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Helicobacter pylori (H. pylori) infection is generally acquired during early childhood; therefore, the immune response which usually
takes place at this age may influence or even determine susceptibility to the infection contributing to the clinical outcomes in
adulthood. Several cytokines including IL-6, IL-10, and TGF-𝛽1 as well as Foxp3+ cell numbers have been shown to be higher;
however, some other cytokines consisting of IL-1𝛽, IL-17A, and IL-23 are lower in infected children than in infected adults. Immune
response to H. pylori infection in children is predominant Treg instead of Th17 cell response. These results indicate that immune
system responses probably play a role in persistent H. pylori infection. Childhood H. pylori infection is also associated with
significantly lower levels of inflammation and ulceration compared with adults. This review, therefore, aimed to provide critical
findings of the available literature about comparative immune system in children and adults with H. pylori infection.

1. Introduction

Helicobacter pylori (H. pylori) infections usually occur during
childhood, continue throughout the life, and cause severe
diseases such as gastritis, gastric ulcer, gastric carcinoma,
and duodenum ulcer in adulthood.H. pylori is a well-known
gastric pathogen infecting more than half of the world’s
people [1]. The outcomes of H. pylori infection seem to
be dependent on some factors like gene regulation factors,
genetic predisposition of the patient, receptor gene polymor-
phisms, particular cytokine, constituents, and environmental
influences [2, 3]. Fortunately, most of the infected children do
not develop any complications; however, the immunological
events which usually develop in the children gastric mucosa
are probably decisive in the immune response determining
the final outcome the infection. The colonization of the
stomach by this pathogen bacterium causes an inflammatory
response and recruits neutrophils, lymphocytes, dendritic
cells, and macrophages, to the gastric mucosa [4, 5]. There

are complex mechanisms by which H. pylori may start and
maintain the local immune response; however, cytokines
produced by both adaptive immune and innate systems
may lead to the development of gastric mucosa-associated
lymphoid tissue lymphoma, gastric adenocarcinoma, and
other ulcerative diseases; studies in H. pylori infection have
revealed that childhood H. pylori infection is usually asso-
ciated with significantly lower levels of gastric inflammation
and ulceration in comparison to adults.Therefore, this review
study was aimed to provide the critical findings of the
available literature about comparative immune system in
children and adults with H. pylori infection.

2. Bacterial Virulence Factors

Helicobacter pylori may express the virulence factors asso-
ciated with inflammation as well as inflammatory symp-
toms in infected patients. The main pathogenicity factors
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of Helicobacter pylori include 𝛾-glutamyl transpeptidase
(GGT), cytotoxin-associated gene A (cagA) product, and
virulence components vacuolating toxin (vacA), in addition
to pathogen-associated molecular patterns (PAMPs) such as
flagella and lipopolysaccharide (LPS) [6–9]. The cytotoxin-
associated gene (cag) pathogenicity island (PAI) is one of
these factors which has been extensively studied in regard
to inflammation [10–12]. Colonization with the strains that
possess cagA is more frequently associated with peptic
ulceration gastric adenocarcinoma or other gastric mucosal
complications than the cagA strains [13, 14]. It has been
shown that cagA may play a role in production of IL-8 as
well as activation of nuclear factor kappa-B (NF-𝜅B) [15].
Furthermore, expression of cagA induces production of IL-
8 and translocation of NF-𝜅B nuclear in gastric epithelial
cells [13, 16]. The vacA from H. pylori is capable of inducing
intracellular vacuolation in gastric epithelial cells. Hence, it
has been hypothesized that it may contribute in damage of
gastric and duodenal mucosa which ultimately leads to ulcer
formation, in vivo [14]. Moreover, the bacterial virulence fac-
tors vacA and cagA have important roles in pathogenesis of
H. pylori infection. Others like blood group antigen-binding
adhesion (BabA), outer inflammatory protein (oipA), sialic
acid-binding adhesion (sabA), iceA (induced by contact with
epithelium), and duodenal ulcer promoting gene (dupA)may
promote colonization of the mucosa, too [17]. In regard to
virulence factors cagA and vacA, these bacteria are very
heterogeneous [18]. A lot of evidences have revealed that
these genetic variations may have an important role in the
outcome of infection [19, 20].

