0.387 |  |
| Asia                        | 1  | 1.12<br>(1.02–1.23) | -                     | -     | 1  | 1.39<br>(1.14–1.69) | -         | -     |    |                     |                       |       | 4  | 0.93 (0.84–1.04)    | 79.1                  | 0.002 |  |
| Duration of use             |    | . ,                 |                       |       |    | . ,                 |           |       |    |                     |                       |       |    | . ,                 |                       |       |  |
| <5 years                    | 9  | 1.05<br>(0.99–1.11) | 0.0                   | 0.49  | 11 | 1.04<br>(0.93–1.16) | 50.7      | 0.027 | 9  | 1.04<br>(0.98–1.11) | 0.0                   | 0.901 | 14 | 0.94<br>(0.90–0.99) | 0.0                   | 0.736 |  |
| 5-10 years                  | 10 | 0.98<br>(0.89–1.07) | 0.0                   | 0.908 | 12 | 1.09<br>(0.99–1.19) | 0.0       | 0.854 | 10 | 1.03<br>(0.90–1.19) | 58.1                  | 0.011 | 18 | 0.98<br>(0.86–1.11) | 67.0                  | 0.000 |  |
| ≥10 years                   | 7  | 1.08<br>(0.91–1.29) | 59.0                  | 0.023 | 8  | 1.05<br>(0.72–1.53) | 62.9      | 0.009 | 7  | 1.10<br>(1.01–1.20) | 0.0                   | 0.652 | 10 | 0.78<br>(0.68–0.91) | 0.0                   | 0.563 |  |


Abbreviations: BB, beta-blockers; CCB, calcium-channel blockers; RASI, renin-angiotensin system inhibitors; RR, relative risk; CI, confidence intervals; N, number of study.


with its results, we observed a duration-response association between the duration of diuretic therapy  $\geq 10$  years and breast cancer risk. Studies found that thiazide diuretics, but not other diuretics, were linked to an increasing risk of breast cancer, and the authors considered the increase in insulin resistance due to thiazide diuretics as a possible explanation (Sarafidis et al., 2007; Ni et al., 2017). A recent study showed that the use of furosemide or other diuretics before breast cancer diagnosis increased the risk of breast cancer-related death (Santala et al., 2020). Our results showed that the breast cancer mortality increased with the use of diuretics; however, we failed to analyze the effect of diuretic subtypes on breast cancer prognosis because there were few relevant studies. Thus, we could not arrive at the conclusion that different subclass of diuretics had varying associations with breast cancer. Future studies are warranted to determine the potential difference among various diuretics.

Our meta-analysis showed a positive association between CCBs use and the risk of breast cancer, which was consistent with the results of previous studies (Wright et al., 2017; Busby et al., 2018a). The elevated levels of cytosolic calcium could affect the process of apoptosis through different signaling pathways such as caspase activation, induction of endonuclease activity, or the miRNA-524-5p-BRI3-extracellular signal-regulated kinase (Erk) pathway (Iwasawa et al., 2011; Guo et al., 2014; Zhao et al., 2017b). CCBs blocks calcium entry, inhibiting this vital process, which could destroy the body's natural defense mechanism against cancer growth and promote cell survival by initiating autophagy (Sun et al., 2018). However, there is no conclusive evidence to accurately explain this observed link and the benefits of the long-term use of CCBs are controversial.

The association between RASIs and breast cancer remains controversial with some studies reporting that ARB/ACEI was not related to breast cancer risk (Teo, 2011; Datzmann et al., 2019), whereas another concluded that users of ACEIs had an increased risk (Hallas et al., 2012). However, our result demonstrated a significant (22%) reduction in breast cancer risk with  $\geq 10$  years, which is consistent with previously published observational studies (Huang et al., 2011; Li et al., 2013; Wang et al., 2013; Ni et al., 2017). In addition, in vivo and in vitro studies on RASIs have demonstrated a protective antiinflammatory, anti-proliferative, and pro-apoptotic effect on breast cancer (Herr et al., 2008; George et al., 2010). Although the effect of RASIs on breast cancer is still contradictory, RASIs should be selected more often for patients undergoing antihypertensive therapy considering its availability, feasibility, and established safety with reduced breast cancer risk.

