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Comparing structural and transcriptional drug networks
reveals signatures of drug activity and toxicity in

transcriptional responses

Francesco Sirci', Francesco Napolitano', Sandra Pisonero-Vaquero', Diego Carrella’, Diego L. Medina' and Diego di Bernardo @'

We performed an integrated analysis of drug chemical structures and drug-induced transcriptional responses. We demonstrated
that a network representing three-dimensional structural similarities among 5452 compounds can be used to automatically group
together drugs with similar scaffolds, physicochemical parameters and mode-of-action. We compared the structural network to a
network representing transcriptional similarities among a subset of 1309 drugs for which transcriptional response were available in
the Connectivity Map data set. Analysis of structurally similar, but transcriptionally different drugs sharing the same MOA enabled
us to detect and remove weak and noisy transcriptional responses, greatly enhancing the reliability of transcription-based
approaches to drug discovery and drug repositioning. Cardiac glycosides exhibited the strongest transcriptional responses with a
significant induction of pathways related to epigenetic regulation, which suggests an epigenetic mechanism of action for these
drugs. Drug classes with the weakest transcriptional responses tended to induce expression of cytochrome P450 enzymes, hinting
at drug-induced drug resistance. Analysis of transcriptionally similar, but structurally different drugs with unrelated MOA, led us to
the identification of a 'toxic' transcriptional signature indicative of lysosomal stress (lysosomotropism) and lipid accumulation
(phospholipidosis) partially masking the target-specific transcriptional effects of these drugs. We found that this transcriptional
signature is shared by 258 compounds and it is associated to the activation of the transcription factor TFEB, a master regulator of
lysosomal biogenesis and autophagy. Finally, we built a predictive Random Forest model of these 258 compounds based on 128

physicochemical parameters, which should help in the early identification of potentially toxic drug candidates.
npj Systems Biology and Applications (2017)3:23 ; doi:10.1038/s41540-017-0022-3

INTRODUCTION

Chemoinformatics approaches to rational drug design have
traditionally assumed that chemically similar molecules have
similar activities. More recently, transcriptional responses of cells
treated with small molecules have been used in the lead
optimization phase of drug discovery projects’ and to reveal
similarities among drugs, and quickly transfer indications for drug
repositioning.”™®

The Connectivity Map (CMAP), the largest peer-reviewed public
database of gene expression profiles following treatment of five
human cancer cell lines with 1309 different bioactive small
molecules,” 7 has been extensively used by both the academic
and industrial communities.> &

Whereas computational medicinal chemistry’s 'pros' and 'cons'
have been extensively addressed over the recent years,” '’ in
contrast, the advantages and limits of methods based on
transcriptional responses have not been thoroughly addressed." 3
So far, comparison of the chemical vs. transcriptional 'landscape'
of small molecules has been performed to elucidate the molecular
mechanisms mediating the therapeutic activity of existing drugs
(MOA) and to find new off-label applications.'®" In this work, on
the contrary, we addressed two still unanswered questions: (1) do

transcriptional responses and chemical structures provide similar
information on the drug mechanism of action and adverse effects?
(2) If not, why does the information provided by transcriptional
responses and chemical structures differ?

Answering these questions may help in addressing clinically
relevant problems such as drug resistance and drug-toxicity that
lie at the interface of chemoinformatics and transcriptomics.?>2*
In this work, we compared chemical structures to transcriptional
responses in the CMAP dataset by first generating a 'structural’
drug network by connecting pairs of structurally similar drugs, as
measured by three-dimensional (3D) pharmacophore descriptors
based on molecular interaction fields.> 2° We then compared the
structural drug network to a transcriptional drug network where
drugs are connected if they induce a similar transcriptional
profile.® 27 28

Through the integrated analysis of chemical structures and
transcriptional responses of small molecules, we revealed limita-
tions and pitfalls of both transcriptional and structural approaches,
and proposed ways to overcome them. Moreover, we found an
unexpected link between drug-induced lysosomotropism and
lipid accumulation, common adverse effects, and a specific
transcriptional signature mediated by the transcription factor
TFEB.
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and rich-clubs (groups of communities) sharing common chemical structures and enriched for drugs with similar Mode of Action. Examples of
three Rich Clubs are shown. a The steroids rich-club (1: testosterone scaffold, 2: estradiol scaffold, 3: cortisone scaffold, 4: progesterone
scaffold, 5 and 6: mixed steroids); b The antibiotics rich-club (1 and 2: tetracycline scaffold, 3: cephalosporin scaffold, 4: penicillin scaffold); and
¢ The CNS-acting drug rich-club (1 and 2: phenothiazine scaffold, 3-6: various tricyclic antidepressant scaffolds)

