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Abstract
Background: The (almost) universality of the genetic code is one of the most intriguing properties of cellular life. 
Nevertheless, several variants of the standard genetic code have been observed, which differ in one or several of 64 
codon assignments and occur mainly in mitochondrial genomes and in nuclear genomes of some bacterial and 
eukaryotic parasites. These variants are usually considered to be the result of non-adaptive evolution. It has been 
shown that the standard genetic code is preferential to randomly assembled codes for its ability to reduce the effects 
of errors in protein translation.

Results: Using a genotype-to-phenotype mapping based on a quantitative model of protein folding, we compare the 
standard genetic code to seven of its naturally occurring variants with respect to the fitness loss associated to 
mistranslation and mutation. These fitness losses are computed through computer simulations of protein evolution 
with mutations that are either neutral or lethal, and different mutation biases, which influence the balance between 
unfolding and misfolding stability. We show that the alternative codes may produce significantly different mutation 
and translation loads, particularly for genomes evolving with a rather large mutation bias. Most of the alternative 
genetic codes are found to be disadvantageous to the standard code, in agreement with the view that the change of 
genetic code is a mutationally driven event. Nevertheless, one of the studied alternative genetic codes is predicted to 
be preferable to the standard code for a broad range of mutation biases.

Conclusions: Our results show that, with one exception, the standard genetic code is generally better able to reduce 
the translation load than the naturally occurring variants studied here. Besides this exception, some of the other 
alternative genetic codes are predicted to be better adapted for extreme mutation biases. Hence, the fixation of 
alternative genetic codes might be a neutral or nearly-neutral event in the majority of the cases, but adaptation cannot 
be excluded for some of the studied cases.

Background
The origin and universality of the genetic code is one of
the biggest enigmas in biology [1]. Soon after the genetic
code of Escherichia coli was deciphered [2], it was real-
ized that this specific code out of more than 1084 possible
codes is shared by all studied life forms (albeit sometimes
with minor modifications). The question of how this spe-
cific code appeared and which physical or chemical con-
straints and evolutionary forces have shaped its highly
non-random codon assignment is subject of an intense
debate. In particular, the feature that codons differing by

a single nucleotide usually code for either the same or a
chemically very similar amino acid and the associated
block structure of the assignments is thought to be a nec-
essary condition for the robustness of the genetic code
both against mutations as well as against errors in trans-
lation [3-13]. This robustness reduces fitness losses due
to mutation and mistranslation, which is believed to be a
major force in coding sequence evolution [14]. There are
three basic theories of the genetic code's nature, origin,
and evolution. Whereas the stereochemical theory first
proposed by Gamow [15] asserts that the codon assign-
ment was originated by the physicochemical affinity
between the amino acid and the codon or anticodon, the
adaptive theory posits that the genetic code was shaped
under selection for robustness, either against mutations
[16,17] or against translation errors [18,19], or against
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both [18,20,21]; finally, the coevolution theory postulates
that the structure of the genetic code reflects the path-
ways of amino acid biosynthesis [22].

In this work, we address an issue that has received
somewhat less attention in this broader context, namely
the existing variants of the standard genetic code. These
variants are used for instance in the mitochondria of
many species, and they consist in the modification of one
or several codons of the standard genetic code. Two main
mechanisms have been proposed to explain how they
may have evolved despite the large fitness cost that is
expected to be associated with the modification of a
codon [9,23,24]: through an ambiguous intermediate
state and through the reassignment of a temporarily
unused codon. These mechanisms are not mutually
exclusive. The first one assumes that a codon is tempo-
rarily recognized both by the current as well as by a
mutated tRNA, so that it can result in two different
amino acids. Such ambiguity might be preferential in
some circumstances and remain present for some time. A
codon reassignment occurs if the mutated tRNA finally
takes over. The second scenario takes place if one codon
disappears from a given genome. This is particularly
likely in small genomes with large guanine/cytosine (GC)
or adenine/thymine (AT) content, as it is the case for
many mitochondrial genomes and nuclear genomes of
parasitic microbes. In this case the translation system
may change without any cost, and the codon may be 'con-
quered' by another amino acid. Both scenarios consider
that alternative genetic codes are the result of non-adap-
tive or neutral evolution, even though 'genomic stream-
lining' (i.e., selective pressure to minimize the genome by
eliminating a tRNA) has been proposed as a possible
advantage of code changes [25,26]. However, it has not
been addressed whether these variants differ from the
standard genetic code as far as mutation and translation
loads are concerned.

Here, we use computer simulations of neutral protein
evolution constrained to maintain the folding and mis-
folding stability of the native state in order to study the
differences between the standard genetic code and seven
naturally occurring variants concerning their effects on
protein stability. These effects are predicted using a sim-
plified model of protein folding [27], the same that we
consistently use in the evolutionary simulations [28-32].
Despite its simplicity, this model is able to predict with
similar accuracy as other more complicated models the
effects of mutations on folding stability. Due to our sim-
plifying assumption to consider a neutral model, the dif-
ferent genetic codes hardly have any influence on the
average unfolding and misfolding stabilities. However,
alternative codes yield significantly different mutation
and translation loads, in particular for genomes evolving
under strong AT or GC mutation bias.

Results and Discussion
In this work, we study how the genetic code influences
the fitness consequences of errors (loads) during muta-
tion and translation. This influence may arise because of
two mechanisms: (1) Directly, through the change in the
rate of occurrence of different amino acid misincorpora-
tions in the translated protein; (2) Indirectly, through the
evolutionary influence that the genetic code may have on
protein stability. We simulated our previously proposed
model of protein evolution in order to study this indirect
influence as well.

