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Abstract: Although metal cations are prevalent in biological media, the species of multi-metal
cationized biomolecules have received little attention so far. Studying these complexes in isolated
state is important, since it provides intrinsic information about the interaction among them on the
molecular level. Our investigation here demonstrates the unexpected structural diversity of such
species generated by a matrix-assisted laser desorption ionization (MALDI) source in the gas phase.
The photodissociation spectroscopic and theoretical study reflects that the co-existing isomers of
[Arg+Rb+K−H]+ can have energies ≥95 kJ/mol higher than that of the most stable one. While the
result can be rationalized by the great isomerization energy barrier due to the coordination, it strongly
reminds us to pay more attention to their structural diversities for multi-metalized fundamental
biological molecules, especially for the ones with the ubiquitous alkali metal ions.

Keywords: IRMPD spectroscopy; metallization; amino acid; structural diversity; mass spectrometry

1. Introduction

Metal ions are essential for living processes by regulating structures and functions
of various biological molecules, including amino acids, peptides, proteins, and nucleic
acids [1–5]. They also play an important role in synthetic chemistry relative to those
biomolecules [6]. Experimental and theoretical studies on the metal-biomolecule complexes
in isolated state are very important to the issue since they can provide unique and intrinsic
information about the interaction between the metal ion and the biomolecule on the
molecular level [7–10]. Among them, infrared multiple photon dissociation (IRMPD)
spectroscopy, combined with mass spectrometry, provides valuable information about their
structures and interactions and have been widely applied in the field [11–24]. For example,
the interaction of metal ions with amino acids and peptides have been extensively studied
and the internal rules relative to their structural preference have been gradually revealed
in the past 20 years [17–25]. However, most of these studies only focus on the singly
metalized complexes, and we still know little about such complexes with multiple metal
ions. Considering that metal ions including Na+ and K+ have concentration-dependent
effects on chemical properties of amino acids in cell [26], multiply metalized complexes, just
as the singly metalized counterparts, need further investigation. It is also known that the
bimetallic complexes can provide different chemical properties and reactivity patterns from
their monometallic counterpart in organic chemistry [27]. Thus, a detailed structural study
on such di-metalized complexes is a good test. Herein we report the first gas phase IRMPD
spectrum of the heteronuclear bimetallic complex ion of Arginine (Arg). The complex ion of
[Arg+Rb+K−H]+ was chosen as the example for this study, since the ion can be generated
herein with a better reproducibility than other observed bimetallic complex ions, such as
[Arg+2Na−H]+ and [Arg+2K−H]+. This research aims at a better understanding for the
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interaction and structure of the species, based on the experimental IRMPD method and
theoretical calculations. The results can further introduce the study of micro solvation of
such bimetallic ions on the single molecule level, which bridges the structure and property
study for such molecules in the gas and condensed phases.

2. Results

Under suitable IR wavelengths, the absorption of IR photons can induce the fragmen-
tation of the precursor ions. As shown in Figure S1, two fragment ions were observed for
the target ions of [Arg+Rb+K−H]+. One is the fragment ion due to the loss of NH2 group,
and the other is Rb+. By tuning output wave-numbers of the optical parametric oscillator
(OPO) laser, IRMPD mass spectra of the precursor ion in the region were recorded in a step
of 5 cm−1, thus the action spectrum of the target ion was obtained (Figure 1a).
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Figure 1. IRMPD spectra of (a) [Arg+Rb+K−H]+ and (b) [Arg+Rb]+. The latter is taken from ref [16].

For comparison, the previously observed IRMPD spectrum of [Arg+Rb]+ is also shown
here as Figure 1b. Interestingly, their IRMPD spectra are quite different from each other.
The spectrum of [Arg+Rb]+ is clearly characterized by sharp peaks at 2940, 3455, 3525 and
3555 cm−1, while that of [Arg+Rb+K−H]+ shows relatively weak peaks at 3030, 3065, 3115,
3170, 3380, 3465, 3505 and 3565 cm−1, accompanied with broad absorptions in the region
of 2680–3000 cm−1.