RESULTS

The CMAP data set is a collection of transcriptional responses of
human cell lines to small molecules. It includes transcriptional
profiles following treatment of 1309 small molecules across five
different cell lines, selected to represent a broad range of
activities, including both FDA-approved drugs (670 out of 1309
(51%)) and non-drug bioactive 'tool' compounds.? An extension of
this data set to more than 5000 small molecules is being
completed but it includes only 1000 genes and it has not been
peer-reviewed yet (LINCS http://www.lincscloud.org).> 7 We
selected the small molecules present in the CMAP and in the
upcoming LINCS resource for a total of 5452 compounds
(Supplementary Fig. 1). We then performed a physicochemical
characterization of these 5452 small molecules by computing 128
physicochemical descriptors using 3D molecular interaction fields
(MIFs) derived from their chemical structures.? 3°

Principal component analysis (PCA) of the 128 descriptors for all
the 5452 compounds in Supplementary Fig. 2a reveals that the
first two principal components (PC1 and PC2) explain most of the
descriptors’ variance (53%). PC1 (36%) is related to descriptors of
hydrophobic and aromatic properties (Supplementary Fig. 2b),
whereas PC2 (17%) to molecular size and shape. Most of these
small molecules follow the ‘Rule of Fives (RoFs)’, that is the set of
physicochemical features shared by biologically active drugs:
MW < 500 Da (89%); N.HBA < 10 (93%); N.HBD <5 (97%); LogP <5
(85%) (Supplementary Fig. 3).3" 32

Chemical structure similarities induce a hierarchical network
connecting drugs with similar scaffolds and mode of action

We derived a structural drug network where each small molecule is
a node and an edge connects two small molecules if they have
similar 3D structures. To this end, we computed the structural
distance between each pair of small molecules based on the
similarity between their 3D-pharmacophore quadruplet-based
fingerprints (Methods and Supplementary Fig. 4)3* A short
structural distance (i.e., close to 0) between two compounds
indicates that they are structurally similar.

We obtained a symmetric 5452 x 5452 structure-based drug-
distance matrix containing 14,859,426 distances between all the
possible pairs of drugs. We considered each compound as a node
in the network and connected two nodes if their distance was
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below a threshold value (see Methods section). The resulting drug
network consists of 5312 nodes and 742,971 edges, corresponding
to 5% of a fully connected network with the same number of
nodes (14,859,426 edges). A network representation has the
advantage of offering an intuitive and interactive graphical
representation of the structural similarities among compounds,
enabling to visualize a compound of interest in the context of the
overall chemical space. We made available an interactive website
to explore and query the structural drug network (http://
chemantra.tigem.it). In addition, well-established network analysis
tools can be used to partition the network into communities
consisting of groups of densely interconnected nodes by means of
the Affinity Propagation (AP) clustering algorithm ** 3 on the
network matrix (see Methods section).* We thus identified 288
communities (containing more than three drugs) across 5302
drugs (out of 5452) that group together compounds sharing
similar chemical functionalities, scaffolds and sub-structural
fragments. The AP clustering assigns to each community an
‘exemplar, i.e, the drug whose structure best represents the
structures of the other drugs in the community. By iteratively
applying the AP clustering on the exemplars, we could further
group communities into 42 Rich Clubs, ie. clusters of drug
communities that are structurally related but with distinct
characteristic functional groups (Fig. 1).

We then identified the dominant physicochemical parameters
for each Rich Club by selecting those parameters whose values
tend to be significantly high among compounds within the same
Rich Club (see Methods section). Chemotherapeutic agents were
mainly found in two Rich Clubs (RC12 and RC19) both enriched for
physicochemical descriptors related to hydrophobicity (CD3, CD4,
CD5, CD6, CD7) and metabolic stability (MetStab), indicative of
their capacity to cross the cell membrane and exert their cytotoxic
function. Antihistamines and antipsychotics were found in the
same Rich Club (RC5) enriched for permeability-related descriptors
(IgBBB), in agreement with their ability to cross the blood-brain
barrier (BBB). Cardiac glycosides (RC23) were characterized by
descriptors related to size and shape (molecular weight, volume,
surface and polar surface area) in agreement with the fact that
most of these compounds are large plant-derived molecules. The
complete list of physicochemical parameters for each Rich Club
can be found in Supplementary Table 1.
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Fig. 2 Comparison of transcriptional and structural distances between 784 CMAP compounds having at least one ATC annotation. Each dot
represents the structural (x-axis) and transcriptional (y-axis) distance between two compounds. A total of 306,936 drug-pairs are shown. Drug-
pairs having the same clinical application as annotated by their ATC code are represented by red dots. Dashed lines represent the significance
threshold for the transcriptional (horizontal line) and structural (vertical line) distance, splitting the plane into four quadrants. Representative
examples of drug-pairs are shown for quadrants |, Il and Ill: drug-pairs in quadrant | have similar structure but induce different transcriptional
responses; drug-pairs in quadrant Il exhibit both similar structure and similar transcriptional responses; drug-pairs in quadrant Ill have