Model
Our model of protein evolution has been presented in
previous works [28-32], and it is similar to models used
by others [33-40]. It has been successfully used to explain
non-Poissonian rates in neutral evolution [28] and the
observed site-specific amino acid distributions [31,32], to
name two examples. It considers a genetically homoge-
neous population, i.e. the product of the population size
N and the mutation rate μ is assumed to be small. The
assumption of a small mutation rate μ is justified when
considering an individual protein, but not an entire
genome. If we considered a whole evolving genome
instead of a single protein, the approximation of very
small mutation rate would not be justified, since genomic
mutation rates are in a range of 0.003 to 0.004 mutations
per genome per generation for DNA-based microbes,
including viruses, bacteria, and eukaryotes [41]. In this
context, a new interesting effect has to be considered,
namely the hitch-hiking effect, which consists in the fixa-
tion of mildly disfavorable alleles driven by a positively
selected allele present in the same chromosome. How-
ever, considering the hitch-hiking effect would make the
study much more complicated, and we leave it as a subse-
quent step. In our model, the fitness of an individual car-
rying a particular gene depends only on the folding
properties of the translated protein, which are estimated
through a simple protein folding model. A characteristic
of our model that distinguishes it from similar ones is
that we consider two types of stability, with respect to
misfolding and with respect to unfolding. They are calcu-
lated by estimating the normalized energy gap α(A) and
the folding free energy F(A), respectively. Misfolding sta-
bility is measured through α and unfolding stability is
measured through -F, which are computed for each pro-
tein sequence A encountered in the simulated evolution.
The protein structure is assumed to have been already
optimized by natural selection and is kept fixed through-
out evolution, as represented by the experimental struc-
ture found in the Protein Data Bank (PDB) (see
Methods). If the folding stability is too small, the protein
will not be stable in its native state; if the misfolding sta-
bility is too small, misfolded structures can trap the fold-
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ing process, and they can expose hydrophobic patches
and promote aggregation. In the spirit of Kimura's neutral
theory of molecular evolution [42,43], we assume that
mutations are either neutral or strongly deleterious. More
specifically, all proteins having both unfolding and mis-
folding stabilities above previously fixed thresholds are
regarded as viable and they are assigned the same fitness

 = 1 (in arbitrary units) and all proteins for which at
least one of the stabilities is below threshold are regarded
as unviable and they are assigned fitness  = 0. Muta-
tions to stop codons are considered lethal and receive a
fitness  = 0. The two neutral thresholds αthr and Fthr are
chosen proportional to the values of αnat and Fnat of the
respective protein in the PDB, multiplied with coeffi-
cients slightly smaller than one so that the native protein
is above threshold. We present results with both coeffi-
cients equal to 0.98, but our results are robust to chang-
ing this prefactor in a reasonable range. Note that fitness
functions depending continuously on stabilities can be
considered, but the resulting non-neutral evolutionary
dynamics is significantly more complex due to population
size effects [44]. Neutrality of the fitness landscape is
assumed here for the sake of simplicity, since otherwise
the model would depend on at least two additional
parameters, i.e. the smoothness of the fitness landscape
and the effective size of the population, making it very
difficult to reach clear conclusions about the effect of the
genetic code and the mutation bias.

Another important ingredient of our model is the
mutation model at the DNA level. We parameterize the
mutation model with a single parameter, the AT bias,
which represents the equilibrium content of adenine and
thymine after a very long evolution under mutation alone
(the complementary variable GC bias, expressing the
equilibrium content of guanine and cytosine under muta-
tion alone, is sometimes alternatively used). The muta-
tion bias strongly affects the substitution process (i.e., the
accepted mutations), biasing the amino acid composition
of the protein. Interestingly, the mutation bias also influ-
ences the folding properties of the evolving proteins
[32,45]. In fact, AT rich codons code for amino acids
which are more hydrophobic and the resulting proteins
tend to be more stable against unfolding (more negative
folding free energy F) but less stable against misfolding
(since the set of all potential misfolded protein structures
increases their stability faster than the native structure,
resulting in a smaller normalized energy gap α), whereas
the contrary holds in case of GC bias. This bias at the
mutation level produces a bias at the substitution level,
both for neutral fitness landscapes [32] and for smooth
fitness landscapes [44], such that proteins evolving under
higher AT bias will be comparatively more stable against
unfolding but less stable against misfolding. Finally, in