In order to better understand the results, systematic theoretical calculations relative
to the most stable isomers of [Arg+Rb+K−H]+ were investigated by a self-developed
procedure based on the density functional theory (DFT) method of B3LYP. The 80 isomers
with relative energies no more than 230 kJ/mol to the most stable isomer were identified
at the level of B3LYP/ 6-311++G(d,p)~LAN (Table S1). These structures are summarized
in Figure 2 and Figure S2. Figure 2 shows a statistical view on the calculated isomers
corresponding to their energy orders and structural characteristics. As shown there, the
top 45 isomers are all characterized by a deprotonation place at Cα-COOH, and most of
them own one intramolecular NH . . . O H-bond. The three most stable isomers of 1a, 2a
and 3a are listed and shown in Table 1 and Figure 3, respectively. Among them, the most
stable isomer 1a has a structure free of intramolecular H-bond. The distance between the
two metal atoms extends to 5.35 Å to reduce the Coulomb repulsion. Interestingly, each
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structure has a twin isomer, which is formed by exchanging the positions of Rb and K
atoms. For convenience, the twin isomers are respectively named as a and b here, in which
the one with lower energy is identified as a. As shown in Figure 3 and Table 1, the twins of
1a and 1b have very similar structures except the positions of two metal atoms. However,
the isomer 1b has an energy 5.0 kJ/mol higher than that of 1a.
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Figure 2. A statistical view on the 80 isomers of [Arg+Rb+K−H]+ corresponding to their energy
orders based on the method of B3LYP/6-311++G(d,p)~LAN and their structural characteristics.

Table 1. Relative energies and structural parameters of some isomers obtained with different methods.

Isomers Methods ∆E (kJ/mol) ∆G (kJ/mol) H Bond (Å) dRb-k (Å)

1a/1b
A 0/11.0 0/10.1 None 5.35/5.29
B 0/10.0 0/9.2 None 5.29/5.24
C 0/16.3 0/16.3 None 5.34/5.25

2a/2b
A 5.0/17.0 7.1/23.4 NH . . . O (1.95/1.90) 5.27/4.51
B 5.0/15.5 6.9/22.2 NH . . . O (1.97/1.89) 5.23/4.46
C 2.5/2.9 5.0/10.9 NH . . . O (1.93/1.82) 5.18/4.55

3a/3b
A 6.2/12.3 8.2/13.6 NH . . . O (1.93/1.94) 5.42/5.55
B 7.0/11.6 8.6/12.9 NH . . . O (1.94/1.93) 5.37/5.45
C 5.9/15.9 8.9/18.4 NH . . . O (1.96/1.94) 5.36/5.46

23a/23b
A 116.5/118.2 122.3/122.3 NH . . . N (1.90/1.95) 4.06/4.05
B 117.9/116.9 123.5/121.6 NH . . . N (1.92/1.97) 4.02/4.01
C 95.0/95.0 101.7/100.8 NH . . . N (1.84/1.92) 4.11/4.06

24a/24b
A 125.5/125.8 131.5/132.0 NH . . . N (2.01/1.97) 4.16/4.13
B 124.2/125.5 130.1/131.0 NH . . . N (2.02/2.00) 4.12/4.11
C 99.2/99.2 105.0/107.5 NH . . . N (2.06/2.03) 4.31/4.36

A: B3LYP/6-311++G(d,p)~LAN, B: B3LYP/def2-TZVP and C: MP2/6-311++G(d,p)~SDD. The distances between the two metal atoms in all
isomers are indicated as dRb-k. The ∆G was calculated at temperature of 298 K.
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Figure 3. Some optimized isomers of [Arg+Rb+K−H]+ at the level of B3LYP/6-311++G(d,p)~LAN.
The most stable isomer is identified as 1a. The relative energies at 0 K and Gibbs energies at 298 K
relative to those of 1a are shown in the parentheses below each subfigure (in kJ/mol). The distance
of each intramolecular H-bond (in Å) is shown too. The pair of isomer a and b are obtained by
exchanging the positions of Rb and K atoms and re-optimization. The atoms of K, Rb, O, N, C, and H
are colored by purple, pink, red, blue, gray, and light gray, in turn.
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For the isomer 2a with the second lowest energy, the distance of Rb and K atoms
(5.27 Å) is very close to that of 1a. But the structure is characterized a NH . . . O H-bond
with a length of 1.95 Å and an angle of 158.7◦. A different aspect is that its twin isomer
2b is somewhat different from 2a after the optimization. The structure is more compactly
folded and thus the distance of the metal atoms reduces to 4.51 Å, accompanied by a small
change of the intramolecular H-bond. The isomers of 3a and 3b are similar to that of 2a,
except that the metal–metal distance increases to 5.4/5.5 Å. Other low-energy isomers also
generally have similar structures to that of 3a (Figure S2).

