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Drug combinations are of great interest for cancer treatment. Unfortunately, the discovery

of synergistic combinations by purely experimental means is only feasible on small sets

of drugs. In silico modeling methods can substantially widen this search by providing

tools able to predict which of all possible combinations in a large compound library

are synergistic. Here we investigate to which extent drug combination synergy can be

predicted by exploiting the largest available dataset to date (NCI-ALMANAC, with over

290,000 synergy determinations). Each cell line is modeled using primarily two machine

learning techniques, Random Forest (RF) and Extreme Gradient Boosting (XGBoost),

on the datasets provided by NCI-ALMANAC. This large-scale predictive modeling study

comprises more than 5,000 pair-wise drug combinations, 60 cell lines, 4 types of models,

and 5 types of chemical features. The application of a powerful, yet uncommonly used,

RF-specific technique for reliability prediction is also investigated. The evaluation of these

models shows that it is possible to predict the synergy of unseen drug combinations

with high accuracy (Pearson correlations between 0.43 and 0.86 depending on the

considered cell line, with XGBoost providing slightly better predictions than RF). We

have also found that restricting to the most reliable synergy predictions results in at

least 2-fold error decrease with respect to employing the best learning algorithm without

any reliability estimation. Alkylating agents, tyrosine kinase inhibitors and topoisomerase

inhibitors are the drugs whose synergy with other partner drugs are better predicted

by the models. Despite its leading size, NCI-ALMANAC comprises an extremely small

part of all conceivable combinations. Given their accuracy and reliability estimation, the

developed models should drastically reduce the number of required in vitro tests by

predicting in silico which of the considered combinations are likely to be synergistic.

Keywords: chemoinformatics, drug synergy, machine learning, QSAR (qualitative structure-activity relationships),

predictive (QSPR) models

INTRODUCTION

Drug combinations are a well-established form of cancer treatment (Bayat Mokhtari et al., 2017).
Administeringmore than one drug can providemany benefits: higher efficacy, lower toxicity, and at
least delayed onset of acquired drug resistance (Sugahara et al., 2010; Holohan et al., 2013; Crystal
et al., 2014). Serendipitous discovery in the clinic has been a traditional source of effective drug
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combinations (Zoli et al., 2001; Kurtz et al., 2015). Yet systematic
large-scale efforts to identify them have only recently been
pursued, with a growing number of preclinical experimental
efforts to identify synergistic combinations (Zoli et al., 2001;
Budman et al., 2012; Lieu et al., 2013; Kashif et al., 2015;
Yu et al., 2015; Kischkel et al., 2017) being reported in
literature. The sheer number of available and possible drug-like
molecules (Polishchuk et al., 2013) and an exponential number
of their combinations, however, make the process of finding
new therapeutic combinations by purely experimental means
highly inefficient.

An efficient way of discovering molecules with previously
unknown activity on a given target is using in silico prediction
methods. Quantitative Structure-Activity Relationship (QSAR)
models establish a mathematical relationship between the
chemical structure of a molecule, encoded as a set of structural
and/or physico-chemical features (descriptors), and its biological
activity on a target. Such methods have been successfully used
in a wide variety of pharmacology and drug design projects
(Cherkasov et al., 2014), including cancer research (Chen et al.,
2007; Mullen et al., 2011; Ali and Aittokallio, 2018). QSAR
models are traditionally built using simple linear models (Sabet
et al., 2010; Pick et al., 2011; Speck-Planche et al., 2011,
2012) to predict the activity of individual molecules against
a molecular target. In the last 15 years, non-linear machine
learning methods, such as Neural Network (NN) (González-
Díaz et al., 2007), Support Vector Machine (SVM) (Doucet
et al., 2007) or Random Forest (RF) (Singh et al., 2015), have
also been employed to build QSAR models. More recently,
QSAR modeling has also achieved accurate prediction of
compound activity on non-molecular targets such as cancer cell
lines (Kumar et al., 2014).

