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ABSTRACT Over the past decade or so, PCR-based screening programs have reported
that Africanized honey bees (AHB) are also hosts to viruses commonly found in European
honey bees. Very little is known about the genomic variants found in AHB. Here, we present
two distinct lineages of sinaiviruses in AHB.

Lake Sinai virus (LSV), family Sinhaliviridae within the order Nodamuvirales, was first
discovered in European honey bee (EHB) colonies in the United States (1). Since

then, LSV variants have been detected in multiple bee species across the world (2, 3).
LSV has also been detected in African honey bees (4), and the only African LSV genomes
published to date are from those found in honey bees collected in South Africa (5). Here,
we sequenced and identified two distinct lineages of LSV (Fig. 1) in Guyanese Africanized
honey bees (AHB).

Samples made up of 30 whole worker AHB per apiary (Table 1) were pooled and
liquefied using the gentleMACS dissociator (RNA 02.01 program; Miltenyi Biotec).
The samples represented 3 regions across Guyana, namely, regions 6, 4, and 3.
Total RNA was extracted per the manufacturer’s instructions using the NucleoSpin
virus RNA-DNA isolation kit (TaKaRa Bio USA). Sequencing was carried out as previ-
ously described (6), except that cDNA synthesis was carried out using the template
switching (TS) RT enzyme mix (New England Biolabs) with an N6 TS modified ran-
dom primer (Thermo Fisher Scientific). RNA and DNA quantifications were carried
out using the Qubit 4 fluorometer (Thermo Fisher Scientific). Region- and apiary-
specific Oxford Nanopore Technologies (ONT) libraries (8 in total; Table 1) were
prepared using the rapid barcoding SQK-RBK004 sequencing kit (Oxford Nanopore
Technologies). All libraries were sequenced in a single sequencing run using the
high-accuracy base-calling model with a minimum Q score of 7 set on an ONT MinION
device using one FLO-MIN106 R9 flow cell.

Consensus genome assemblies and phylogenies were created using default pa-
rameters for all software. The reads obtained were reference assembled against the
top Epi2Me WIMP hit for each genome (Oxford Nanopore Technologies), which was
either the genome submitted under GenBank accession number NC_035112.1 or
NC_035113.1, using Minimap 2.17 in Geneious Prime 2021.1.1 and manually cura-
ted to correct ambiguities where possible. For each Guyanese LSV consensus ge-
nome in lineages NE and 8, reads ranging from 115 to 1,248 bases (Table 1) were
used to assemble the near-complete consensus genomes of LSV-8- and LSV-NE-like
variants (Fig. 1). All Guyanese LSV genomes were assigned a label to indicate the
region of origin, beekeeper code, library, barcode, and finally, the best Epi2Me LSV
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genome match (Table 1; Fig. 1). The coding regions (59 and 39 regions removed) of
the new consensus genomes were aligned to available LSV genomes found in NCBI
(downloaded March 2022) using Muscle 3.8.425 (7) and visualized using FastTree
2.1.11 (8) in Geneious Prime 2021.1.1.

LSV variants can be subdivided into lineages based on the RNA-dependent RNA
polymerase (RdRp) gene and their whole-genome sequences (9, 10). Phylogenetic
analysis revealed that two distinct LSV lineages exist in Guyanese AHB (Fig. 1). One
clade of Guyanese LSV variants clustered with a variant in lineage 8, named LSV-
SA2 (Fig. 1). The second clade of Guyanese LSV variants clustered with variants pre-
viously assigned to LSV lineage 1 (10). Here, we show how LSV lineage 1 can be split
into two lineages, creating a new lineage, namely, lineage NE (Fig. 1).

Data availability. The genome sequences for this project have been deposited
at GenBank under the following accession numbers: ON108628 to ON108639. The
Oxford Nanopore Technology reads are available under BioProject accession num-
ber PRJNA820891. Links to the read files in the SRA for all the new LSV genomes can be
found in Table 1.

ACKNOWLEDGMENTS
The samples were collected with assistance from Devon Gilead, Orris Sinclair, Thiffany

Trim, Flloyd Levi, Raihan Warisali, Ghanshyam Persuad, Khemraj Seeram, Francis Bailey,
Noel Issaacs, Fidel Crawford, and David Pusselwyte. Kelvin Craig, Quincy Scotland, Shirlene
Croal, and Jermaine Joseph provided logistical support to D.C.S., J.L.S., and A.W. Special
thanks to the GLDA staff and Guyanese Farmer-to-Farmer program associates for their
continued support of the USAID volunteer program.

Travel, accommodation, and subsistence for D.C.S., J.L.S., and A.W. were funded
through the USAID Farmer-to-Farmer program. UMN startup funds awarded to D.C.S.
and GLDA funding awarded to D.W. funded the consumables and data analysis.

FIG 1 Phylogenetic inference tree, created using FastTree 2.1.11 in Geneious Prime 2021.1.1, showing the location of the Guyanese LSV genome sequences
(maroon) relative to Oceania (gold), North America (blue), East Asia (red), Middle East (black), Africa (green), and Europe (orange). Bar represents 1 substitution per 10
nucleic acids. The nodes indicate bootstrap values.
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