These isomers were also optimized with B3LYP based on a more size-consistent basis
set of def2-TZVP. Both structures and relative energies are very similar to those calculated
in B3LYP/6-311++G(d,p)~LAN level, as shown in Table 1. To further check the results,
the method of MP2 was also applied for the optimization and frequency analysis of these
isomers. The optimized isomers have structures very close to those shown in Figure 3. As
shown in Table 1, the results obtained based on the two methods are generally consistent
with each other. Based on the MP2 method, the isomer 1a is still the most stable one, with
the energy 16.3 kJ/mol lower than that of 1b. The distances between the two metal atoms
in 1a and 1b are 5.34 and 5.25 Å, respectively. For isomer 2a, its energy is 2.5 kJ/mol higher
than that of 1a. The M06-2X method also reports a similar NH . . . O H-bond with a length
of 1.93 Å and an angle of 154.1◦, and a closer Rb-K distance of 5.18 Å than that one reported
by the method of B3LYP in structure 2a. However, the relative energy of 2b is found to
be only 2.6 kJ/mol, much lower than the value of 17.2 kJ/mol obtained with the B3LYP
method. A shorter H-bond length is reported to be 1.82 Å with an angle of 163.8◦. For
isomers 3a and 3b, very similar results have been obtained for both methods.

As shown in Figure 4, the calculated IR spectra of 1a and 1b (based on B3LYP/6-
311++G(d,p)~LAN) are very similar to each other. The predicted band in the region of
3350–3550 cm−1 (from NH stretches) corresponds to experimental results well (Restricted
by the S/N ratios of the experimental spectrum, a quantitative description of the fre-
quencies and relative intensities of IR vibrations in such complexes was not performed
here [28,29].) For the experimentally observed broad band 2680–3000 cm−1, the predicted
spectra only show strong and weak absorptions in two regions of 2820–2930 cm−1 and
2930–3000 cm−1 (both from CH stretches). On the other hand, the calculated IR spectra of
2a/2b and 3a/3b are similar, but poorly agree with the experimental results in the region
3250–3350 cm−1. All those spectra show strong absorption at ~3300 cm−1 coming from the
vibrations of hydrogen bound NH bond, which are obviously absent in the experimental
spectrum. The calculated IR spectra based on the methods of B3LYP/def2-TZVP and
MP2/6-311++G(d,p)~SDD show similar results. The results obtained by the MP2 method
are shown in Figure S3.

Obviously, some bands in the experimental spectrum, such as the absorption at
3565 cm−1 and the band in the region 3020–3200 cm−1, cannot be explained by these low-
energy isomers. Even considering all the top 30 isomers (Figure S4), their predicted spectra
are all absent in these characteristics. Thus, the experimentally generated ions should
include some isomers with different structures. Considering that the observed peak at
3565 cm−1 is from the vibrations of free carboxylic OH vibrations [30–32], there must exist
isomers with the group of -COOH. This is very unexpected, since all previous experimental
and calculational proofs clearly indicated that Arg is very likely to form zwitterionic
structures when interacted with metal ions, or other molecules in the gas phase [33–36]. A
further check on the calculated isomers of [Arg+Rb+K−H]+ (Figure 2 and Table S1) also
shows that the isomers including the -COOH group are typically 125–250 kJ/mol higher
in energy than the most stable isomer of 1a.

Based on the method of B3LYP/6-311++G(d,p)~LAN, among these isomers including
a group of -COOH, the most stable one is 23a, which has an energy 116.5 kJ/mol higher than
1a (Figure 3). The structure is characterized by a free -COOH, a NH . . . N H-bond (1.90 Å)
and a relatively short distance between the two metals (4.06 Å). Its twin isomer 23b and
other relative isomers (24a, 24b and others) have similar structures (Figures 3 and S2). Both
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predicted spectra of 23a and 23b show their free carboxylic OH vibrations at ~3575 cm−1

and weak absorptions at the nearby of 3360, 3410, and 3515 cm−1 due to the NH stretch,
the symmetric and antisymmetric stretches of the NH2 group. Remarkably, the spectra
of 23a and 23b show strong absorptions at 3042 and 3110 cm−1 that are assigned as the
intramolecular H-bonded NH stretches, respectively. For the isomer 24a and 24b, similar
spectroscopic characteristics, including the free carboxylic OH at ~3600 cm−1 and the
intramolecular H-bonded NH vibrations at 3115 and 3165 cm−1 are predicted. Obviously,
the combination of these peaks agrees with the experimental spectrum in the regions of
3010–3200 cm−1 and 3550–3600 cm−1, which cannot be explained by the isomer of 1a and
its relatives.
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Figure 4. (a) Experimental IRMPD spectrum of [Arg+Rb+K−H]+ and (b–f) the calculated vibrational
spectra of different isomers obtained at the level of B3LYP/6-311++G(d,p)~LAN. The structures of
these isomers are shown in Figure 3.