To extend QSAR modeling beyond individual molecules, the
set of features from each molecule in the combination must be
integrated. Various ways exist to encode two or more molecules
as a feature vector, e.g., SIRMS descriptors (Kuz’min et al., 2008)
for properties of combinations or the CGR approach for chemical
reactions (de Luca et al., 2012). Rigorous validation strategies
for the resulting models have been developed too (Muratov
et al., 2012). The most common representation of a drug pair
is, however, the concatenation of features from both molecules
(Bulusu et al., 2016). On the other hand, modeling drug
combinations requires the quantification of their synergy. Several
metrics exist to quantify synergy (Foucquier and Guedj, 2015)
(e.g., Bliss independence Bliss, 1939, Loewe additivity Chou and
Talalay, 1984, Highest single agent approach Greco et al., 1995
or Chou-Talalay Method Chou, 2010). These are implemented
in various commercial and publicly available software kits
for the analysis of combination data, e.g., Combenefit (Di
Veroli et al., 2016), CompuSyn (http://www.combosyn.com) or
CalcuSyn (http://www.biosoft.com/w/calcusyn.htm).

One major roadblock in drug synergy modeling has been
the lack of homogeneous data (i.e., datasets generated with the
same assay, experimental conditions and synergy quantification).
This has been, however, alleviated by the recent availability
of large datasets from High-Throughput Screening (HTS) of
drug combinations on cancer cell lines. For instance, Merck has

released an HTS synergy dataset (O’Neil et al., 2016), covering
combinations of 38 drugs and their activity against 39 cancer cell
lines (more than 20,000 measured synergies). This dataset has
been used to build predictive regression and classification models
using multiple machine learning methods (Preuer et al., 2018).
AstraZeneca carried out a screening study, spanning 910 drug
combinations over 85 cancer cell lines (over 11,000 measured
synergy scores), which was subsequently used for a DREAM
challenge (Li et al., 2018; Menden et al., 2019). Very recently,
the largest publicly available cancer drug combination dataset
has been provided by the US National Cancer Institute (NCI).
This NCI-ALMANAC (Holbeck et al., 2017) tested over 5,000
combinations of 104 investigational and approved drugs, with
synergies measured against 60 cancer cell lines, leading to more
than 290,000 synergy scores (ComboScores).

NCI-ALMANAC datasets have recently been modeled to
predict the best growth inhibition of a given drug combination—
cell line tuple (Xia et al., 2018). However, the question remains of
howwell ComboScores can be predicted on eachNCI-60 cell line,
which is important given that ComboScore-based screening has
led to the identification of novel synergistic drug combinations
in vivo (Holbeck et al., 2017). Here we present a large-scale study
addressing this question. We build an individual model for each
cell line using the popular RF algorithm (Breiman, 2001). We
also build a second model per cell line using XGBoost (XGB
for short) (Chen and Guestrin, 2016), a recent machine learning
method that has helped to win numerous Kaggle competitions
(Chen and Guestrin, 2016) as well as to generate highly predictive
QSAR models (Sheridan et al., 2016). We validate these models
for commonly-encountered prediction scenarios: e.g., unseen
drug combination or unseen drug partner. We also introduce
and validate reliability estimation techniques to further improve
prediction of drug combination synergy. Lastly, we assess the
suitability of NCI-ALMANAC datasets for predictive modeling
depending on the screening center where they were generated.

METHODS

Data
NCI-ALMANAC is the largest-to-date phenotypic drug
combination HTS. It contains the synergy measurements of
pairwise combinations of 104 FDA approved drugs on the 60
cancer cell lines forming the NCI-60 panel (Shoemaker, 2006).
The drugs include a wide array of small organic compound
families, as well as several inorganic molecules (cisplatin and
related platinum-organic compounds, arsenic trioxide). A
similarity clustering dendrogram (Figure 1) shows the high
diversity of the drugs in NCI-ALMANAC. Indeed, only 3
clusters comprising 8 drugs are formed with a Tanimoto
score threshold of 0.8 (Vinblastine with Vincristine, Sirolimus
and Everolimus, and Daunorubicin-Doxorubicin-Idarubicin-
Epirubicin clusters), while the remaining 96 drugs have smaller
similarity among them.

NCI-ALMANAC aggregates synergy data from three
screening centers: NCI’s Frederick National laboratory for
Cancer Research (screening center code 1A, 11,259 synergy
determinations), SRI International (FF, 146,147 determinations),
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FIGURE 1 | Sketch of the workflow for drug combination modeling. Training data comes from NCI-ALMANAC, which comprises over 290,000 synergy measurements

from pairs of 104 drugs tested on the 60 cell lines. Structural and physico-chemical features are calculated for each drug from its chemical structure. Similarity

clustering diagram for 104 NCI-ALMANAC drugs is on the left. Each drug is characterized by MFPC features complemented with physico-chemical features, using the