It is important to assess the possible source of heterogeneity. First, the significance of our results might have been affected by an indication bias, such as high blood pressure (Coogan, 2013), as both hypertension and cancer are associated with obesity, alcohol, smoking, cardiometabolic abnormalities, and other comorbidities. One study reported a relationship between hypertension and cancer (Han et al., 2017). In addition, in this meta-analysis, not all included studies adjusted for the confounding factor of hypertension which would cause a certain degree of heterogeneity. Second, in observational studies of the general population, it is important to determine a dose or duration-response relationship to properly interpret the potential link between drug exposure and cancer development. However, because of the differences in drug exposure time and





dose between the included studies, the results will eventually be heterogeneous. Third, most of studies were from North America or Europe but a few studies are from Asia, which produced regional heterogeneity and limited the extent to which the results can be generalized. In the subgroup analysis according to geographical area, we found reduced between-study heterogeneity and observed different results, which indicated that the association varied among different areas. Finally, because the included studies were retrieved from some population registration database, the analysis results could reduce recall bias and misclassification bias to some extent. However, population-based registries also have some shortcomings, such as the limitation of potential confounders by stored data, and the fact that a prescription was collected does not necessarily indicate that the prescribed drugs were taken.

Our meta-analysis provides convincing and clear evidence of the relationship between antihypertensive drugs and the risk and prognosis of breast cancer. One strength of our study is that we conducted a stratified analysis according to the duration of antihypertensive drug use and found that using diuretics for  $\geq 10$  years could increase the risk of breast cancer, but using RASIs for  $\geq 10$  years would reduce the risk of breast cancer. This suggests that RASIs would be the best choice for patients with long-term antihypertensive drugs. Another strength of the study is that we focused on breast cancer risk and prognosis to obtain a more homogeneous group of studies. We studied the possible source of heterogeneity between studies, including study design, geographic area, and duration of antihypertensive medication use. It is noteworthy that there were also some limitations to this study. First, biases such as confounders, possible detection bias, and selection bias is inevitable in observational studies. Secondly, subgroup analyses based on age, sex, pathology of breast cancer, dose of antihypertensive medication, subclass of (selective BBs and non-selective BBs), CCBs BB (dihydropyridines and non-dihydropyridines), and diuretics (thiazide, loop, and potassium sparing diuretics) were not conducted because of the lack of relevant studies. Thirdly, our current summary evidence did not support a clear relation between long-term use of CCBs or BBs and breast cancer risk. Finally, significant heterogeneity was observed among studies focused on antihypertensive medication use and breast cancer risk and this persisted even when the data were stratified into subgroups.

The results of this meta-analysis demonstrated that BBs, CCBs, and diuretics were significantly associated with breast cancer risk. Unexpectedly, a beneficial effect of long-term use of RASI was observed against breast cancer risk. Additionally, according to the analysis of prognosis, no association was observed with any class of antihypertensive medication. Considering the limitations in this meta-analysis, further research is needed to fully clarify the association between antihypertensive medication use and breast cancer risk.

# REFERENCES

- Azoulay, L., Soldera, S., Yin, H., and Bouganim, N. (2016). Use of Calcium Channel Blockers and Risk of Breast *Cancer*. *Epidemiology* 27 (4), 594–601. doi:10.1097/ ede.000000000000483
- Babacan, T., Balakan, O., Kuzan, T. Y., Sarici, F., Koca, E., Kertmen, N., et al. (2015). The Effect of Renin-Angiotensin-System Inhibition on Survival and Recurrence of N3+ Breast Cancer Patients. J. Buon 20 (1), 50–56. doi:10.1007/ s10549-013-2654-3
- Barron, T. I., Connolly, R. M., Sharp, L., Bennett, K., and Visvanathan, K. (2011). Beta Blockers and Breast Cancer Mortality: a Population—Based Study. *Jco* 29 (19), 2635–2644. doi:10.1200/jco.2010.33.5422
- Biggar, R. J., Andersen, E. W., Wohlfahrt, J., and Melbye, M. (2013). Spironolactone Use and the Risk of Breast and Gynecologic Cancers. *Cancer Epidemiol.* 37 (6), 870–875. doi:10.1016/j.canep.2013.10.004
- Botteri, E., Munzone, E., Rotmensz, N., Cipolla, C., De Giorgi, V., Santillo, B., et al. (2013). Therapeutic Effect of β-blockers in Triple-Negative Breast Cancer Postmenopausal Women. *Breast Cancer Res. Treat.* 140, 567–575. doi:10. 1007/s10549-013-2654-3
- Boudreau, D. M., Yu, O., Chubak, J., Wirtz, H. S., Bowles, E. J. A., Fujii, M., et al. (2014). Comparative Safety of Cardiovascular Medication Use and Breast Cancer Outcomes Among Women with Early Stage Breast Cancer. Breast Cancer Res. Treat. 144 (2), 405–416. doi:10.1007/s10549-014-2870-5
- Brasky, T. M., Krok-Schoen, J. L., Liu, J., Chlebowski, R. T., Freudenheim, J. L., Lavasani, S., et al. (2017). Use of Calcium Channel Blockers and Breast *Cancer* Risk in the Women's Health Initiative. *Cancer Epidemiol. Biomarkers Prev.* 26 (8), 1345–1348. doi:10.1158/1055-9965.Epi-17-0096

# DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

## AUTHOR CONTRIBUTIONS

All authors read, critically reviewed and approved the final manuscript. YX and MW conducted the database searches, screened titles, abstracts and full-texts for eligibility, PX, YD, YZ, and SY performed study quality assessments. JC and ZD planed and designed the research; DZ, NL, and NW provided methodological support/advice; PX and YD tested the feasibility of the study; YX, MW, and DZ extract data; YX performed the statistical analysis; YX and MW wrote the manuscript.

#### ACKNOWLEDGMENTS

We thank all members of our study team for their wonderful cooperation and the original authors of the included studies for their results.

## SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.609901/full#supplementary-material

- Busby, J., Mills, K., Zhang, S.-D., Liberante, F. G., and Cardwell, C. R. (2018a). Postdiagnostic Calcium Channel Blocker Use and Breast Cancer Mortality. *Epidemiology* 29 (3), 407–413. doi:10.1097/ede.000000000000814
- Busby, J., Murray, L., Mills, K., Zhang, S.-D., Liberante, F., and Cardwell, C. R. (2018b). A Combined Connectivity Mapping and Pharmacoepidemiology Approach to Identify Existing Medications with Breast Cancer Causing or Preventing Properties. *Pharmacoepidemiol. Drug Saf.* 27 (1), 78–86. doi:10. 1002/pds.4345
- Caparica, R., Bruzzone, M., Agostinetto, E., De Angelis, C., Fêde, Â., Ceppi, M., et al. (2021). Beta-blockers in Early-Stage Breast Cancer: a Systematic Review and Meta-Analysis. ESMO Open 6 (2), 100066. doi:10.1016/j.esmoop.2021. 100066
- Cardwell, C. R., Coleman, H. G., Murray, L. J., Entschladen, F., and Powe, D. G. (2013). Beta-blocker Usage and Breast Cancer Survival: a Nested Case-Control Study within a UK Clinical Practice Research Datalink Cohort. *Int. J. Epidemiol.* 42 (6), 1852–1861. doi:10.1093/ije/dyt196
- Cardwell, C. R., Mc Menamin, Ú. C., Hicks, B. M., Hughes, C., Cantwell, M. M., and Murray, L. J. (2014). Drugs Affecting the Renin-Angiotensin System and Survival from Cancer: a Population Based Study of Breast, Colorectal and Prostate Cancer Patient Cohorts. *BMC Med.* 12, 28. doi:10.1186/1741-7015-12-28
- Cardwell, C. R., Pottegård, A., Vaes, E., Garmo, H., Murray, L. J., Brown, C., et al. (2016). Propranolol and Survival from Breast Cancer: A Pooled Analysis of European Breast Cancer Cohorts. *Breast Cancer Res.* 18 (1), 119. doi:10.1186/ s13058-016-0782-5
- Chae, Y. K., Brown, E. N., Lei, X., Melhem-Bertrandt, A., Giordano, S. H., Litton, J. K., et al. (2013). Use of ACE Inhibitors and Angiotensin Receptor Blockers and Primary Breast Cancer Outcomes. *J. Cancer* 4 (7), 549–556. doi:10.7150/jca. 6888