order to fully specify the mutation model, we have to fix
the transition-to-transversion ratio k. Since transitions
(such as C to T) tend to conserve the physiochemical
properties of the coded amino acid more than transver-
sions (such as C to A or to G), a high transition-to-trans-
version ratio k usually reduces the mutation load. We
used two values of k, k = 2, which is suitable for most
nuclear sequences [46] and a kind of standard value in
molecular evolution simulations, and k = 20, a maximal
value that has been observed in some mitochondrial
genomes [47]. To study the influence of the mutation pro-
cess, we simulate the evolution of DNA sequences under
nine different mutation biases with both transition-to-
transversion ratios k = 2 and k = 20, Our model of protein
evolution cannot be treated analytically, so that we have
to study it using numerical simulations (see Fig. 1). Point
mutations change the DNA sequence (see Methods) and
they are accepted if the resulting amino acid sequence,
translated from the DNA sequence using the genetic code
under consideration, is viable, i.e. both stabilities are
above threshold. We simulated the evolution of three dif-
ferent proteins of similar lengths and different secondary
structure compositions, (i) the epsilon subunit of F1F0-
ATP synthase (PDB id. 1aqt, chain A, 135 amino acids),
(ii) the acyl carrier protein (PDB id. 1hy8, chain A, 76
amino acids), and (iii) the cold-shock protein (PDB id.
1c9o, chain A, 66 amino acids), see Methods for details.
We start each simulation with the native amino acid
sequence as obtained from the PDB of the chosen struc-
ture, from which we construct a corresponding 'native'
DNA sequence by randomly choosing codons using the
genetic code under consideration with weights deter-
mined by the given AT content (inverse translation). The
influence of this starting sequence is lost after a relatively
short evolutionary trajectory needed for equilibration,
after which a stationary situation is reached, in which
both stabilities fluctuate around constant values. Statis-
tics is taken only in this stationary state. We compare the
standard genetic code with seven naturally occurring
variants, see Fig. 2. Out of these seven variants, five are
used in mitochondria of many species, and two variants
are used by certain species in their nuclear protein pro-
duction. These variants differ in between one to six
codon assignments, and display between one to four stop
codons instead of the three stop codons of the standard
code, cf. Fig. 2. We follow the naming scheme of the
NCBI database http://www.ncbi.nlm.nih.gov/Taxonomy/
Utils/wprintgc.cgi, including the transl_table num-
bering). To ease the assessment of our results, we use a
consistent color scheme in this work, in which the stan-
dard genetic code is shown in black, whereas the natu-
rally occurring variants are color coded according to the
following scheme:

F

F

F

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1aqt
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hy8
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http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
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1.Blue: 'The Echinoderm and Flatworm Mitochon-
drial Code' (NCBI transl_table = 9) [48]; Taxo-
nomic range: Asterozoa (starfishes), Echinozoa (sea 
urchins), Rhabditophora among the Platyhelminthes.
2 Orange: 'The Invertebrate Mitochondrial Code' 
(NCBI  transl_table = 5) [48]; Taxonomic 
range: Nematoda: Ascaris, Caenorhabditis; Mollusca: 
Bivalvia; Polyplacophora. Arthropoda/Crustacea: 
Artemia; Arthropoda/Insecta: Drosophila; Locusta 
migratoria (migratory locust), Apis mellifera (honey-
bee).
3 Magenta: 'The Ascidian Mitochondrial Code' 
(NCBI  transl_table = 13) [48]. Taxonomic 
range: Urochordata: Tunicates.

4.Green: 'The Vertebrate Mitochondrial Code' (NCBI 
transl_table = 2) [49]; Taxonomic range: Ver-
tebrata.
5.Cyan: 'The Yeast Mitochondrial Code' (NCBI 
transl_table = 3) [50]; Taxonomic range: Sac-
charomyces cerevisiae, Candida glabrata, Hansenula 
saturnus, and Kluyveromyces thermotolerans.
6.Yellow: 'The Ciliate, Dasycladacean and Hexamita 
Nuclear Code' (NCBI transl_table = 6) [51]. 
Taxonomic range: Ciliata: Oxytricha and Stylonychia, 
Paramecium, Tetrahymena, Oxytrichidae and proba-
bly Glaucoma chattoni. Dasycladaceae: Acetabularia 
and Batophora. Diplomonadida: Hexamita inflata, 
Diplomonadida ATCC50330 and ATCC50380.
7.Red: 'The Alternative Yeast Nuclear Code' (NCBI 
transl_table = 12) [52]. Taxonomic range: 
Endomycetales (yeasts): Candida albicans, Candida 
cylindracea, Candida melibiosica, Candida parapsi-
losis, and Candida rugosa (However, other yeasts, 
including Saccharomyces cerevisiae, Candida azyma, 
Candida diversa, Candida magnoliae, Candida 
rugopelliculosa, Yarrowia lipolytica, and Zygoascus 
hellenicus, definitely use the standard (nuclear) code).

Unfolding and misfolding stabilities
We first study the direct effect of the eight different
genetic codes on the average unfolding and misfolding
stabilities (see Methods). Since we chose a neutral fitness
landscape where mutations are either neutral or lethal,
we expect that, independent of the mutation rate and the
genetic code, the two folding stabilities will be close to the
neutral thresholds, i.e. the minimum allowed stability val-
ues, which correspond to the maximum number of
sequences, while larger stabilities correspond to many
fewer sequences. However, large AT content (more than
50% AT) favors unfolding stability at the expense of mis-
folding stability, whereas small AT content (less than 50%
AT) favors misfolding stability at the expense of unfolding
stability. Consequently, for large AT content selection
mainly acts on misfolding stability, which is expected to
be closer to the neutral threshold, whereas unfolding sta-
bility is easily obtained and it is above the threshold. Con-
versely, for small AT content selection mainly acts on
unfolding stability, which is expected to be close to its
neutral threshold. In general, the smaller of the two sta-
bilities is very close to the neutral threshold and almost
independent of the genetic code, whereas the stability
favored by the mutation process is above the neutral
threshold, although this does not imply any gain in fit-
ness, and it may depend on the genetic code and the
mutation bias.