different structures but induce similar transcriptional responses

To assess the structural network, we collected the ATC
(Anatomical Therapeutic Chemical) code, an alphanumerical
hierarchical pharmacological classification, for 936 out of 5452
drugs (see Methods section). We then verified that drugs
connected in the network tend to share the same ATC code
(Supplementary Fig. 5). We also verified that drugs within a
community share a common therapeutic application. Indeed, 230
out of 288 (80%) structural communities were significantly
enriched for compounds sharing the same ATC code (false
discovery rate < 0.05) (Supplementary Fig. 6).

These results demonstrate that inspection of the structural drug
network can provide useful information on the drug mechanism
of action and possibly help in identifying candidates for drug
repositioning.

Chemical similarity between drugs is largely uncorrelated with
similarity in induced transcriptional responses in CMAP

In a previous study,* >’ we reported on the construction of a
‘transcriptional network' among 1309 small-molecules part of the
CMAP dataset® (http://mantra.tigem.it) where two drugs are
connected by an edge if they induce a similar transcriptional
response. Briefly, in CMAP each transcriptional response is
represented as a list of genes ranked according to their differential
expression in the drug treatment vs. control. Since each drug is
associated to more than one ranked list (cell, dosage, etc.), to
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obtain the transcriptional network, we first computed a prototype
ranked list (PRL) by merging together all the ranked lists referring
to the same compound to generate a single ranked list.* The PRL
thus captures the consensus transcriptional response consistently
reducing non-relevant effects due to toxicity, dosage, and cell
line.* Transcriptional similarity among the 1309 PRLs (one for each
drug) was quantified by Gene Set Enrichment Analysis and
represented as a distance (i.e., 0 for identical responses, and
greater than 0 if dissimilar).® The transcriptional network was
obtained by connecting two nodes if their distance was below a
significant threshold value chosen so that the total number of
edges is equal to 5% of a fully connected network with the same
number of nodes (856,086 edges).

Here, we compared structural and transcriptional similarities
among all pairs of drugs, part of the CMAP dataset, as shown in
Fig. 2 and Supplementary Fig. 7 where each point is a drug-pair
and its position in the plane represents the structural (x-axis) and
transcriptional (y-axis) distance between the two drugs, for a total
of 856,806 drug-pairs. The structural-transcriptional plane can be
subdivided into four quadrants by straight lines representing the
significance thresholds for the transcriptional (y-axis) and struc-
tural (x-axis) distances: quadrant | (5.1% of drug-pairs) contains
drug-pairs with similar structures but inducing different transcrip-
tional responses; quadrant Il (0.3% of drug-pairs) contains
coherent drug-pairs that are both structurally and transcriptionally
similar; quadrant Il (4.0% of drug-pairs) consists of drug-pairs with
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different structures but inducing similar transcriptional responses;
finally drug-pairs different both in structure and transcription are
found in quadrant IV (91% of drug-pairs). This quadrant contains
most drug-pairs since two random drugs usually have no common
function at all. We call drug-pairs in quadrant | and Il incoherent
because of the discrepancies between structural and transcrip-
tional similarities, whereas drug-pair in quadrants Il and IV are
coherent.

Overall, Fig. 2 shows that the information detected by
transcriptional responses and chemical structures tend to be
different and independent of each other. We therefore decided to
investigate the causes for this lack of correlation.