- Chang, C.-H., Chiang, C.-H., Yen, C.-J., Wu, L.-C., Lin, J.-W., and Lai, M.-S. (2016). Antihypertensive Agents and the Risk of Breast Cancer in Women Aged 55 Years and Older. *J. Hypertens.* 34(3), 558–566. doi:10.1097/hjh. 000000000000813
- Chen, L., Chubak, J., Boudreau, D. M., Barlow, W. E., Weiss, N. S., and Li, C. I. (2017). Use of Antihypertensive Medications and Risk of Adverse Breast Cancer Outcomes in a SEER-Medicare Population. *Cancer Epidemiol. Biomarkers Prev.* 26 (11), 1603–1610. doi:10.1158/1055-9965.EPI-17-0346
- Chen, L., Malone, K. E., and Li, C. I. (2015). Use of Antihypertensive Medications Not Associated with Risk of Contralateral Breast *Cancer* Among Women Diagnosed with Estrogen Receptor-Positive Invasive Breast Cancer. *Cancer Epidemiol. Biomarkers Prev.* 24 (9), 1423–1426. doi:10.1158/1055-9965.Epi-15-0547
- Choy, C., Raytis, J. L., Smith, D. D., Duenas, M., Neman, J., Jandial, R., et al. (2016). Inhibition of  $\beta$ 2-adrenergic Receptor Reduces Triple-Negative Breast Cancer Brain Metastases: The Potential Benefit of Perioperative  $\beta$ -blockade. *Oncol. Rep.* 35 (6), 3135–3142. doi:10.3892/or.2016.4710
- Coogan, P. F. (2013). Calcium-Channel Blockers and Breast Cancer. JAMA Intern. Med. 173 (17), 1637–1638. doi:10.1001/jamainternmed.2013.9069
- Coogan, P. F., Strom, B. L., and Rosenberg, L. (2009). Diuretic Use and the Risk of Breast Cancer. J. Hum. Hypertens. 23 (3), 216–218. doi:10.1038/jbh.2008.131
- Cui, Y., Wen, W., Zheng, T., Li, H., Gao, Y.-T., Cai, H., et al. (2019). Use of Antihypertensive Medications and Survival Rates for Breast, Colorectal, Lung, or Stomach Cancer. Am. J. Epidemiol. 188 (8), 1512–1528. doi:10.1093/aje/ kwz106
- Datzmann, T., Fuchs, S., Andree, D., Hohenstein, B., Schmitt, J., and Schindler, C. (2019). Systematic Review and Meta-Analysis of Randomised Controlled Clinical Trial Evidence Refutes Relationship between Pharmacotherapy with Angiotensin-Receptor Blockers and an Increased Risk of Cancer. *Eur. J. Intern. Med.* 64, 1–9. doi:10.1016/j.ejim.2019.04.019
- Davis, S., and Mirick, D. K. (2007). Medication Use and the Risk of Breast Cancer. *Eur. J. Epidemiol.* 22 (5), 319–325. doi:10.1007/s10654-007-9135-0
- Devore, E. E., Kim, S., Ramin, C. A., Wegrzyn, L. R., Massa, J., Holmes, M. D., et al. (2015). Antihypertensive Medication Use and Incident Breast Cancer in Women. *Breast Cancer Res. Treat.* 150 (1), 219–229. doi:10.1007/s10549-015-3311-9
- Egger, M., Smith, G. D., Schneider, M., and Minder, C. (1997). Bias in Meta-Analysis Detected by a Simple, Graphical Test. *Bmj* 315 (7109), 629–634. doi:10. 1136/bmj.315.7109.629
- Ettehad, D., Emdin, C. A., Kiran, A., Anderson, S. G., Callender, T., Emberson, J., et al. (2016). Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: a Systematic Review and Meta-Analysis. *The Lancet* 387 (10022), 957–967. doi:10.1016/s0140-6736(15)01225-8
- Fryzek, J. P., Poulsen, A. H., Lipworth, L., Pedersen, L., Nørgaard, M., McLaughlin, J. K., et al. (2006). A Cohort Study of Antihypertensive Medication Use and Breast Cancer Among Danish Women. *Breast Cancer Res. Treat.* 97 (3), 231–236. doi:10.1007/s10549-005-9091-x
- Ganz, P. A., Habel, L. A., Weltzien, E. K., Caan, B. J., and Cole, S. W. (2011). Examining the Influence of Beta Blockers and ACE Inhibitors on the Risk for Breast Cancer Recurrence: Results from the LACE Cohort. *Breast Cancer Res. Treat.* 129 (2), 549–556. doi:10.1007/s10549-011-1505-3
- George, A. J., Thomas, W. G., and Hannan, R. D. (2010). The Renin-Angiotensin System and Cancer: Old Dog, New Tricks. *Nat. Rev. Cancer* 10 (11), 745–759. doi:10.1038/nrc2945
- Gómez-Acebo, I., Dierssen-Sotos, T., Palazuelos, C., Pérez-Gómez, B., Lope, V., Tusquets, I., et al. (2016). The Use of Antihypertensive Medication and the Risk of Breast *Cancer* in a Case-Control Study in a Spanish Population: The MCC-Spain Study. *PLoS One* 11 (8), e0159672. doi:10.1371/journal.pone.0159672
- González-Pérez, A., Ronquist, G., and García Rodríguez, L. A. (2004). Breast Cancer Incidence and Use of Antihypertensive Medication in Women. *Pharmacoepidem. Drug Safe.* 13 (8), 581–585. doi:10.1002/pds.910
- Guo, D.-Q., Zhang, H., Tan, S.-J., and Gu, Y.-C. (2014). Nifedipine Promotes the Proliferation and Migration of Breast Cancer Cells. *PLoS One* 9 (12), e113649. doi:10.1371/journal.pone.0113649
- Hallas, J., Christensen, R., Andersen, M., Friis, S., and Bjerrum, L. (2012). Long Term Use of Drugs Affecting the Renin-Angiotensin System and the Risk of Cancer: a Population-Based Case-Control Study. *Br. J. Clin. Pharmacol.* 74 (1), 180–188. doi:10.1111/j.1365-2125.2012.04170.x