CH stretches are normally considered of little diagnostic value in structural analysis.
However, an inspection of the experimental spectrum in the low wavenumber region is very
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helpful here. Although the observed absorptions in the region of 2820–3010 cm−1 can be
assigned to be CH stretches of 1a/1b, the absorptions below 2820 cm−1 do not. Considering
the small size of the ion, the intramolecular H-bonded groups of NH or OH are restricted
very much, which can be hardly red-shifted to this region. Unexpectedly, the predicted
CH bands of 23a/23b and 24a/24b have significantly expanded to ~2730 cm−1, although
the observed absorption below 2730 cm−1 is still puzzling. Overall, the experimental and
calculational results support the co-existence of both type isomers of 1 and 23/24.

The suggestions are also supported by the calculation based on the MP2 method. As
shown in Table 1, the structures of 23/24 obtained with the two methods are very similar.
Their relative energies based on the MP2 method are typically 21–25 kJ/mol lower than
those based on the B3LYP/6-311++G(d,p)~LAN method. The predicted vibrational spectra
of them are also very similar to those shown in Figure 4 (Figure S3).

3. Discussion

Even if the co-existence of multiply isomeric ions in the gas phase has been previously
proven [37–42], the large energy difference between the two co-existing isomers reported
here (≥95 kJ/mol based on the MP2 method) is still very surprising for such a small-sized
ion. Solvation effect was also considered in water by employing the integral equation
formalism polarizable continuum model (IEFPCM) [43]. Similar results were obtained, in
which the isomers 23a and 23b both had energies 111 kJ/mol higher than 1a. The ratios of
these high-energy isomers cannot be directly explained by their Boltzmann distribution.
On the other hand, considering the amino acid has a zwitterionic structure in the solid
or solution phase, it cannot be rationalized by the memory effect of the structure before
the ionization. A conjecture for the results is that the rapid process of metal coordination
from the initially generated species hinders the subsequent processes of isomerization
(unlike organic matrices, graphene can generate a laser plume with metal cations in high
density [25]). The consecutive metallization happens so quickly that the thermodynamic
driven processes of isomerization do not have enough time to fully occur. After the bimetal
coordination, the complex ions become much less flexible, since the rotation of the C-C
bond is restricted by the coordination of metals, which also results in high energy barriers
for isomerization. However, further computational investigation is still needed for a better
understand of its potential energy surface and isomerization barriers. On the other hand,
how the replacement of Rb+ with Na+ or K+ can affect their structures, energies, and
isomerization processes for such complexes is a very attractive question. Previous results
about singly alkali metal cationized amino acids show that the arginine changes from its
nonzwitterionic to zwitterionic form between lithium and sodium, indicating the metal ion
size can highly affect their structures [19]. At the same time, because the charge densities
of Na+ and K+ can lead to larger repulsive forces than Rb+, Coulomb interaction may
give priority to structures with longer distances of two metal atoms (such as 1a) in such
di-metalized species, making other structures (such as 23a) less stable (which may be one
of the reasons why the signals of such species were weak in our experiments). However,
considering the ubiquitous existence of sodium or potassium and their concentration-
dependent effects on amino acids in cells [26], these di-metalized species are worthy of
further study.

4. Materials and Methods

Sample of graphene was purchased from Timesnano Company (Beijing, China). L-
arginine (Arg), KCl and RbCl were obtained from Sigma-Aldrich (St. Louis, MO, USA). The
solution of Arg was prepared with a concentration of 2 mM in CH3CN/water (1:1, v/v),
together with 0.2 mM RbCl and 0.2 mM KCl. The sample of graphene was suspended
in acetone containing 15% water with a concentration of 1 mg/mL. After a process of
sonication for 10 min, 0.5 µL graphene suspension was pipetted and spotted on the metal
target in the first step. After it dried, 0.5 µL of Arg with RbCl and KCl was dropped on it in
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the second step. The target was then dried in the air and sent into the matrix-assisted laser
desorption ionization (MALDI) source for experiments.