3. T Cell Subsets

T helper (Th) cells have been shown to differentiate into
functional classes of two major CD4+ including Th1 cells
(able to produce some cytokines such as IL-2 and IFN-𝛾)
and Th2 cells (producing cytokines like IL-4, IL-5, and IL-
10) [21, 22]. Th1 cells mediated cell immunity, which has
an important role against intracellular parasites. However,
Th2 generates humoral immunity as well as prevention of
intestinal helminthes [23]. Other than Th1/Th2 paradigm,
a unique subset of IL-17 producing Th17 cells has been
discovered [24–26]. IL-23 has a crucial role in differentiation
of Th17 cells. However, IL-4 and IL-12 promote, respectively,
Th1 andTh2 cell differentiation [27]. It has been revealed that
IL-17 possesses 6 familymembers (IL-17A–F), IL-17A (simply
called IL-17) being the prototypic IL-17 family member [28,
29]. Furthermore, IL-17A exerts proinflammatory effects by
stimulation of the production of chemokines such as IL-
1, IL-6, cytokines, monocyte chemoattractant protein-1, and
upregulation of cell adhesion molecules like vascular cell
adhesion molecule-1 and intercellular adhesion molecule-
1. The IL-17A plays a crucial role in induction of autoim-
mune diseases such as inflammatory bowel disease (IBD),
experimental autoimmune encephalomyelitis (EAE), and
rheumatoid arthritis (RA), as well as chronic inflammatory
diseases [30–33]. Regulatory T (Treg) cells, by proliferation
of antigen specific T cells and suppressing the activation,

have important role in chronic inflammation. It should
be noted that depletion or dysfunction of Treg cells is
usually associated with inflammatory bowel disease, allergy,
and autoimmune disease [34]. Treg cells comprise different
subsets: Tr1 cells secreting interleukin IL-10, Th3 cells char-
acterized by transforming growth factor (TGF-𝛽1) secretion,
and naturally occurring FOXP3-expressing CD4+CD25high

Treg cells [35, 36]. The FOXP3+CD4+CD25high Treg cells are
further divided into two subsets: thymus derived naturally
occurring FOXP3+CD4+CD25high Treg cells and peripherally
induced FOXP3+CD4+CD25high Treg cells [37].

4. Differences in Immunity of
Children and Adults Infected and
Uninfected with H. pylori

The human gastric mucosal biopsies revealed that people
who were persistently infected with H. pylori, in comparison
to uninfected ones, show an increased and higher level
of infiltrated various types of leukocytes [38]. In these
specimens, lymphocytes (T and B cells), monocytes, mast
cells, neutrophils, macrophages, eosinophil, and dendritic
cells are usually present [2, 4]. CD4+ T cells, B cells and
dendritic cells may be organized in lymphoid follicles [39]
indicating ongoing chronic immune responses and antigen
presentation. In peripheral blood and gastric mucosa of
infected humans, the H. pylori-specific CD4+ T cells are
detectable which is not detectable in uninfected individuals
[40].The cytokines such as TNF-𝛼, IFN-𝛾, IL-1, IL-6, IL-7, IL-
8, IL-10, IL-17, IL-18, and IL-23 have usually increased levels
in the stomach of H. pylori-infected patients in comparison
to the uninfected subjects [2, 41, 42]. IL-4 is not usually
detectable in the gastric mucosa ofH. pylori-infected patients
[43]. Hence, to show, in children, the mucosal regulation
of H. pylori infection, which can provide a window to
the early host response to bacteria, the mucosal cytokine
response to the infection, the associated cellular infiltrate,
and the characterized bacteria might be helpful. Studies
on H. pylori-infected children and adults have shown that
children possess reduced gastric inflammation in comparison
to the infected adults, in spite of similarity in H. pylori
colonization level. Furthermore, inflammation in children
has been shown to be less in comparison to that of adults,
indicating a downregulation in immune response to infection
in children [44, 45].Moreover, the sequence analysis revealed
that the bacteria isolated from the infected children and
adults might have similar cagA and vacA gene profiles. The
difference in bacterial strains and common virulence factors
were not the cause of low level of inflammation in infected
children in comparison to adults [44]. H. pylori-infected
children in comparison to infected adults possess lower levels
of protein and gastric IL-17-specific mRNA as well as fewer
gastric Th17 cells, indicating more reduction in the mucosal
Th17 response in infected children. Moreover, the gastric
mucosa of the infected children has lower level of IFN-𝛾
mRNA, confirming the findings indicated of reduced Th1
response in children withH. pylori infection [46, 47]. Recent
study indicated that the gastric concentrations of cytokines
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Figure 1: Diagram of how the Treg cell response may influence inflammation, bacterial colonization density, and occurrence of H. pylori-
mediated disease.