Tanimoto score on these features as the similarity metric. Hierarchical agglomerative clustering was carried out (ward.D2 algorithm in the R hclust function). Closely

related compounds form tight clusters (e.g., doxorubicin and its analogs, analogs of paclitaxel, etc). By contrast, naturally inorganic compounds such as cisplatin and

arsenic trioxide appear as outliers (the highest similarity coefficient to other drugs being 0.156 and 0.125, respectively). The concatenated vectors of the two drugs are

the features utilized to build and test predictive models with machine learning techniques. The predictive accuracies of the models are determined by multiple

cross-validation experiments.

and University of Pittsburgh (FG, 136,129 determinations). The
synergy of drug pairs is measured in these screening centers
against the NCI-60 panel, which includes cell lines from nine
cancer types: leukemia, melanoma, non-small-cell lung, colon,
central nervous system, ovarian, renal, prostate, and breast. In
total, synergy is measured for 293,565 drug combination—cell
line tuples, which represents a matrix completeness of 91.35%.
Each center follows its own protocol, and some drugs are absent
from the combination pool depending on the screening center.
Since there is no overlap between drug combination—cell line
tuples between the three centers, it is not possible to estimate
inter-center batch effects, and therefore we must use data from
different screening centers separately.

The combination benefit is quantified in NCI-ALMANAC
by the so-called ComboScore (a modified version of the Bliss
independence model). From the entire dose-response matrix of
the considered drug combination and cell line tuple, the gain
(or loss) of the effect achieved by the combination over the
theoretically expected value if the effect was additive is calculated.
Positive values of ComboScore indicate a synergistic effect of the
combination, whereas the negative correspond to an antagonistic
effect (those purely additive obtain a zero ComboScore).

Further description of NCI-ALMANAC data is available at
Supplementary Information.

Features
For the use in machine learning, the structures of compounds
must be encoded as vectors of numerical features known in
chemoinformatics as molecular descriptors (Todeschini and
Consonni, 2000). Several types of chemical structure features
have been considered in this work: (1) Morgan FingerPrints
(MFP) are topological descriptors describing the connectivity of
the molecular structure, which take values 0 or 1, depending on
whether the pattern is present in the molecule or not (Rogers
and Hahn, 2010). They have been calculated with RDKit library
(Lamdrum, 2015) using the following parameters—length is 256
bits, radius is 2. (2) Morgan FingerPrint Counts (MFPC) are a
non-binary version of MFP that takes integer values equal to the
number of times the pattern is detected in the molecule (256
features per drug, also calculated with RDKit). (3) MACCS keys
encode presence or absence of 166 predetermined substructural
fragments as binary vectors (calculated with RDKit). (4) ISIDA
fragments encode structure as a vector of numbers of occurrences
of substructural fragments of given nature and topology in
the molecule (Varnek et al., 2005), which are calculated with
ISIDA/Fragmentor (Ruggiu et al., 2015). Only one type of
fragments is considered here: sequences of atoms and bonds
of length 2 to 6 (1,325 features per drug in total). (5) SIRMS
fragments are the number of occurrences of 4-atom fragments
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FIGURE 2 | Performance gain across cell lines for each introduced modeling choice during the exploratory analysis of FG data. Each boxplot represents the

distribution of the cell line models’ test set performances (Rp) at any given step. Analysis steps are carried out sequentially: I—RF, 1,000 trees with all n features tried

to split a node, 80% training set, 20% test set, MACCS (Molecular ACCess System) keys as features; II—MFPC (Morgan fingerprint counts) are used as features

instead; III—physico-chemical features are added for each drug; IV—training set rows are duplicated with the reverse order of drugs (data augmentation); V-−90%

training set, 10% test set are used instead of the initial 80/20 partition; VI—RF with 250 trees with n/3 features tried to split a node; VII—XGB models with

recommended settings; VIII—tuned XGB models. Note that I-V employ RF with same values for its hyperparameters (RF tuned in VI) and V–VIII use the same training

and test sets. Modeling choices introducing the largest improvements are the choice of molecular features and the data augmentation strategies.

of varying topology in a molecule, including bonded and non-
bonded atoms (Kuz’min et al., 2008). Calculated with SiRMS
python library (github.com/DrrDom/sirms), it led to 1,454
features per drug. In addition to these sets, 7 physico-chemical
features are calculated by RDkit: total polar surface area (TPSA),
molecular weight, logP, number of aliphatic and aromatic rings,
H-bond donors and acceptors.

Machine Learning (ML) Workflow
Models are built using two ML algorithms: Random Forest
(RF) (Svetnik et al., 2003) and Extreme Gradient Boosting
(XGBoost; XGB for short) (Sheridan et al., 2016). The
entire modeling workflow is sketched in Figure 1. Further
details about how ML models were built are available at the
Supplementary Information.