The experimental setup has been described in our previous paper [16]. Briefly, an
IR OPO laser (M Squared Lasers Ltd., Glasgow, UK) was combined with a 7.0 T Fourier-
transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) (Varian, Inc., Lake For-
est, CA, USA). The ions are generated by a MALDI source equipped with a 355 nm Nd:YAG
laser (Orion, New Wave, Fremont, CA, USA) at a typical pulse energy of 2.4 mJ. The OPO
has a typical line width of 7 cm−1 and can be tunable in the range from 2680–4000 cm−1

with an average power at 160 mW. In the experiments, ions produced by six consecutive
laser pulses were accumulated in the hexapole first. After the accumulation, the hexapole
exit lens was gated so that ions could be transferred into the cell of FT-ICR. The target ions
were selected by the method of stored waveform inverse Fourier transform (SWIFT) [42]
and then trapped in the cell for laser irradiation. The irradiation time of the laser is set
as 40 s and controlled with a mechanical shutter (Sigma-Koki, Tokyo, Japan). No focus
lens is used in the experiment. During the process of IR irradiation, the cell of FT-ICR kept
high vacuum with a pressure less than 4 × 10−10 Torr, indicating that the collision-induced
dissociation or secondary reaction can be neglected. However, due to the long irradiation
time, sequential dissociation of primary fragment ion is also possible in the process. The
IRMPD spectra were recorded with a step size of 5 cm−1. The spectral intensity at each
wavelength is calculated with the same method described previously [16].

Systematic theoretical calculations of [Arg+Rb+K−H]+ were investigated by a self-
developed procedure shown in Scheme S1. Briefly, based on the initial structures of
[Arg+K]+ previously reported [32], the isomers with all possible seven deprotonation sites
were considered and then the second metal was added. To make the calculation on AM1
method performable, we used two K atoms at the first step. After the selection of the
top energy isomers, one K atom were replaced by one Rb atom and reoptimized. At last
the 80 (40 pairs of twins) isomers were optimized and selected on the level of B3LYP/6-
311++G(d,p)~LAN [32,44–46]. Frequencies of all these structures were also calculated on
the same level. Their electronic energies were calculated at 0 K with zero-point energy
corrections and Gibbs energies were calculated at 298 K. Methods of B3LYP/def2-TZVP
and MP2/6-311++G(d,p)~SDD were further applied for the optimization and frequency
analysis of some selected isomers [47,48]. To get their predicted IR spectra, scaling factors
of 0.952 and 0.940 were used for the B3LYP and MP2 methods, respectively. All calculations
were carried out using the Gaussian 09 program package [49]. The Cartesian coordinates
of some structures (1a/b~3a/b, 23a/b, 24a/b) are shown in Table S2.

5. Conclusions

In summary, [Arg+Rb+K−H]+, as one example of the di-metal cationized molecules
that have received little attention so far, was generated in the gas phase with the matrix
of graphene and investigated by IRMPD spectroscopy and theoretical calculations. Its
IRMPD spectrum in the region of 2680–3700 cm−1 was found to be very complicated. For
the hetero di-metal cationized species, each stable isomer was found to be accompanied
by a twin isomer, characterized by exchanging the positions of the two different metal
ions. Spectroscopic and calculational evidences show that the most stable isomer of
[Arg+Rb+K−H]+, 1a, co-exists with some unexpected isomers, including the -COOH
group, which have energies 95 kJ/mol higher than that of the former. The phenomenon
is unverified, suggesting it could be rationalized by rapid processes of metallization in
the ion source, resulting in blocking subsequent isomerization, since the coordination
greatly restricts the rotation of relative sigma bonds. As alkali metal ions are prevalent in
organic solvent or biological media, the present results provide a new perspective into the
generation, stabilization, and existence of high-energy isomers of metal cationized amino
acids and their relatives, which might affect their functions and reactivities. However, to
further understand how structural diversity can be affected by solvents, and how gas phase



Molecules 2021, 26, 6546 9 of 11

structures can be related to ones in solution or gas-liquid interfaces, studies on the micro
solvation of such bimetallic ions should be investigated systemically in further steps.

Supplementary Materials: The following are available online. Scheme S1: calculation procedure,
Table S1: relative energies of the 80 isomers, Table S2: Cartesian coordinates of some structures
(1a/b~3a/b, 23a/b, 24a/b), Figure S1: mass spectra, Figure S2: structures of the 80 isomers, Figure S3:
IR spectra of some isomers based on the MP2 method, Figure S4: the predicted vibrational spectra of
the top isomers of 4a/b~16a/b.
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