The behavior of the average unfolding stability -F for
different genetic codes (as summarized in Fig. 2) is exem-
plified using the epsilon subunit of F1F0-ATP synthase

Figure 1 Model. Sketch of the model: We start each simulation with 
the native amino acid sequence as obtained from the Protein Data-
bank (PDB) of the chosen structure, from which we construct a corre-
sponding 'native' DNA sequence by randomly choosing codons using 
the genetic code under consideration with weights determined by the 
given AT content (inverse translation). This 'native' DNA sequence is 
hence as close as possible to the equilibrium with the chosen AT con-
tent and becomes the first wild type DNA sequence. Then, at every 
step, the current wild type DNA sequence is mutated to generate a 
mutated DNA sequence, which is translated to a mutated amino acid 
sequence using the genetic code under considerations. The resulting 
mutated amino acid sequence is evaluated using the folding model 
with respect to its folding stabilities, based on which the mutated ami-
no acid sequence is either considered as neutral (both unfolding and 
misfolding stability are above threshold) and the mutated DNA se-
quence becomes the new wild type DNA sequence, or as lethal (one 
or both stabilities are below threshold) and the mutated DNA se-
quence is discarded (the wild type DNA sequence remains as is).
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(PDB id. 1aqt, chain A) and the transition-to-transversion
ratio k = 2, see Fig. 3. The transition-to-transversion ratio
k does not affect the results significantly, so that we omit
the results for k = 20. As expected, there is hardly any
influence of the genetic code on the average unfolding
stability, except for extremely large AT biases (approx.
80% AT content or more) where unfolding stability is well
above threshold and selection mainly acts on misfolding
stability. In such cases, most alternative genetic codes dis-
play a smaller unfolding stability than the standard code
(less negative F), but there are two exceptions, the 'Echi-
noderm and Flatworm Mitochondrial Code' (blue trian-
gles) and the 'Alternative Yeast Nuclear Code' (red stars),
which have slightly better unfolding stability than the
standard code, even though the difference is minor and it
does not imply any difference in fitness. The two other
proteins we studied show a similar behavior (data not
shown).

The behavior of the average misfolding stability α for
the eight different genetic codes is likewise exemplified
using the epsilon subunit of F1F0-ATP synthase (PDB id.
1aqt, chain A) and the transition-to-transversion ratio k =
2, see Fig. 4. Again, no significant difference can be
noticed between transition-to-transversion ratio k = 2
and k = 20, so that we omit the latter. There is hardly any
influence of the genetic code on the misfolding stability,
significant differences are found only for very small AT
content (approx. 20% AT content or less) at which mis-
folding stability is easily obtained. For such small AT con-
tent, most alternative genetic codes display an essentially
identical unfolding stability, but there are two exceptions,
the 'Yeast Mitochondrial Code' (cyan diamonds) and the
'Alternative Yeast Nuclear Code' (red stars), which yield
larger misfolding stability than the standard code, even
though the difference is minor. The two other proteins we
studied show a similar behavior (data not shown).

Figure 2 Standard genetic code and naturally occurring variants. The standard genetic code and the naturally occurring variants studied in this 
work, written using the RNA alphabet and standard abbreviations for the amino acids ('St' indicates stop codon). Concerning the alternative genetic 
codes, we follow the naming scheme of the NCBI database (http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi, including the 
transl_table numbering). We give in a following only a very brief description of a given alternative genetic code's systematic range, a more 
detailed description with references can be found on the NCBI's web page. The standard genetic code is shown in black (3 stop codons), whereas the 
seven naturally occurring variants studied are shown using the following color scheme: (1, blue): 'The Echinoderm and Flatworm Mitochondrial Code' 
(NCBI transl_table=9), mitochondrial code of Asterozoa, Echinozoa, and Rhabditophora (4 differences, 2 stop codons) [48]; (2, orange): 'The In-
vertebrate Mitochondrial Code' (NCBI transl_table=5), mitochondrial code of Nematoda, Mollusca, Crustacea, and Insecta (4 differences, 2 stop 
codons) [48]; (3, magenta): 'The Ascidian Mitochondrial Code' (NCBI transl_table=13), mitochondrial code of Urochordata (4 differences, 2 
stop codons) [48]; (4, green): 'The Vertebrate Mitochondrial Code' (NCBI transl_table=2), mitochondrial code of Vertebrata (4 differences, 4 stop 
codons) [49]; (5, cyan): 'The Yeast Mitochondrial Code' (NCBI transl_table=3), mitochondrial code of Saccharomyces cerevisiae, Candida glabra-
ta, Hansenula saturnus, and Kluyveromyces thermotolerans (6 differences, 2 stop codons) [50]; (6, yellow): 'The Ciliate, Dasycladacean and Hexamita Nu-
clear Code' (NCBI transl_table=6), nuclear code of Ciliata, Dasycladaceae, Diplomonadida (2 differences, 1 stop codon) [51]; (7, red): 'The 
Alternative Yeast Nuclear Code' (NCBI transl_table=12), nuclear code of Candida albicans (1 difference, 3 stop codons) [52]. The color scheme 
is as in Figs. 3 to 6.
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We see from the two figures that the genetic code may
influence the balance between unfolding and misfolding
stability. For instance, the 'Yeast Mitochondrial Code'
(cyan diamonds) yields systematically lower stability
against unfolding (less negative F) when compared with
other codes, and higher stability against misfolding at low
AT, which is an effect similar to the one obtained by
decreasing the AT content. Nevertheless, these differ-
ences are not relevant, since they are buffered at the level
of fitness. In fact, we assume a neutral model in which the
fitness is either  = 0 or  = 1 (in arbitrary units), so that
differences in stability do not yield differences in fitness.
Moreover, notice that the difference of, say, stability
against unfolding between different codes is only signifi-
cant at an AT content at which this stability is anyway
high, i.e. it is far from the neutral threshold, so that the
selective pressure mainly affects stability against misfold-
ing. These differences might become relevant in a non-
neutral fitness landscape where fitness depends smoothly
on stability [44].