representative of the innate and Th1 response were higher in
the H. pylori-positive than in the H. pylori-negative children
and adults. The gastric concentrations of IL-1𝛼 and TNF-𝛼
were significantly higher, while those of IL-2, IL-12p70, and
IFN-𝛾were lower in the infected children than in the infected
adults. In the infected children, the gastric concentration of
IL-1𝛼, IL-2, IL-12p70, and IFN-𝛾 increased, whereas in adults
the gastric concentrations of IFN-𝛾 and IL-12p70 decreased
with aging. Increased gastric concentration ofTh1-associated
cytokines correlated with increased degree of gastritis, that is,
the background lesion for the development of the H. pylori-
associated severe diseases [48]. Treg cells are described as
the key regulator of the immune system in the maintenance
of immunologic tolerance. Recently, the close relationship
between H. pylori infection and immunosuppressive Treg
cells has been reported in animal and human models [49].
Treg cells suppress H. pylori-induced Th1-mediated immune
response to contribute to the bacteria’s persistent colonization
in the gastric mucosa and therefore may play a major
role in inducing chronic gastritis. The TGF-𝛽1 and IL-10
gastric levels and the gastric number of Treg Foxp3+ cells
in H. pylori-positive groups are higher in children than in
adults (Table 1) [44, 46, 49–51]. The consensus is that Treg
cells and Th17 commitments might be mutually controlled.
TGF-𝛽 is required for the differentiation of both Treg cells
and Th17 by inducing key transcription factors, Foxp3 and
ROR𝛾t/RORc, respectively [52–54]. But, in absence of IL-
6, an exclusive Treg differentiation might occur as Foxp3
is capable of associating with and inhibiting the ROR𝛾t.
In contrast, in presence of IL-6, this inhibition might be
abrogated allowingTh17 differentiation [55]. In a paradoxical

pattern, the gastric concentration of IL-6 is usually less in
infected adults than in infected children. In this regard, it
might be hypothesized that these results are due to the higher
gastric levels of IL-23 in adults, compared with children,
which might prevent the amplification/stabilization of the
shifted Th17 cells. The other possibility might be the higher
level of TGF-𝛽 in the gastric milieu of infected children.
It should be noted that, at low levels, TGF-𝛽 synergizes
with IL-6 to promote IL-23 receptor expression in favor of
Th17 cell commitment. However, the high level of TGF-𝛽
represses IL-23 receptor expression favoring Foxp3+ Treg cell
differentiation [49, 56]. A recently published study revealed
that IL-6 overproductions by IL-6 transgenic mice do not
affect the function and development of natural Treg [57]. In
this regard, the predominant Treg differentiation in children
infected with H. pylorimight account for more susceptibility
of children to the H. pylori infection as well as to the
bacterium persistence. Study in mouse stomach showed
that H. pylori-induced dendritic cells skew the Th17/Treg
balance toward a Treg-biased response that suppresses Th17
immunity through a cagA and vacA independent, TGF-𝛽
and IL-10-dependent mechanism [58, 59]. In support of these
findings, recent study showed that H. pylori was capable of
stimulating human gastric dendritic cells to produce IL-10,
potentially supplementing Treg suppression of inflammation
in the gastric mucosa [60, 61] (Figure 1). From these findings
we might conclude that H. pylori-induced gastritis in adult
is the consequence of both Th1 and Th17 immune-mediated
inflammatory pathway involvement and that both pathways
might be downregulated in the gastric mucosa of infected
children.
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Table 1: Comparative immune response and clinical outcome in
children and adults infected with H. pylori.

Children Adults
Th1 ↓ ↑

Th17 ↓ ↑

Treg ↑ ↓

TGF-𝛽1 ↑ ↓

IL-10 ↑ ↓

Gastric inflammation ↓ ↑

Neutrophil infiltration ↓ ↑

Peptic ulcer ↓ ↑

Virulence factors Similar Similar

5. Conclusion

In conclusion, H. pylori infection in children is associated
with high Treg response, as well as low Th1 and Th17
response [44, 46]. But, H. pylori-specific Th17/Th1 detection
in chronically infected patients may reveal that the initial
response is progressively lost [43, 62], indicating that, with
progression of time, the mucosal immune system probably
identifies H. pylori, as a pathogen. Hence, Th1, Th17, and
Treg results may imply gastric mucosal response toH. pylori.
More data from immune-mediatedmechanism(s) ofmucosal
inflammation is required to provide strategies against this
challenging pathogen, particularly for childrenwho are living
in countries with high rate of gastric cancer and/or H. pylori
infection.
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