Predictive Performance Metrics
To evaluate the performance of a model, the following
metrics are calculated from observed yobs and predicted ypred
ComboScore values:

Root Mean Squared Error (RMSE)

RMSE =

√

∑

N

(

yi, obs − yi, pred
)2

N

Coefficient of determination (R2) (Leach and Gillet, 2007)

R2 = 1−

∑

N

(

yi, obs − yi, pred
)2

∑

N

(

yi, obs − yobs
)2

= 1−
RMSE2

Var
(

yobs
) ;

yobs =
1

N

N
∑

i=1

yi,obs

Pearson’s correlation coefficient (Rp)

Rp =

∑

N (yi, obs − y obs)(yi, pred − y pred)
√

∑

N (yi, obs − y obs)
2
√

∑

N (yi, pred − y pred)
2

Spearman’s rank-order correlation coefficient (Rs)

Rs = Rp(rank yobs, rank ypred)

We use Rp between observed and predicted values of
ComboScore of a dataset not used to train the model as a
primary metric of its accuracy. For proper estimation of the
generalization error, these metrics are always calculated here on
a test set not used to train or select the model.

RESULTS

Exploratory Modeling of NCI-ALMANAC
Data
First, we perform an exploratory modeling on the FG datasets
in order to determine optimal settings for synergy prediction by
assessing various types of features, data augmentation schemes
and machine learning methods. The summary of performance
improvements is shown on Figure 2. The best median Rp across
cell lines for RF was obtained with 250 trees, a third of the
features evaluated at each tree node, training data augmentation
and MFPC fingerprints complemented by physico-chemical
properties (256 and 7 features per drug, respectively). The gain
of performance with RF is substantial: the median Rp increases
from 0.530 (I) to 0.634 (VI).

XGB models are generated with the same features and data
set partitions. Changing the machine learning algorithm from
RF to XGB does not improve the median test set Rp, although
both minimum and maximum Rp are higher with XGB (boxplots
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FIGURE 3 | Observed vs. predicted ComboScore for all the drug combinations in the test set. This is presented for the best- and worst-performing models with both

ML methods, RF, and XGB (these models correspond hence to the extremes of Figure 2’s boxplots VI and VIII, respectively). On the left column, the best-performing

cell line models from each method. On the right side, the worst-performing cell line models. All performance metrics are shown. Each point represents a drug

combination in that test set.

VI and VII in Figure 2, respectively). After tuning of XGB
hyperparameters per cell line, a small gain in overall performance
is obtained: the median Rp of tuned XGB rises to 0.641 (boxplot
VIII). In comparison, Y-randomization (Tropsha et al., 2003)
tests using the same learning algorithm did only obtain a median
Rp of−0.016 (−0.024 when using RF). Figure 3 shows the degree
of accuracy achieved by each algorithm for the best and the
worst predicted cell line. The cell lines with the worst predictions
(OVCAR-8 for RF and SF295 for XGB) have substantially smaller
variance in observed ComboScore than those with the best
predictions (SK-MEL-5 for both algorithms).

Estimating the Reliability of Drug Synergy
Predictions
For prospective use of models, it is paramount to calculate not
only predicted drug combination synergies, but also how reliable
these predictions are (Mathea et al., 2016). With this purpose,
we have applied a RF-specific reliability prediction approach,
where the degree of agreement between the diverse trees in the
forest serves as a reliability score. This is quantified here as the
standard deviation (SD) of the RF tree predictions (250 per drug
combination and cell line) and referred to as tree_SD. tree_SD

has been pointed out as one of themost powerful metrics to assess
the reliability of predictions in regression problems (Mathea
et al., 2016). We thus assemble test subsets with the 25% most
reliable ComboScore predictions per cell line (i.e., combinations
with the 25% lowest tree_SD scores). Likewise, we assemble test
subsets with 25% least reliable predictions per cell line.