Mutation and translation load
Next, we study the effect of the different genetic codes on
mutation and translation loads (see Methods). These rep-
resent the fitness loss due to mutations and translation
errors. The two loads differ by the rate at which a given
error occurs and by the treatment of stop codons: In the
case of mutation load, the rate of a mutation is given by
the mutation process we use, which includes both the
mutation bias and the transition-to-transversion ratio;
mutations to stop codons are equivalent to mutations to
sense codons as far as the chemical modification of the
DNA sequence is concerned and hence included into the
definition of the corresponding load (cf. Eq. (3) in Meth-
ods), and the associated fitness is zero. In the case of
translation load, all mistranslation to sense codons are
assigned equal rate. Since a premature end of translation
by misinterpreting a sense codon as a stop codon is
caused by release factors and not by tRNAs (and hence by
a different mechanism than misinterpreting a sense
codon as a another sense codon) which furthermore

F F

Figure 3 Unfolding stability. Average unfolding stability F vs AT content for the epsilon subunit of F1F0-ATP synthase (PDB id. 1aqt, chain A), exem-
plified for transition-to-transversion ratio k = 2 (the data for AT content 90% is shown using a different scale for better visibility). The standard genetic 
code is shown as black circle (which are connected by lines for better visibility), whereas the seven naturally occurring variants studied, as listed in Fig. 
2, are shown using the following color scheme: (1, blue triangle): 'The Echinoderm and Flatworm Mitochondrial Code' (NCBItransl_table = 9) 
[48]; (2, orange triangle): 'The Invertebrate Mitochondrial Code' (NCBI transl_table = 5) [48]; (3, magenta square): 'The Ascidian Mitochondrial 
Code' (NCBIs transl_table = 13) [48]; (4, green square): 'The Vertebrate Mitochondrial Code' (NCBIs transl_table = 2) [49]; (5, cyan 
diamond): 'The Yeast Mitochondrial Code' (NCBIs transl_table = 3) [50]; (6, yellow diamond): 'The Ciliate, Dasycladacean and Hexamita Nuclear 
Code' (NCBIs transl_table = 6) [51]; (7, red star): 'The Alternative Yeast Nuclear Code' (NCBIs transl_table = 12) [52]. The error bars 
indicate the mean's standard deviation.
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involves neighboring codons [53], for simplicity, we con-
sider its error rate much smaller than the rate of missense
errors in translation, and we neglect mistranslations to
stop codons. In this way, the translation load is not explic-
itly influenced by the number of stop codons in the
genetic code under consideration (cf. Eq. (4) in Methods).

The average mutation load Lmut for different genetic
codes is exemplified using the three proteins described
above, see Fig. 5. The left panels refer to transition-to-
transversion ratio k = 2, while the right panels refer to k =
20, and the three rows refer to the three proteins. A large
transition-to-transversion ratio usually yields smaller
mutation loads, except for very small AT content (approx.
20% AT content or less) for which k = 20 increases the
load considerably. In contrast to the unfolding and mis-
folding stabilities, different genetic codes show different
mutation loads. This is in part due to the different form in
which selection acts on stabilities and on loads in our
model. Whereas unfolding and misfolding stabilities are
strictly constrained in the fitness landscape of neutral or
lethal mutations that we modelled, we assume that loads
are not explicitly targeted by selection and are free to
vary. Most of the alternative genetic codes display muta-
tion loads larger than for the standard code. Nevertheless,
some yield consistently smaller mutation loads in some

range of mutation bias. For instance, the 'Yeast Mito-
chondrial Code' (cyan diamonds) yields a smaller muta-
tion load for very small AT content (approx. 20% AT
content), although it has a rather large load for large AT
content which is characteristic of mitochondria genomes
of Yeast (typically 75% to 85% AT content). Two alterna-
tive genetic codes, the 'Ciliate, Dasycladacean and Hex-
amita Nuclear Code (yellow diamonds) and the
'Echinoderm and Flatworm Mitochondrial Code' (blue
triangles), display a smaller mutation load for large AT
content.

The behavior of the average translation load Ltrans for
different genetic codes is likewise exemplified using the
three proteins, see Fig. 6. Again, the left panels refer to
transition-to-transversion ratio k = 2, while the right pan-
els refer to k = 20, and the three rows refer to the three
proteins. The different genetic codes show significantly
different translation loads, and even different depen-
dences on the mutation bias (decreasing or increasing
translation load with increasing AT content). Notice that
the dependence of the translation load on the bias is not
due to how the error rates depend on the bias, as in the
case of the mutation load, but it is due to how the muta-
tion bias influences protein stabilities. Most alternative
genetic codes yield a larger translation load than the stan-

Figure 4 Misfolding stability. Average misfolding stability α vs AT content for the epsilon subunit of F1F0-ATP synthase (PDB id. 1aqt, chain A), ex-
emplified for transition-to-transversion ratio k = 2 (the data for AT content 10% is shown using a different scale for better visibility). Symbols are as in 
Fig. 3, black circles indicate standard genetic code (which are connected by lines for better visibility), whereas the other different colors indicate the 
seven naturally occurring variants studied, as listed in Fig. 2. The error bars indicate the mean's standard deviation.
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dard code. Nevertheless, the 'Yeast Mitochondrial Code'
(cyan diamonds) yields a smaller translation load for very
small AT content (approx. 20% AT content or less), but
this result does not hold for very large transition-to-
transversion ratio and large AT content, both being char-
acteristic of mitochondria genomes of Yeast. One alterna-
tive genetic code, the 'Echinoderm and Flatworm
Mitochondrial Code' (blue triangles), results in a smaller
translation load for most mutation biases, in particular
for large ones, and independent of the transition-to-
transversion ratio, and is hence preferential to the stan-
dard genetic code.