Chemically similar drugs do not induce similar transcriptional
responses because of weak transcriptional effects

Drug pairs sharing highly similar chemical structures but very
different transcriptional responses are found in Fig. 2 (quadrant I).
The most surprising example was the betamethasone/dexametha-
sone drug-pair. Both drugs are glucocorticosteroids binding the
glucocorticoid receptor (GR) with very high affinity and nearly
identical in structural since they are enantiomers of each other.
Transcriptionally, in contrast, these two drugs appear to be
completely different. We then searched for the other drug-pairs
composed of glucorticoids and observed that they behave
similarly to the betamethasone/dexamethasone pair in that they
are mostly found in quadrant | (Supplementary Fig. 8g).

One possible explanation is that these compounds cause no or
weak transcriptional effects in the cell lines used in CMAP,
probably because they are resistant to these compounds, and thus
the measured transcriptional responses are too noisy to be
informative.

To assess whether a perturbation (e.g., drug treatment) leads to
a strong and informative transcriptional response, we introduce
the 'transcriptional variability' score (TV). The TV score is based on
the assumption that when the cellular context contains the
necessary molecular milieu to make it responsive to a small
molecule, then multiple treatments with the same compound will
yield consistent and similar transcriptional responses. To obtain
the TV for a small molecule, we computed the median of the
transcriptional distances among its biological replicates in CMAP
(see Methods section). A TV close to 0 implies very similar
transcriptional responses across replicates, indicating that the
small molecule induces a reliable transcriptional response. In
contrast, a high TV implies a weak and unreliable transcriptional
signature.

To assess whether TV is indeed able to detect informative vs.
non-informative transcriptional responses to small-molecules, we
exhaustively computed the TV of 1165 CMAP drugs (out of 1309)
for which at least two transcriptional responses in the MCF7 cell
line were available (Methods and Supplementary Table 2). Out of
the 1,165,858 (73%) have a TV score greater than the significance
threshold implying that most drugs in CMAP induce a weak
transcriptional response (see Methods section).

We compared the TV of drugs belonging to different classes,
which were chosen because of their expected activity, or lack
thereof, in the CMAP human cancer cell lines (Fig. 3 and
Supplementary Table 2). As expected, glucocorticosteroids exhibit
higher values of TV when compared to the other classes of drugs.
Similarly, antibiotics and NSAIDs induce very weak transcriptional
responses (high TV values). Most antihistamines and antipsycho-
tics induce weak transcriptional responses since they target-
specific cell membrane receptors lowly, or not expressed, in CMAP
cancer cell lines and with no direct transcriptional effects.

We observed that drugs with a high TV, hence exhibiting a weak
and noisy transcriptional response, tend to have higher transcrip-
tional distances from the other drugs in CMAP (i.e., they tend to be
isolated in the network) and vice-versa (Supplementary Fig. 9).
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Fig. 3 The Transcriptional Variability (TV) of different drug classes.
Box-plots summarizing the TV for drugs within each class. The bold
line in each box represents the median, while the whiskers represent
the 25" and the 75™ percentile. Dots represent outliers. Prt.inh.:
Protein synthesis inhibitors; HDAC: histone deacetylase inhibitors;
Chemoth.: chemotherapeutic agents; Antibio.: antibiotics; NSAIDs:
non-steroid antinflammatory agents; GC: glucocorticoids; Antipsych:
antipsychotics; Antihist: antihistamines

Consistently with this observation, compounds within these drug
classes tend to be found in drug-pairs belonging mostly in
quadrant | (structurally similar but transcriptionally different) and
quadrant IV (both structurally and transcriptionally different) as
shown in Supplementary Fig. 8.

Conversely, drugs with the lowest TV (Fig. 3 and Supplementary
Table 2), and thus with strong transcriptional responses, consist
mostly of lipophilic molecules acting as protein synthesis
inhibitors, chemotherapeutic drugs and other DNA/RNA inter-
calating agents, and histone deacetylase inhibitors, which all have
a strong activity in most cell types. Interestingly, cardiac glycosides
were also found to have a low TV. As shown in Supplementary Fig.
8, most drug-pairs within these drug classes tend to be found in
quadrant IIl (structurally different but transcriptionally similar).

Transcriptional phenotyping of low-TV drug classes uncovers
cardiac glycosides as potent modulators of epigenetic pathways
We transcriptionally phenotyped the four drug classes with the
lowest TV, and hence with the most reliable transcriptional
responses (Fig. 3). To this end, we applied Drug Set Enrichment
Analysis (DSEA),*® a method we recently introduced to identify,
from transcriptional responses, the molecular pathways that are
significantly modulated by most of the drugs in a set. DSEA
highlights phenotype-specific pathways, thus helping to formulate
hypotheses on the MoA shared by the drugs in the set. We chose
to run DSEA using as pathway databases Gene Ontology terms:
biological process (BP), cellular component (CC) and molecular
function (MF). DSEA results including Enirchment Scores and P-
value are reported in Supplementary Table 3

Protein synthesis inhibitors were enriched for pathways related
to translation, such as tRNA ligase activity (MF), ribosome (CC), ER
and Golgi compartments (CC), but also related to steroid
biosynthesis (BP) (Supplementary Table 3). Interestingly, block of
steroid synthesis is a well-known effect of protein synthesis
inhibitors in vivo.”