Figure 4 presents the test set performances of each cell line
model on the three scenarios: 25% most reliable predictions,
all predictions regardless of estimated reliability and 25% least
reliable predictions. The top and bottom 25% predictions in
terms of reliability obtain the lowest and highest RMSE in every
cell line, which demonstrates the accuracy and generality of
tree_SD as a reliability score for drug synergy predictions. Test
set RMSE varies greatly across cell lines, e.g., models built on
leukemia cell lines obtain in general higher error. This, however,
comes from the higher range of ComboScores observed in these
cell lines. Indeed, the larger this range, the higher the range of
predicted ComboScores is, which combined tend to make RMSE
larger. Similar RMSE is only obtained on the K-562 leukemia
cell line, which is consistent with the fact that it has the lowest
range among leukemia cell lines and similar to that of other
cancer types.
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FIGURE 4 | Ten percent test set RMSE of RF cell line models trained on 90% of the FG data. Gray squares represent the model’s RMSE on all the test combinations

(RF predictions as usual). Black triangles mark the RMSE of the 25% least reliable (highest tree_SD) combos, whereas white inverted triangles correspond to the

RMSE of the 25% most reliable (lowest tree_SD). In each cell line, the reliability score tracks test RMSE and hence it can be used to identify a priori the most accurate

predictions. Each cell line name in the horizontal axis is preceded by its cancer type ID: breast (BR), central nervous system (CNS), colon (CO), non-small-cell lung

(LC), leukemia (LE), melanoma (ME), ovarian (OV), prostate (PR), and renal (RE).

Reliability estimation is evaluated in terms of RMSE rather
than Rp. While RMSE is not as intuitive as correlation,
correlations may be misleading when comparing performances
of models across test sets with distinct variances. Figure 5

illustrates this issue with the test performances of HL-60 models,
which benefit the most from reliability estimation. The test set
with the most reliable combinations is predicted with half the
RMSE of the entire test set (RMSE of 41 vs. 80) and a third
of the least reliable combinations (RMSE of 41 vs. 117). This
more accurate prediction can be visually observed too, but the
other metrics (R2, Rp, and Rs) do not capture this increase
in accuracy due to substantially different ComboScore variance
between the compared test sets. Importantly, RF with reliability
prediction provides a much larger reduction in RMSE than that
introduced by XGB (bottom right), both with respect to RF

without reliability prediction (bottom left). These results strongly
suggest that, in cases where it is not necessary to test all positive
predictions (here synergistic drug combinations), selecting the
most reliable predictions is more effective than using the most
suitable ML algorithm.

Performance in Predicting Synergies With
Drugs Not Included in NCI-ALMANAC
The random data splits that we have used so far may overestimate
the model’s performance in the case of drug combinations.
This would be due to the presence of the two drugs in the
combination in both training and test sets, albeit with other
partners (Muratov et al., 2012). In order to assess to which extent
this is the case, we also carry out Leave-One-Drug-Out (LODO)
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FIGURE 5 | Observed vs. Predicted ComboScore plots for HL-60 leukemia cell line test set (10% of data). Models are built on 90% of FG dataset corresponding to

this cell line using RF and XGB methods, both tuned. Each circle is now a drug combination from the entire test set, with its shade of gray indicating one of the three

scenarios (as in Figure 4). All performance metrics are displayed in each plot. The subset with the most reliable ComboScore RF predictions (top left plot) achieves

half the RMSE of the entire test set (bottom right). Importantly, this is a much larger reduction in RMSE than that introduced by XGB (bottom right) with respect to RF

(bottom left). Furthermore, the most reliable predicted ComboScores (top right) obtain a third of the RMSE of the least reliable predictions (top left).

cross-validation experiments for each cell line. In LODO cross-
validation, every combination containing the considered left-
out drug is placed in its test set, and the model is built on the
remaining combinations tested on that cell line. Thus, there are as
many folds as drugs in the dataset. In this way, the LODO cross-
validation simulates the model’s behavior when presented with a
new chemical entity outside of the model’s scope, as if it was not
included in the dataset.

Figure 6 shows the outcome of LODO cross-validation
for XGB per cell line. We henceforth use XGB with the
recommended values for hyperparameters, as tuning them for
each LODO cross-validation fold and cell line is prohibitive and
would only provide marginal gains (see Figure 2). LODO results
show that combinations associated with 75% of the left-out drugs
can be predicted with an accuracy of at least Rp = 0.3 against any
cell line. This accuracy raises to at least Rp = 0.5 for 50% of the
left-out drugs. The latter is not much worse than the median Rp

across cell lines when using 90/10 data partitions (Rp = 0.641 as
shown in Figure 2’s boxplot VIII). k-fold cross-validation results
are available for comparison in Supplementary Figure 3.