It is interesting to note that there seems not to be any
trivial dependence of the average mutation load on the

number of stop codons in the genetic code. Since the
mutation load is calculated including mutations to stop
codons, one would expect genetic codes containing more
stop codons to have a larger mutation load than genetic
codes containing fewer stop codons. This is, however, not
the case, as one sees in Fig. 5 by comparing the 'Echino-
derm and Flatworm Mitochondrial Code' (blue triangles)
and the 'Yeast Mitochondrial Code' (cyan diamonds),
which both have two stop codons, with the standard
genetic code, which has three stop codons. Additionally,
as our definition of translation load excludes mistransla-
tions corresponding to stop codons (as misinterpreting a
sense codon as a stop codon is caused by release factors
and not by tRNAs and hence by a different mechanism

Figure 5 Mutation load. Average mutation load Lmut vs AT content for (a),(b) for the epsilon subunit of F1F0-ATP synthase (PDB id. 1aqt, chain A) (c),(d) 
for the acyl carrier protein (PDB id. 1hy8, chain A) and (e),(f) for the cold-shock protein (PDB id. 1c9o, chain A) as well as for (a),(c),(e) transition-to-trans-
version ratio k = 2 and (b),(d),(f) k = 20. Symbols are as in Fig. 3, black circles indicate standard genetic code (which are connected by lines for better 
visibility), whereas the other different colors indicate the seven naturally occurring variants studied, as listed in Fig. 2. The error bars indicate the mean's 
standard deviation.
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than misinterpreting a sense codon as another sense
codon), the lower translation load of the 'Echinoderm and
Flatworm Mitochondrial Code' (blue triangles) in com-
parison to the standard genetic code seen in Fig. 6 is not
trivially due to the fact that this alternative genetic code
has two instead of three stop codons.

Assumptions and empirical observations
Like all mathematical models of evolution, our model
depends on several assumptions and parameters. An
important assumption is that the population is genetically
homogeneous, i.e. the product Nμ of population size
times mutation rate is small. This assumption is consid-

ered approximately valid for eukaryotic and bacterial
populations when considering an individual protein, in
particular if population size is small. Strict validity of this
assumption would imply that the number of different
alleles at a typical locus is not larger than two. Despite
that this is not the case, the number of alleles at a typical
locus is usually small, so that the assumption is at least
approximately valid. The high mutation rates of RNA
viruses violate this assumption, and in this case recent
work [54,55] has shown that even the neutral model
should be re-formulated in the framework of the quasi
species theory [56]. If we considered a whole evolving
genome instead of a single protein, the approximation of

Figure 6 Translation load. Average translation load Ltrans vs AT content for (a),(b) for the epsilon subunit of F1F0-ATP synthase (PDB id. 1aqt, chain A) 
(c),(d) for the acyl carrier protein (PDB id. 1hy8, chain A) and (e),(f) for the cold-shock protein (PDB id. 1c9o, chain A) as well as for (a),(c),(e) transition-
to-transversion ratio k = 2 and (b),(d),(f) k = 20. Symbols are as in Fig. 3, black circles indicate standard genetic code (which are connected by lines for 
better visibility), whereas the other different colors indicate the seven naturally occurring variants studied, as listed in Fig. 2. The error bars indicate the 
mean's standard deviation.
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very small mutation rate would not be justified, and a
new interesting effect has to be considered, namely the
hitch-hiking effect, which consists in the fixation of
mildly disfavorable alleles driven by a positively selected
allele present in the same chromosome. The mutation
process was modelled using two parameters, the muta-
tion bias and the transition-to-transversion ratio. While
this parameterization might appear too simplified, it has
the merit to focus on two variables whose relevance has
been pointed out by a large number of experimental stud-
ies, statistical analysis, and models.

As evolutionary model, we adopt a model in spirit
Kimura's neutral theory of molecular evolution [42,43], in
which mutations are either neutral or lethal. The assump-
tion of neutrality prevents us to study how the genetic
code affects the fitness that can be achieved in evolution
(in the neutral model the fitness of a viable sequence is
equal to one in arbitrary units by definition), however it
allows to study its influence on the mutation and transla-
tion load without any further assumptions concerning the
shape of the fitness landscape. Whether a mutation is
neutral or lethal is decided based on unfolding and mis-
folding stabilities of the resulting amino acid sequence.

The ingredient of our model that seems more debatable
is the genotype to phenotype mapping, which is based on
predicted unfolding and misfolding stabilities. While we
do not claim that our predictions are accurate in individ-
ual cases, our experience suggests that they are statisti-
cally correct, so that they are able to discover statistical
trends, which is what we address here. However, a limita-
tion of our approach consists in that the mitochondrial
proteome mainly contains membrane proteins, whereas
our predictions of unfolding and misfolding stabilities are
only valid for soluble (i.e., non-membrane) proteins,
hence implying caution about the interpretation of the
deleterious effect of mitochondrial codes. Besides of that,
we note that the statistical potentials that we use here are
quite general, as they have been optimized based on all
soluble globular proteins in the protein data bank, and
they are not limited to a particular organism or protein
family. An alternative way to derive empirical potentials
for protein evolution consists in fitting the potentials to
maximize the likelihood of the observed sequences,
which provides an improved fit in an evolutionary con-
text [57].

Another important point concerns the choice of the
neutral thresholds αthr and Fthr.We have tested in previous
studies that changing the neutral thresholds within rea-
sonable limits (approx. 25% in both directions) does not
significantly affect the results of neutral simulations [28-
32].