- Han, H., Guo, W., Shi, W., Yu, Y., Zhang, Y., Ye, X., et al. (2017). Hypertension and Breast Cancer Risk: a Systematic Review and Meta-Analysis. *Sci. Rep.* 7, 44877. doi:10.1038/srep44877
- Herr, D., Rodewald, M., Fraser, H. M., Hack, G., Konrad, R., Kreienberg, R., et al. (2008). Potential Role of Renin-Angiotensin-System for Tumor Angiogenesis in Receptor Negative Breast Cancer. *Gynecol. Oncol.* 109 (3), 418–425. doi:10. 1016/j.ygyno.2008.02.019
- Higgins, J. P. T., Thompson, S. G., Deeks, J. J., and Altman, D. G. (2003). Measuring Inconsistency in Meta-Analyses. *Bmj* 327 (7414), 557–560. doi:10.1136/bmj. 327.7414.557
- Holmes, M. D., Hankinson, S. E., Feskanich, D., and Chen, W. Y. (2013a). Beta Blockers and Angiotensin-Converting Enzyme Inhibitors' Purported Benefit on Breast Cancer Survival May Be Explained by Aspirin Use. *Breast Cancer Res. Treat.* 139 (2), 507–513. doi:10.1007/s10549-013-2553-7
- Holmes, S., Griffith, E. J., Musto, G., and Minuk, G. Y. (2013b). Antihypertensive Medications and Survival in Patients with Cancer: a Population-Based Retrospective Cohort Study. *Cancer Epidemiol.* 37 (6), 881–885. doi:10.1016/ j.canep.2013.09.001
- Huang, C.-C., Chan, W.-L., Chen, Y.-C., Chen, T.-J., Lin, S.-J., Chen, J.-W., et al. (2011). Angiotensin II Receptor Blockers and Risk of Cancer in Patients with Systemic Hypertension. *Am. J. Cardiol.* 107 (7), 1028–1033. doi:10.1016/j. amjcard.2010.11.026
- Iwasawa, R., Mahul-Mellier, A.-L., Datler, C., Pazarentzos, E., and Grimm, S. (2011). Fis1 and Bap31 Bridge the Mitochondria-ER Interface to Establish a Platform for Apoptosis Induction. *Embo j* 30 (3), 556–568. doi:10.1038/emboj. 2010.346
- Largent, J. A., Bernstein, L., Horn-Ross, P. L., Marshall, S. F., Neuhausen, S., Reynolds, P., et al. (2010). Hypertension, Antihypertensive Medication Use, and Breast Cancer Risk in the California Teachers Study Cohort. *Cancer Causes Control* 21 (10), 1615–1624. doi:10.1007/s10552-010-9590-x
- Largent, J. A., McEligot, A. J., Ziogas, A., Reid, C., Hess, J., Leighton, N., et al. (2006). Hypertension, Diuretics and Breast Cancer Risk. J. Hum. Hypertens. 20 (10), 727–732. doi:10.1038/sj.jhh.1002075