Figure 7 shows the analysis for LODO cross-validations in
terms of RMSE. About 75% of models demonstrate at least
moderate accuracy (RMSE < 50). The exceptions are mostly
leukemia cell line models, which obtain higher RMSE due to
having the highest variances in ComboScores among cancer
types. An important result is that using RF models restricted
to the most reliable predictions allows us to reduce the error
of prediction further in every cell line (RMSE < 40), in full
agreement with the findings from random 90/10 partitions
(see Figure 4) and also outperforming the best models without
reliability prediction.

Analyzing LODO results per left-out drug instead of per cell
line reveals that synergy prediction is much worse for certain
left-out drugs in each cancer type. LODO performance of each
drug across cell lines is shown in Supplementary Figure 4. This
figure shows that models for arsenic trioxide, highly dissimilar
to other drugs, have the lowest performance across cell lines
and partner drugs (median Rp of models concerning this drug
is −0.28). Conversely, partners of tyrosine kinase inhibitors,
well-represented in these datasets (e.g., Imatinib, Nilotinib or
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FIGURE 6 | LODO cross-validation results using XGB with the recommended values for their hyperparameters on the FG dataset. Distribution of models’

performances is shown by cancer type (color code). Each colored zone represents 25% of models per cell line: from dense zone—top performing 25%; to light

zone—bottom quartile. The method performs with at least moderate accuracy (Rp > 0.30) in 75% of left-out drugs (the top 3 quartiles) across cell lines. Left-out

drugs within the top quartile, darkest shade among the four employed per cell line, are predicted with a Rp ranging from 0.471 (HCT-116) to 0.986 (SK-MEL-5).

Although there are no large differences in how well different cancer types are predicted, left-out drugs on melanoma (ME, in red) and leukemia (LE, in green) cell lines

obtain slightly higher average performance (median Rp of drug-out models for corresponding cell lines are 0.554 and 0.524, respectively).

FIGURE 7 | Median RMSE in LODO cross-validation for XGB with the recommended values for their hyperparameters (gray squares) and RF top 25% most reliable

predictions (white inverted triangles) for each cell line (grouped by cancer type). As the plot shows, combinations with one left-out drug can be predicted with at least

moderate accuracy across cell lines (RMSE < 50 for XGB, RMSE < 40 for RF with reliability estimation; both being approximate thresholds).

Lapatinib), are predicted with high accuracy (e.g., models for
imatinib have median Rp = 0.82). Topoisomerase inhibitors
(Teniposide and Etoposide) are also among the best-predicted
left-out drugs. These in silico models could be used to anticipate
how the synergies of a drug in combination with its partner
drugs would vary across NCI-60 cell lines. However, since
high accuracy is only obtained on those left-out drugs well-
represented in NCI-ALMANAC, such selectivity predictions
should only be accurate for drugs with similar chemical structure
to those in NCI-ALMANAC. As models predicting drug-induced
cell line response have been shown to improve by integrating

drug features with multi-omics cell features (Menden et al., 2013;
Xia et al., 2018), we expect that predicting drug synergy across
cell lines will also improve by following such multi-task learning
approach on this closely related problem.

Comparing Predictive Models Built With
Data From Different Screening Centers
So far we have exclusively employed data from the FG screening
center, which represents about half of NCI-ALMANAC data.
Practically all the remaining ComboScores come from the FF
screening center and are also determined with a 3 × 3 grid of
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FIGURE 8 | RF model performance comparison for FG and FF datasets. Models are built following the final setup in the exploratory analysis (a 90/10 data partition is

employed for each cell line); MFPC with physico-chemical features as well as data augmentation are also used). On the left, boxplots for cell line models test set Rp’s

(top row) and RMSE (bottom row) for both centers data. On the right, Rp (top row) and RMSE (bottom row) of models trained on FG dataset against models trained on

FF dataset, each point shows the two model performances for the cell line. FF models obtain consistently lower performance than FG models. As the same modeling

workflow was used, this strongly suggests that FF data is less predictive than FG data.

non-zero concentrations. Thus, we evaluate here the predictive
potential of FF datasets. We start by building RF models
from FF data using the same 90/10 partitions as with FG.
Surprisingly, FF-based models obtained worse performance in
every cell line (Figure 8) and thus were objectively worse at
predicting ComboScores.

In trying to understand this unexpected result, we started by
investigating whether this was due to modeling differences, but
this was not the case. First, FF training sets are slightly larger than
FG datasets (see Supplementary Table 1), which theoretically
favors better performance on FF. Furthermore, using tuned XGB
models led to essentially the same result (median Rp of 0.641 for
FG vs. 0.368 for FF) as shown in Figure 8 with RF. In addition
to these non-linear methods, we also used Elastic Net (EN), but
FF models were still substantially less predictive than FG models
(median Rp of 0.37 for FG vs. 0.23 for FF). When we carried
out LODO cross-validations instead of 90/10 partitions, the
same trend was observed (Supplementary Figures 5, 6 also show
worse performance of FF-based LODO than that of FG-based
LODO in Figure 6).