Furthermore, we assume in our model that all synony-
mous mutations that do not change the amino acid
sequence are neutral. Nevertheless, it is known that the

use of alternative codons has important phenotypic
effects on the translation dynamics [58,59], and it can
affect the rate of translation errors [60]. Modelling these
effects, however, would require assumptions on the abun-
dance of different tRNA molecules and the dynamics of
the ribosome that are outside the scope of our model.
Therefore, selection on optimal codon usage is a way to
reduce the load due to translation error that is comple-
mentary to the influence of the genetic code that we
investigate here.

Finally, an interesting empirical observation that might
be related with our protein evolution model is the finding
that long genes tend to have lower codon usage bias [61].
One of us previously observed that longer proteins have
contact interaction energies that are less optimized than
for shorter proteins. This finding has a simple neutral
explanation, since the number of contact interaction per
protein is larger in longer proteins, whereas the confor-
mation entropy loss per residue that these interactions
have to compensate does not depend on protein length
[62]. Therefore, contact interactions are subject to weaker
selective constraints in long proteins. If this is true, and if
the selective forces on codon bias are mainly due to the
advantage of reducing folding problems in mistranslated
proteins, which is now considered the prevailing view
[14], one would expect that the selective forces on codon
bias are also reduced for longer proteins, consistent with
the empirical observation by Duret and Mouchiroud [61].
This subject may be addressed in the framework of an
improved model in which fitness takes into account both
the two protein folding stabilities and the translation
load.

Conclusions
Our results show that the standard genetic code is gener-
ally preferable to naturally occurring variants, in the
sense that it typically yields smaller mutation and transla-
tion loads. This finding is consistent with the view that
the standard genetic code is well adapted for reducing the
consequences of translation errors on protein folding sta-
bility, as expected in the framework of the adaptive the-
ory on the origin of the genetic code, and that the fixation
of alternative genetic codes is either a slightly deleterious
event that is mutationally driven or, if it brings some
selective advantage, this is through the reduction of the
number of tRNA needed.

Nevertheless, we found one alternative genetic code
(the 'Echinoderm and Flatworm Mitochondrial Code')
that seems to be better at reducing mutation and transla-
tion loads, and particularly yields better translation load
except for very small AT content (approx. 20% AT con-
tent or less). As translation load is a very important con-
straint in protein evolution [14], this difference might
result in small but significant fitness differences and
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hence be subject to positive selection. Therefore,
although our model confirms the view that code changes
are slightly deleterious events in the majority of the cases,
it also suggests that adaptation cannot be excluded for
one of the studied cases.

Methods
Unfolding and misfolding stability
As in our previous work [28-32], the unfolding free
energy F(A) of a protein with sequence A = {A1...AL} and
contact matrix Cij= 1 if the minimal interatomic distance
between residues i and j is below 4.5 Å, 0 otherwise, is
defined as

where U(a, b) is the contact interaction matrix deter-
mined in Ref. [27]. Although rather simple, this model is
accurate enough to allow quantitative predictions of the
folding free energy of small proteins that fold with two-
state thermodynamics (the correlation coefficient
between experimental and predicted free energy is r =
0.92 over a representative test set of 20 proteins, UB,
unpublished result) and of the stability effect of muta-
tions (correlation coefficient r = 0.72 over a set of 195
mutations, UB, unpublished result). This is comparable to
state-of-the-art programs such as Fold-X [63]. However,
the computational simplicity of the model makes it
affordable to use it for simulating very long evolutionary
trajectories, which would not be possible using other
tools. The unfolding free energy should also take into
account the loss of conformation entropy upon folding,
which we modelled in other works as sL with s being the
chain entropy per amino acid and L the protein length.
However, this term only induces a constant shift sL in the
unfolding free energy, F'(A) = �i<jCijU(Ai, Aj) + sL and its
effect is just to shift the neutral threshold Fthr in the same
direction, without influencing the results.

The normalized energy gap α(A) measures the (posi-
tive) energy difference between alternative compact con-
formations and the native conformation, and it is defined
using the random energy model [64,65] as

with A = 0.1, B = 4, q0 = 0.1, and Nc = �i<j Cij. 7e8A and
σe,A are the mean and standard deviation of the interac-
tion energy of both native and non-native contacts in
sequence A.

Mutation process
Mutations are modelled through the HKY process [66], in
which the mutation rate from nucleotide n to n', T(n, n'),
is μf (n') if nTn' is a transition, and μkf(n') if it is a trans-
version. The transition-to-transversion ratios used in this
work are k = 2 and k = 20, suitable for nuclear and mito-
chondrial DNA, respectively [46,47]. The microscopic
rate μ is assumed to be very small and it does not affect
the results. We further assume π(A) = π(T) and π(C) =
π(G) (Chargaff second parity rule), so that the only
parameter of the mutation model is the stationary AT fre-
quency, AT = π(A) + π(T).

Simulation of the evolutionary process
Our model of protein evolution cannot be treated analyt-
ically, so that we have to study it using numerical simula-
tions (see Fig. 1). We start each simulation with the native
amino acid sequence obtained from the Protein Databank
(PDB) of the chosen structure, from which we construct a
corresponding 'native' DNA sequence by randomly
choosing codons using the genetic code under consider-
ation with weights determined by the given AT content
(inverse translation). The simulation thus starts as close
as possible to the equilibrium with the chosen AT con-
tent. The initial part of the trajectory is discarded to
ensure that relevant quantities are sampled at the station-
ary state. To do so, we visually verified that the stabilities
had reached the stationary state for simulations with the
standard code, and then discarded the same transient
part of the trajectory for all alternative codes.