Chemotherapeutic agents, as expected, strongly induced the
p53-mediated DNA damage response pathway (BP), several cell
cycle-related pathways (BP, CC and MF) and pathways related to
the kinetochore (CC) and microtubule motor activity (MF).
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In the case of HDAC inhibitors, DSEA found enriched pathways
related to histone acetyl transferase activity (MF, BP), chromatin
remodeling (BP) but also to mitochondria (CC) and RNA splicing
(CC, BP), a recently discovered but still not fully dissected effect of
HDAC inhibitors.>®

The most interesting observation was made for cardiac glyco-
sides that strongly modulate pathways involved in epigenetic
regulation, such as histone acetylation (BP), nucleosome assembly
(BP, CC) and transcription from pol Il (BP) (Supplementary Table 3).
This is an unexpected finding, as these drugs target Na*/K*
ATPase pumps. Interestingly, in a recent unbiased epigenetic drug
screening using FDA-approved drug libraries, cardiac glycosides
were indeed found to potently reactivate silenced gene expres-
sion via epigenetic mechanisms probably mediated by calcium
signaling, and independent of their ATPase pump inhibitory
effects.®® This activity of cardiac glycosides may be the reason for
the strong transcriptional responses they induce, as evidenced by
the low TV of this drug class.

Lack of drug activity in high-TV drug classes is partly mediated by
cytochrome P450 enzyme expression

We hypothesized that some drug classes may exhibit weak
transcriptional responses (i.e., high TV), because of drug-induced
drug resistance. We thus evaluated the expression of genes
involved in cytochrome P450-mediated drug metabolism and in
drug efflux in each of the drug classes in Fig. 3 by means of Gene
Set Enrichment Analysis (Supplementary Fig. 10). We found a
positive correlation (Pearson Corr. Coeff.=0.64 in Supplementary
Fig. 10) between Transcriptional Variability and the expression of
Cytochrome P450-mediated drug metabolism genes across drug
classes (whereas no correlation was found for drug efflux genes—
data not shown). Hence, drug classes with a weak transcriptional
response tend to upregulate the expression of cytochrome P450-
mediated drug metabolism, which may explain, at least in part,
why these drugs induce weak transcriptional responses.

Removing weak transcriptional responses from the CMAP data set
improves drug classification performances
We reasoned that by removing drugs with a high TV, the
performance of computational approaches based on gene
expression to elucidate the MoA of a drug should improve.* %’
We thus partitioned the small molecules included in CMAP in two
sets according to their TV score, obtaining a high-TV set and a low-
TV set with the same number of drugs to facilitate the comparison.
We then assessed the performance of the transcriptional distance
between two drugs in correctly identifying those pairs sharing the
same therapeutic application (i.e., the same ATC code), when
using either drugs in the high-TV set or those in the low-TV set, as
previously described.® As shown in Fig. 4, the low-TV set
performance far exceeds the high-TV set performance, which is
almost random. Moreover, the correlation between structural
distance and transcriptional distance in the chemical-
transcriptional landscape of small molecules in Fig. 2 increases if
drugs in the low-TV set only are used (Supplementary Fig. 11).
Overall, these results show that the TV score can discriminate
between informative and non-informative transcriptional
responses that result from the activity, or lack thereof, of small
molecules in a specific cell line.