To shed light into this issue, we looked at the only factor that
we can compare between these screening centers: the relative

growth inhibition (PERCENTGROWTH) induced by a given
concentration of a drug tested individually. Interestingly, by
counting the different test dates, we observed that FG had on
average tested a non-combined drug 3.77 times per cell line,
whereas FF almost doubled this number (7.13 times per cell
line). A higher number of tests is not in itself worrisome if
the growth inhibition of the drug-concentration-cell line tuple
is similar between dates. However, if the measurements from
these tests are substantially different, this is a problem because
the set of ComboScores determined with variable measurements
from the same tuple will be inconsistent as well. Consequently,
synergy differences between such combinations will not only
come from their intrinsic properties, but also from unrelated
experimental variability.

To show that higher growth inhibition variability in FF
data results in less predictive models, we analyzed five drugs
(Thioguanine, Chlorambucil, Altretamine, Fluorouracil, and
Melphalan) with a high number of different test dates in both
centers. We first consider the drugs on a cell line were only
FG models obtain high average accuracy in predicting synergy
(NCI/ADR-RES) and subsequently on another where both FF
and FGmodels are on average predictive (NCI-H322M). On each
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FIGURE 9 | RF model performance comparison for FG and FF datasets. Models are built following the final setup in the exploratory analysis (i.e., a 90/10 data

partition is employed for each cell line; MFPC with physico-chemical features as well as data augmentation are also used). We analyzed five drugs (Thioguanine,

Chlorambucil, Altretamine, Fluorouracil, and Melphalan) with a high number of different test dates in both centers. On the left, the results with the cell line that is worst

predicted by RF with FF data (NCI/ADR-RES with Rp = 0.14 in 90/10 partition), which is much better predicted with FG (Rp = 0.65, using the same partition). This

plot shows the standard deviation of the values of each set from FG against those from FF.

cell line, each drug has a set of growth inhibition replicates per
concentration and screening center (i.e., 15 sets per screening
center). The performance on NCI/ADR-RES using FF data is
indeed poor (Rp = 0.14 in 90/10 partition by RF), but it
is much better predicted using FG data (Rp = 0.65, using
the same partition and method). Fourteen of the fifteen sets
have higher standard deviation of growth inhibition with FF
data (Figure 9), which is consistent with the lower accuracy
in predicting synergy obtained with this dataset. Conversely,
we repeated this operation with NCI-H322M where synergy
is well-predicted by RF with both FF (Rp = 0.61 in 90/10
partition) and FG data (Rp = 0.66, on the same partition). The
standard deviations from both screening centers are now similar
(Figure 9). Taken together, these experiments suggest that the
reason why FF data results in less predictive models is the noise
introduced in ComboScore determination by larger variability of
growth inhibition measurements.

DISCUSSION

NCI-ALMANAC is an extremely valuable resource for the
discovery of novel synergistic drug combinations on NCI-
60 cell lines. First, it is by far the largest-to-date HTS of
drug combinations, therefore allowing in silico models with
much higher accuracy and broader domain of applicability in
predicting the synergy of other combinations. Second, some of
the synergistic drug combinations discovered in vitro by NCI-
ALMANAC were subsequently tested on human tumor mouse
xenografts of the same cell line. 48% of them were also synergistic
in at least one of these in vivo models (Holbeck et al., 2017),
which led to the launch of two clinical trials so far (NCT02211755
and NCT02379416).

In this study, we have found that it is possible to predict the
synergy of unseen drug combinations against NCI-60 panel cell
lines with high accuracy by exploiting NCI-ALMANAC data.

We have established a general ML workflow (types of structural
features, data preprocessing strategy, ML method) to generate
such models. When trained on FG data, predicted synergies from
these models match observable synergies with Rp correlations
comprised between 0.43 and 0.86 depending on the considered
cell line. Incidentally, these regression problems must be highly
non-linear, as EN leads to substantially less predictive models
than XGB or RF.