- Lee, H. H., Tsan, Y. T., Ho, W. C., Lin, M. H., Lee, C. H., Tseng, C. D., et al. (2012). PCN7 Angiotensin-Converting Enzyme Inhibitors Enhance the Effect of Cyclooxygenase Inhibitors on Breast Cancer: A Nationwide Case-Control Study. Value in Health 15 (7), A654. doi:10.1016/j.jval.2012.08.305
- Li, C. I., Daling, J. R., Tang, M.-T. C., Haugen, K. L., Porter, P. L., and Malone, K. E. (2013). Use of Antihypertensive Medications and Breast Cancer Risk Among Women Aged 55–74 Years. *JAMA Intern. Med.* 173 (17), 1629–1637. doi:10. 1001/jamainternmed.2013.9071
- Li, C. I., Malone, K. E., Weiss, N. S., Boudreau, D. M., Cushing-Haugen, K. L., and Daling, J. R. (2003). Relation between Use of Antihypertensive Medications and Risk of Breast Carcinoma Among Women Ages 65–79 Years. *Cancer* 98 (7), 1504–1513. doi:10.1002/cncr.11663
- Ma, L.-L., Wang, Y.-Y., Yang, Z.-H., Huang, D., Weng, H., and Zeng, X.-T. (2020). Methodological Quality (Risk of Bias) Assessment Tools for Primary and Secondary Medical Studies: what Are They and Which Is Better? *Mil. Med Res* 7 (1), 7. doi:10.1186/s40779-020-00238-8
- Mackenzie, I. S., Macdonald, T. M., Thompson, A., Morant, S., and Wei, L. (2012). Spironolactone and Risk of Incident Breast Cancer in Women Older Than 55 years: Retrospective, Matched Cohort Study. *BMJ* 345, e4447. doi:10.1136/ bmj.e4447
- Meier, C. R., Derby, L. E., Jick, S. S., and Jick, H. (2000). Angiotensin-converting Enzyme Inhibitors, Calcium Channel Blockers, and Breast Cancer. Arch. Intern. Med. 160 (3), 349–353. doi:10.1001/archinte.160.3.349
- Melhem-Bertrandt, A., Chavez-Macgregor, M., Lei, X., Brown, E. N., Lee, R. T., Meric-Bernstam, F., et al. (2011). Beta-blocker Use is Associated with Improved Relapse-free Survival in Patients with Triple-Negative Breast Cancer. J Clin Oncol. 29 (19), 2645–2652. doi:10.1200/jco.2010.33.4441
- Modi, N. D., Tan, J. Q. E., Rowland, A., Koczwara, B., Kichenadasse, G., McKinnon, R. A., et al. (2020). The Influence of Pre-existing Beta-Blockers Use on Survival Outcomes in HER2 Positive Advanced Breast Cancer: Pooled Analysis of Clinical Trial Data. *Front. Oncol.* 10, 1130. doi:10.3389/fonc.2020.01130
- Musselman, R. P., Bennett, S., Li, W., Mamdani, M., Gomes, T., van Walraven, C., et al. (2018). Association between Perioperative Beta Blocker Use and Cancer Survival Following Surgical Resection. *Eur. J. Surg. Oncol.* 44 (8), 1164–1169. doi:10.1016/j.ejso.2018.05.012