Drugs with different chemical structures and modes of action may
induce similar transcriptional responses related to lysosomal stress
and phospholipidosis

Figure 2 (quadrant Ill) includes drug-pairs with very different
molecular structures but which are transcriptionally similar. We
identified at least two causes for the discrepancy between
transcriptional and structural similarities: (i) drug-pairs in this
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Fig. 4 Performance of the transcriptional distance in detecting
drugs with the same ATC code. Compounds were divided into three
sets: (all) the 1165 compounds in CMAP having at TV value; (high
TV) 582 compounds with a TV higher than the median TV among all
the compounds; (low TV) 582 compounds with a TV lower than the
median TV. For each set, the transcriptional distance of each drug-
pair was computed. Drug-pairs were then sorted according to their
transcriptional distance, with drug-pairs with the smallest distance
towards the origin of the x-axis; the positive predictive value (PPV)
was computed as the percentage of true positives over false
positives plus true positives and shown on the y-axis. The PPV
obtained by randomly sorting drugs is also shown (Random)

quadrant tend to have at least one drug with a very large size
(11% in quadrant Ill vs. 1% in quadrant | and 3% in quadrant Il), as
shown in Fig. 2 and Supplementary Fig. 12; hence, global chemical
similarity metrics, such as the one used here, may fail; (i) the direct
molecular targets of two drugs in a pair may be different but act in
the same pathway (e.g., purine synthesis inhibitors methotrexate/
mycophenolic-acid that act on different molecular targets but
both block DNA synthesis, Supplementary Fig. 12).°°** We
estimated that this effect applies to between 32% and 61% of
the drug-pairs in quadrant lll, depending on the pathway database
used (see Methods section).

Figure 2 (quadrant lll), however, contains also a large fraction of
drug-pairs that are not large molecules and do not act in the same
pathway, nor share the same therapeutic application, but never-
theless have very similar transcriptional profiles. To investigate
why this is the case, we ranked drug-pairs in this quadrant by their
transcriptional distance in ascending order (Supplementary Table
4). We noticed that the top-ranked most transcriptionally similar
drug-pairs included well-known 'lysosomotropic agents' inducing
large vacuolization in cells such as astemizole, terfenadine and
mefloquine (Table 1).**™* Among these agents, astemizole and
terfenadine are no longer in use because of cardio-toxicity caused
by their potassium channel blocker activity (hnERG encoded by
KCNH2), which may lead to fatal cardiac arrhythmia.*® %’ The
lysosomotropic effect of these small molecules has been
attributed to their ability to cross lysosomal membrane and
remain trapped within the lysosome by a mechanism known as
pH partitioning.*® *°=>! Most lysosomotropic agents belong to the
class of cationic amphiphilic drugs (CADs) containing both a
hydrophobic and a hydrophilic domain. CADs have increased
probability to cause drug-induced phospolipidosis (PLD),** a
lysosomal storage disorder characterized by the accumulation of
phospholipids  within the lysosome by unclear molecular
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Table 1. Drug-pairs with different chemical structures but inducing
very similar transcriptional responses
Drug A Drug B Tr. Dist. Str. Dist.
digoxin lanatoside_C 0.131 0.693
digoxin proscillaridin 0.166 0.758
lanatoside_C | proscillaridin 0.187 0.776
rifabutin vorinostat 0.286 0.826
astemizole terfenadine 0.337 0.724
astemizole mefloquine 0.385 0.776
doxorubicin mitoxantrone 0.414 0.651
mefloquine terfenadine 0.421 0.767
chlorzoxazone | clindamycin 0.442 0.829
chlorzoxazone | glibenclamide 0.445 0.791
terfenadine trifluoperazine 0.453 0.758
irinotecan phenoxybenzamine | 0.455 0.800
suloctidil terfenadine 0.466 0.696
astemizole trifluoperazine 0.469 0.718
protriptyline trifluoperazine 0.472 0.713
niclosamide trifluoperazine 0.472 0.688
mefloquine trifluoperazine 0.478 0.674
doxazosin sulconazole 0.481 0.776
lomustine phenoxybenzamine | 0.484 0.719
Drug-pairs in Fig. 2 (quadrant Ill) were ranked by transcriptional distance
(Tr. Dist.). Only the top 20 ranked drugs pairs are shown together with their
structural distance (Str. Dist.). Lysosomotropic drugs are shown in italic and
phospholipidosis inducing drugs in bold. Shaded rows highlight when one
of the member of a pair is CAD or PLD drug

mechanisms, leading to cellular stress.>>™” Indeed among the
lysosomotropic drugs involved in the most transcriptionally similar
drug-pairs (Table 1), there were also three known PLD-inducing
drugs (astemizole, suloctidil and trifluoperazine).

We hypothesised that 'lysosomotropic' stress induced by these
compounds could explain their similarity in transcriptional
responses. We therefore selected 187 CAD compounds present
in CMAP according to their physicochemical properties (LogP > 3;
pKa>7.4).>° Within these CAD compounds, we searched the
literature for lysosomotropic drugs known to induce PLD,*? which,
according to our hypothesis, should elicit a strong transcriptional
response. We thus identified a total of 36 compounds (PLD/CAD)
(Supplementary Table 5).