Some cell lines and drug combinations can be predicted
with higher accuracy than others. For example, models for the
SK-MEL-5 cell line perform best with any method (Figure 6).
However, if we use RMSE instead of Rp to reduce the influence of
the ComboScore range, models for the NCI-ARD-RES are now
best (gray squares in Figure 7). Another explanatory factor for
this variability is the adequacy of the employed ML technique
to the problem instance to solve (each cell line constitutes here
a different problem instance). Even if training set size, features
and classifier are the same, the modeled relationship between
drug synergy and features depend on training set composition
and cell line properties (implicitly). It is well-established that the
performance of supervised learning algorithms varies depending
on the problem instance in ways that cannot be anticipated
without doing the actual numerical experiments (Fernández-
Delgado et al., 2014). LODO cross-validation also revealed both
best and worst partner drugs. These differences are mainly due to
the number of similar partner drugs. For example, it is difficult
to predict synergy of combinations containing arsenic trioxide
because its 103 partner drugs are highly dissimilar in terms
of chemical structure and physico-chemical properties. Indeed,
machine learning from dissimilar data instances tend to be less
accurate, although here the dissimilarity can be partial as arsenic
trioxide’s partner can be similar to other NCI-ALMANAC drugs.
On the other hand, combinations containing some other drugs
are better represented in NCI-ALMANAC and hence tend to
be predicted with higher accuracy. This is the case of various
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alkylating agents, tyrosine kinase inhibitors and topoisomerase
inhibitors (Supplementary Figure 4).

Recent QSAR and drug combination modeling studies
have evaluated the application of the latest machine learning
algorithms (e.g., XGBoost, Deep Neural Network). These studies
have found that these algorithms provide better performance on
average across targets than RF. However, these gains are small
and hence do not always justify the much greater resources
required for hyperparameter tuning (Sheridan et al., 2016; Preuer
et al., 2018). Performance gains have also been found small
here with NCI-ALMANAC data, as the average test set Rp of
XGBoost across the 60 cell lines is just +0.007 larger than with
RF. An important result is that restricting to the most reliable RF
predictions provides much greater predictive accuracy than that
introduced by amore suitable learning algorithm (e.g., XGBoost).
It is surprising that this powerful technique is so uncommonly
used, as has already been pointed out (Sheridan, 2013; Mathea
et al., 2016). In fact, we are not aware of any other previous
study applying reliability estimation to the prediction of drug
synergy on cancer cell lines. Here reliability prediction permitted
to reduce the RMSE by up to 50% depending on the cell line.
This is particularly exciting for virtual screening problems, where
only a small subset of the predictions can be tested in vitro. In
this scenario, it is useful to identify those combinations that are
not only predicted to be synergistic, but also reliable because
this should provide higher hit rates. Lastly, highly synergistic
combinations predicted with low reliability should also be tested,
as the corresponding measurements would be those broadening
the applicability domain of future models the most.

We have also found that using FG datasets leads to
substantially more predictive models than FF datasets. This result
is robust in that it is observed with various types of models
(XGB, RF, EN). Moreover, it occurs in spite of the availability
of slightly more training data. Further investigation revealed
that there are many more measurements of growth inhibition
and with greater variability in FF than in FG. This in turn
introduces more noise into ComboScore determinations in FF,
thus impairing its modeling. Inconsistencies between centers
measuring the response of cancer cell lines to drugs have been
observed before (Haibe-Kains et al., 2013). There has been
intense controversy about the extent, sources and impact of
these inconsistencies (Stransky et al., 2015; Geeleher et al., 2016;
Safikhani et al., 2016, 2017). In any case, it is clear that data
permits the development of predictive models regardless of the
screening center (Ammad-ud-din et al., 2014; Covell, 2015; Fang
et al., 2015; Naulaerts et al., 2017), as it has also been the case here
with NCI-ALMANAC. Owing to this controversy on datasets
from multiple screening centers, a better understanding of their

limitations and the identification of protocols to generate them
with improved consistency has emerged (Haverty et al., 2016).
These protocols will ultimately permit thatmerging datasets from
different screening centers result in further predictive accuracy.

CONCLUSION

While NCI-ALMANAC measured the synergies of over 5,000
combinations per cell line, this still represents a minuscule
part of all conceivable combinations. Even if we restricted
ourselves to the set of 12,000 drug molecules estimated to have
reached clinical development or undergone significant preclinical
profiling (Janes et al., 2018), almost 72 million combinations
per cell line would have to be tested in vitro to identify the
most synergistic among them. Therefore, the developed in silico
models are of great importance because these can drastically
reduce the number of required in vitro tests by predicting which
of the considered combinations are likely to be synergistic.
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