The simulations are performed as follows. At every
step, we randomly select one DNA site j with probability
dependent on the nucleotide nj occupying it,

 and we extract the mutated nucle-

otide n' ≠ nj with probability proportional to Tμ(nj,n'). The
mutated DNA is then translated to an amino acid
sequence, whose unfolding and misfolding stabilities are
computed through Eqs. (1) and (2). The mutation
receives fitness  = 1 (in arbitrary units) and is accepted
if both F <Fthr and α >αthr, or gets a fitness  = 0 and is
rejected otherwise, hence assuming a model in spirit of
Kimura's neutral theory of molecular evolution. Muta-
tions to stop codons are considered lethal and receive a
fitness  = 0. As the mutation process is continuous, the
waiting time until a new mutation arises is a Poissonian
variable with mean μ-1. Instead of drawing an explicit
waiting time for each mutation to arise, we assign each
mutation the mean time μ-1 (this is equivalent to per-
forming an average over possible realizations of waiting
times). In case several mutations occur before one gets
fixed, the weighting of the sequence before the accepted
mutation is increased accordingly. The simulation is run
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for a large number of 106 mutations to obtain long evolu-
tionary trajectories which are used to calculate the aver-
ages. The neutral thresholds Fthr and αthr are calculated
for each simulated protein and kept fixed during the sim-
ulations. We set Fthr = γFnat and αthr = γαnat, where Fnat and
αnat are the unfolding free energy and misfolding stability
of the respective native amino acid sequence. The factor γ
is chosen as γ = 0.98, so that the native sequence is con-
sidered viable. Changing γ within reasonable limits
(approx. 25% in both directions) does not significantly
effect the results.

Mutation and translation load
The mutation load per site Lmut (n) of a DNA sequence n
translated to amino acid sequence A[n] is defined as

where Δ (A[n]→A[n']) is the fitness difference
between amino acid sequence A[n'], as translated from
the mutated DNA sequence n', and amino acid sequence
A[n], and Rmut(nTn') is the rate of a mutation from n to n',
which is calculated according to our mutation process
with the mutation rate μ and only single nucleotide muta-
tions are considered (i.e. only terms linear in μ, ignoring
the higher order terms which have rates proportional to
μ2 and μ3 and are hence much smaller than μ). Since we
study a neutral model, so that the fitness of a viable
sequence is  = 1 (in arbitrary units) and  = 0 other-
wise, the fitness difference Δ (A[n]→A[n']) can only
take the values 0 if A[n'] is a viable sequence as well, and 1
if A[n'] is not a viable sequence. As we restrict ourselves
to those n' which differ from n by a single nucleotide, the
sum in Eq. (3) contains 9L terms, and hence the normal-
ization Nmut(n)  �n' Θ[Rmut(n T n')], where Θ[Rmut(n →
n')] = 1 if Rmut(nTn')> 0 and 0 otherwise, yields Nmut(n)=
9L independent of n. Consequently, in the extreme case
of all DNA sequence n' which differ from n by a single
nucleotide (one point mutation) being viable and hence
Δ (A[n]→A[n']) = 0 for all these n', the mutational load
is Lmut (n) = 0. If the transition-to-transversion ratio was k
= 1 so that Rmut(n→n') = μ for all n' differing from n by a
single nucleotide, then μNmut = �n' Rmut (n → n') and the
mutation load Lmut (n) would be the fraction of lethal
sequences n'. Due to our choice for the normalization,
there is no explicit dependence of Lmut(n) on sequence
length.

The translation load per site Ltrans(n) of a DNA
sequence n translated to amino acid sequence A[n] is
similarly defined as

where Rtrans (A[n] → A[n']) is the rate of a translation
error resulting in amino acid sequence A[n'] instead of
A[n] and v the rate of single nucleotide mismatches. For
simplicity, we assume that Rtrans(n→n') = v if nucleotide
sequence n' resulted from n by a single nucleotide mis-
match and does not contain any stop codon and 0 other-
wise (i.e. only terms linear in v are considered, as for the
mutation load), so that our definition of the translation
load does not depend on the error rate of translation,
which is approximately 10-4 per translated mRNA codon
[67] but may differ from species to species. We exclude
nucleotide sequences n' containing a stop codon for the
computation of the translation load since a premature
end of translation by misinterpreting a sense codon as a
stop codon is caused by release factors and not by tRNAs
(and hence by a different mechanism than misinterpret-
ing a sense codon as another sense codon) which further-
more depends on neighboring codons [53]. For simplicity,
we neglect here this error rate with respect to the rate of
missense errors in translation. In this way, the translation
load does not explicitly dependent on the number of stop
codons, and the normalization Ntrans(n) = �n' Θ[Rtrans(n →
n')], where Θ[Rtrans(n → n')] = 1 if Rtrans(n T n') > 0 and 0
otherwise, does dependent on n. Even though we use the
above general definition, Eq. (4), in analogy to the muta-
tion load, note that with our choice for Rtrans(n → n'),
νNtrans = �n' Rtrans(n → n') and the translation load Ltrans(n)
is the fraction of lethal sequences among all n' differing
from n by a single nucleotide and not containing a stop
codon. Due to our choice for the normalization, there is
neither an explicit dependence of Ltrans(n) on sequence
length nor on the number of stop codons in the genetic
code considered.

Protein list
We studied the three following proteins structures: (i) the
epsilon subunit of F1F0-ATP synthase (PDB id. 1aqt,
chain A, α + β protein, 135 amino acids, GenBank
CBG36944.1), (ii) the acyl carrier protein (PDB id. 1hy8,
chain A, all-β protein, 76 amino acids, GenBank
BAA10975.1 and CAB13465.1), and (iii) the cold-shock
protein (PDB id. 1c9o, chain A, all-β protein, 66 amino
acids, GenBank CAA51790.1).
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