- Naghibzadeh, N., Asgharzadeh, F., and Khazaei, M. (2020). Effect of Renin-Angiotensin System Inhibitors on Survival Rate of Patients with Breast Cancer: Systematic Review and Meta-Analysis. *Iranian J. Obstet. Gynecol. Infertility* 26 (6), 88–96. doi:10.22038/IJOGI.2020.16884
- Ni, H., Rui, Q., Zhu, X., Yu, Z., Gao, R., and Liu, H. (2017). Antihypertensive Drug Use and Breast Cancer Risk: a Meta-Analysis of Observational Studies. Oncotarget 8 (37), 62545–62560. doi:10.18632/oncotarget.19117
- Numbere, B., Fleming, K. M., Walker, A., and Card, T. R. (2017). Adrenergic Blockers and the Risk for Common Solid Cancers: a Case-Control Study. *Eur.* J. Cancer Prev. 26 (1), 86–93. doi:10.1097/cej.00000000000218
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *Plos Med.* 18 (3), e1003583. doi:10.1371/journal. pmed.1003583
- Powe, D. G., Voss, M. J., Zänker, K. S., Habashy, H. O., Green, A. R., Ellis, I. O., et al. (2010). Beta-blocker Drug Therapy Reduces Secondary Cancer Formation in Breast Cancer and Improves Cancer Specific Survival. Oncotarget 1 (7), 628–638. doi:10.18632/oncotarget.197
- Raebel, M. A., Zeng, C., Cheetham, T. C., Smith, D. H., Feigelson, H. S., Carroll, N. M., et al. (2017). Risk of Breast *Cancer* with Long-Term Use of Calcium Channel Blockers or Angiotensin-Converting Enzyme Inhibitors Among Older Women. *Am. J. Epidemiol.* 185 (4), 264–273. doi:10.1093/aje/kww217
- Sakellakis, M., Kostaki, A., Starakis, I., and Koutras, A. (2014). β-Blocker Use and Risk of Recurrence in Patients with Early Breast Cancer. *Chemotherapy* 60 (5–6), 288–289. doi:10.1159/000371871
- Saltzman, B. S., Weiss, N. S., Sieh, W., Fitzpatrick, A. L., McTiernan, A., Daling, J. R., et al. (2013). Use of Antihypertensive Medications and Breast Cancer Risk. *Cancer Causes Control* 24 (2), 365–371. doi:10.1007/s10552-012-0122-8
- Santala, E. E. E., Murto, M. O., Artama, M., Pukkala, E., Visvanathan, K., and Murtola, T. J. (2020). Angiotensin Receptor Blockers Associated with Improved Breast Cancer Survival-A Nationwide Cohort Study from Finland. *Cancer Epidemiol. Biomarkers Prev.* 29, 2376–2382. doi:10.1158/1055-9965.Epi-20-0711
- Sarafidis, P. A., McFarlane, S. I., and Bakris, G. L. (2007). Antihypertensive Agents, Insulin Sensitivity, and New-Onset Diabetes. *Curr. Diab Rep.* 7 (3), 191–199. doi:10.1007/s11892-007-0031-5
- Şendur, M. A. N., Aksoy, S., Yaman, S., Ozdemir, N. Y., Zengin, N., and Altundag, K. (2012). Efficacy of Angiotensin-Receptor Blockers on Demographic and Clinico-Pathological Characteristics of Breast Cancer. *Breast* 21 (3), 419–420. doi:10.1016/j.breast.2012.01.01010.1016/j.breast.2011.09.015
- Shah, S. M., Carey, I. M., Owen, C. G., Harris, T., Dewilde, S., and Cook, D. G. (2011). Does β-adrenoceptor Blocker Therapy Improve Cancer Survival? Findings from a Population-Based Retrospective Cohort Study. Br. J. Clin. Pharmacol. 72 (1), 157–161. doi:10.1111/j.1365-2125.2011.03980.x
- Shih, J. H., Kao, L. T., Chung, C. H., Liao, G. S., Fann, L. Y., Chien, W. C., et al. (2020). Protective Association between Calcium Channel Blocker Use and Breast Cancer Recurrence in Postsurgical Women: A Population-Based Case-Control Study in Taiwan. J. Clin. Pharmacol. 60, 785–792. doi:10.1002/jcph. 1579
- Sørensen, G. V., Ganz, P. A., Cole, S. W., Pedersen, L. A., Sørensen, H. T., Cronin-Fenton, D. P., et al. (2013). Use of β-Blockers, Angiotensin-Converting Enzyme Inhibitors, Angiotensin II Receptor Blockers, and Risk of Breast Cancer Recurrence: A Danish Nationwide Prospective Cohort Study. J Clin Oncol 31 (18), 2265–2272. doi:10.1200/jco.2012.43.9190
- Sørensen, H. T., Olsen, J. H., Mellemkjaer, L., Marie, A., Steffensen, F. H., McLaughlin, J. K., et al. (2000). Cancer Risk and Mortality in Users of Calcium Channel Blockers. A Cohort Study. *Cancer* 89 (1), 165–170. doi:10. 1002/1097-0142(20000701)89:1<165::aid-cncr21>3.0.co;2-g
- Spera, G., Fresco, R., Fung, H., Dyck, J. R. B., Pituskin, E., Paterson, I., et al. (2017). Beta Blockers and Improved Progression-free Survival in Patients with Advanced HER2 Negative Breast Cancer: A Retrospective Analysis of the ROSE/TRIO-012 Study. Ann. Oncol. 28 (8), 1836–1841. doi:10.1093/annonc/ mdx264
- Springate, D. A., Ashcroft, D. M., Kontopantelis, E., Doran, T., Ryan, R., and Reeves, D. (2015). Can Analyses of Electronic Patient Records Be