We verified that PLD/CAD compounds tend to induce a stronger
transcriptional response (i.e., a lower TV) (Supplementary Fig. 13)
and they tend to be transcriptionally similar among them (but not
structurally) despite having different MOA and therapeutic
applications (Supplementary Fig. 14).

We next asked which genes were transcriptionally modulated
by the majority of PLD/CAD compounds. We applied DSEA*® to
the 36 PLD/CAD compounds and found that the most significant
gene set, out of about 5000 gene-sets within the Gene Ontology
(GO) database, was the GO-Cell Component term 'lysosome'
consisting mainly of genes coding for lysosomal enzymes and ion
channels (p=5.03 x 108 —Supplementary Table 6), thus in
agreement with the 'lysosomotropic' effect of these drugs.

Recently, the transcription factor E-box (TFEB) has been found
to be a major player in the transcriptional control of lysosomal
genes in response to a variety of cellular and environmental
stresses.®® In normal nutrient conditions TFEB is phosphorylated
by the mTORC1 complex on the lysosomal surface. This
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phosphorylation favors TFEB binding to 14-3-3 proteins and its
retention in the cytoplasm.>*®' Upon stress signal, such as
nutrient deprivation, mTOR is inhibited, the calcium-dependent
phosphatase Calcineurin is activated, and TFEB is de-
phosphorylated shuttling to the nucleus where it transcriptionally
controls lysosomal biogenesis, exocytosis and autophagy.”®®°
Moreover, TFEB was shown to translocate to the nucleus upon
amiodarone treatment, a well-known lysosomotropic agent.®® We
thus decided to investigate whether TFEB activation was
responsible for the characteristic transcriptional response induced
by PLD/CAD compounds.

The transcriptional response of PLD-inducing compounds is
associated to TFEB translocation

We performed a panel of high content screening (HCS) assays
including the TFEB nuclear translocation assay (TFEB-NT)®® at 3 h
and 24 h following drug administration at different concentrations
(0.1, 1 and 10 uM) for 34 out of 36 PLD drugs (two drug was not
available to us at the time). HCS assays at 24 h included LAMP-1
immunostaining and Lysotracker dye to quantify lysosomal
compartment (see Methods section), GM130 and PDI immunos-
taining to detect morphological changes in the Golgi and ER
(Endoplasmic Reticulum) compartments, both of which have been
recently suggested to be involved in PLD etiology (see Methods
section). We also performed the LipidTox assay at 48 h to check for
the accumulation of phospholipids to confirm PLD at least in vitro
(see Methods section).

Quantification of the HCS assays for the 34 PLD drugs is
reported in Supplementary Table 7. Nuclear translocation of TFEB
at 3 h was observed for 18 out of 34 drugs (53%) increasing to 29
drugs at 24 h (85%). Out of these 29 drugs, 27 induced an increase
in lysosome size and number as evidenced by LAMP1 and
Lysotracker staining, and all 29 drugs induced accumulation of
phospholipids according to the Lipidtox assay (100%). Only five
drugs did not induce TFEB translocation at 24 h, and just one out
of these five drugs was positive in the Lysotracker assay, while four
of them were positive in the Lipidtox assay. None of the drugs
tested were positive for the Golgi marker and only six were
positive for the ER marker, albeit marginally.

Overall, HCS confirmed a concentration dependent nuclear
translocation of TFEB for 29 out of 34 drugs (85% at 24 h) with a
concomitant perturbation of the lysosomal compartment for 28
out of 34 drugs (82%) occurring mostly at the highest dosage
tested (10 uM). Furthermore, HCS revealed an accumulation of
lipid in vitro at 48 h following treatment with the 34 drugs (100%)
at the highest dosage tested (10 uM), as previously reported in the
literature.>?