Independently and Externally Validated? Study 2-the Effect of-adrenoceptor Blocker Therapy on Cancer Survival: a Retrospective Cohort Study. *BMJ Open* 5 (4), e007299. doi:10.1136/bmjopen-2014-007299

- Stanaway, J. D., Afshin, A., Gakidou, E., Lim, S. S., Abate, D., Abate, K. H., et al. (2018). Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: a Systematic Analysis for the Global Burden of Disease Study 2017. *Lancet* 392 (10159), 1923–1994. doi:10.1016/s0140-6736(18)32225-6
- Stang, A. (2010). Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. *Eur. J. Epidemiol.* 25 (9), 603–605. doi:10.1007/s10654-010-9491-z
- Sun, X., Yang, Y., Zhong, X. Z., Cao, Q., Zhu, X.-H., Zhu, X., et al. (2018). A Negative Feedback Regulation of MTORC1 Activity by the Lysosomal Ca2+ Channel MCOLN1 (Mucolipin 1) Using a CALM (Calmodulin)-dependent Mechanism. Autophagy 14 (1), 38–52. doi:10.1080/15548627.2017.1389822
- Takada, K., Kashiwagi, S., Asano, Y., Goto, W., Takahashi, K., Fujita, H., et al. (2019). Verification of the Effects of Calcium Channel Blockers on the Immune Microenvironment of Breast Cancer. BMC Cancer 19 (1), 615. doi:10.1186/ s12885-019-5828-5
- Teo, K. K. (2011). Effects of Telmisartan, Irbesartan, Valsartan, Candesartan, and Losartan on Cancers in 15 Trials Enrolling 138,769 Individuals. J. Hypertens. 29 (4), 623–635. doi:10.1097/HJH.0b013e328344a7de
- Van Der Knaap, R., Siemes, C., Coebergh, J.-W. W., Van Duijn, C. M., Hofman, A., and Stricker, B. H. C. (2008). Renin-angiotensin System Inhibitors, Angiotensin I-Converting Enzyme Gene Insertion/deletion Polymorphism, and Cancer. *Cancer* 112 (4), 748–757. doi:10.1002/cncr.23215
- Wang, K.-L., Liu, C.-J., Chao, T.-F., Huang, C.-M., Wu, C.-H., Chen, T.-J., et al. (2013). Long-term Use of Angiotensin II Receptor Blockers and Risk of Cancer: a Population-Based Cohort Analysis. *Int. J. Cardiol.* 167 (5), 2162–2166. doi:10. 1016/j.ijcard.2012.05.096
- Wei, C., Bovonratwet, P., Gu, A., Moawad, G., Silverberg, J. I., Friedman, A. J., et al. (2020). Spironolactone Use Does Not Increase the Risk of Female Breast Cancer Recurrence: A Retrospective Analysis. J. Am. Acad. Dermatol. 83, 1021–1027. doi:10.1016/j.jaad.2020.05.081
- Wilson, L. E., D'Aloisio, A. A., Sandler, D. P., and Taylor, J. A. (2016). Long-term Use of Calcium Channel Blocking Drugs and Breast Cancer Risk in a Prospective Cohort of US and Puerto Rican Women. *Breast Cancer Res.* 18 (1), 61. doi:10.1186/s13058-016-0720-6
- Wright, C. M., Moorin, R. E., Chowdhury, E. K., Stricker, B. H., Reid, C. M., Saunders, C. M., et al. (2017). Calcium Channel Blockers and Breast Cancer Incidence: An Updated Systematic Review and Meta-Analysis of the Evidence. *Cancer Epidemiol.* 50 (Pt A), 113–124. doi:10.1016/j.canep.2017.08.012
- Zhao, T., Guo, D., Gu, Y., and Ling, Y. (2017a). Nifedipine Stimulates Proliferation and Migration of Different Breast Cancer Cells by Distinct Pathways. *Mol. Med. Rep.* 16 (2), 2259–2263. doi:10.3892/mmr.2017.6818
- Zhao, Y., Wang, Q., Zhao, X., Meng, H., and Yu, J. (2017b). Effect of Antihypertensive Drugs on Breast Cancer Risk in Female Hypertensive Patients: Evidence from Observational Studies. *Clin. Exp. Hypertens.* 40 (1), 22–27. doi:10.1080/10641963.2017.1288736
- Zheng, G., Sundquist, J., Sundquist, K., and Ji, J. (2021). Beta-blockers Use and Risk of Breast Cancer in Women with Hypertension. *Cancer Epidemiol. Biomarkers Prev.* 28, 1599-2020. doi:10.1158/1055-9965.Epi-20-1599

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xie, Wang, Xu, Deng, Zheng, Yang, Wu, Zhai, Zhang, Li, Wang, Cheng and Dai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.