These results support the role of TFEB in shaping the
transcriptional response of cells treated with PLD-inducing drugs
in a way completely unrelated to their MoA. We next asked
whether the activation of TFEB (or TFE3, another member of the
MIT family of transcription factors with similar functions) is a
consequence of lysosomal stress upon compound treatment or if
it is directly related to the induction of the PLD phenotype. Thus,
we set up a HCS Lipidtox assay using TFEB wt vs. TFEB/TFE3 KO in
Hela cell type, administering high dosage of chloroquine (50 uM)
known to induce lipids accumulation in cells at 48 h. Supplemen-
tary Fig. 15a, b show no major differences in terms of spot
intensity in the Lipidtox assay, thus confirming that TFEB
activation is a consequence of lysosomal stress and not an
inducer of PLD. As this manuscript was under review, Lu et al.
reported an increase in TFEB, TFE3 and MITF translocation to the
nucleus in ARPE-19 cells together with lysosomal activation and
lipid accumulation following treatment with eight lysosomotropic
compounds, well in agreement with our results.>
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Fig. 5 Drugs inducing a lysosomotropic gene expression signature. The transcriptional responses elicited by eight lysosomotropic
compounds were combined into a single node in the transcriptional drug network (red triangle). Transcriptional distances to this
lysosomotropic gene expression signature were computed for all the 1309 drugs in CMAP. Only drugs with a transcriptional distance below
the significance threshold are shown (0.8) and color-coded according to their ATC classification. Triangles (PLD + drugs); squares (CAD + drugs);

circles (CAD- and PLD)

A PLD-specific transcriptional signature can predict compounds
inducing lipid accumulation

We combined the transcriptional responses elicited by the 36 PLD/
CAD compounds into a consensus transcriptional response (‘PLD'
signature) and computed its transcriptional distance from all
the other 1273 (i.e., 1309-36) CMAP compounds (see Methods
section). We reasoned that drugs inducing a transcriptional profile
similar to the PLD signature should have a higher probability of
inducing lipid accumulation than the other drugs. Surprisingly,
258 compounds out of 1274 (20%) cMAP compounds were found
to be similar to the PLD signature (Supplementary Table 8). About
a third of these drugs are CADs (77 out of 258 (30%)).

Figure 5 reports a breakdown by ATC classes of drugs for which
an ATC code was available and that were found to induce a
transcriptional response similar to the PLD signature. Some drug
classes (ATC classes NO5, NO6 and R06 including antihistamines
and antipsychotics) are enriched for known PLDs. % ** Other
classes cause global cellular stress responses not mediated by
their physicochemical properties, but rather because of their direct
molecular targets, such as anti-cancer compounds that block cell
cycle (e.g., ATC class LOT composed of CDK2 and Topoisomerase |,
Il inhibitors). Antihelmintics (ATC P02) and antifungals (ATC DO1),
despite being neither CADs nor PLDs, were also found among the
PLD node’s neighbors. Several recent reports in the literature have
found antihelmintics to induce an anti-proliferative effect in
cancer cell lines by indirectly inhibiting the mTOR pathway thus
inducing TFEB activity, which may explain their PLD-like transcrip-
tional response.®" 667%° Calcium channel blockers were also found
to induce a transcriptional response similar to PLDs, which may be
expected since calcium signaling has been involved in autophagy
regulation and lysosomal function.®® Interestingly, some cardeno-
lides (ATC CO1 and C07) were also found to contain the PLD
signature, despite not being CADs (median distance equal to
0.71).7% 7!

To experimentally validate the usefulness of the PLD transcrip-
tional signature in identifying novel PLD drugs, we selected the
top quartile of the 258 drugs (i.e., 25% of 258 = 64 drugs) with the
shortest transcriptional distance to the PLD node and performed
HCS for lipid accumulation following drug treatment at three
different concentrations (Lipidtox assay) (Supplementary Table 9).
Twenty-two out of the top 64 small molecules were present in our
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HCS small-molecule library. Overall 11 out of 22 (50%) compounds
were positive to the Lipidtox assay (Supplementary Table 9),
including Terfenadine, a cardiotoxic lysosomotropic CAD, not
reported to be a PLD inducer in the literature, which caused a
strong accumulation of lipids, as shown in Fig. 6 (LipiTox Intensity
Spot: 450.93 at a concentration of 10 uM).

Overall, our data demonstrate the value of the PLD transcrip-
tional signature in identifying compounds potentially inducing
lysosomal stress and phospholipidosis.

Improved physicochemical models of compounds causing
lysosomal stress and potentially PLD could aid in rational drug
design. To this end, we selected the 258 compounds most similar
to the PLD transcriptional signature, and identified the physico-
chemical parameters that best distinguish these drugs from the
rest. We applied a random-forest model to classify the 258
compounds (out of the 1309 compounds) using as features the
128 physicochemical descriptors (Supplementary Methods). The
overall classification error rate (OOB, out of bag) was of 22%.
Interestingly, the most important features used by the classifica-
tion model were the Log-P (First ranked; Supplementary Fig. 16a,
b) and the pH-specific log-D (IgD8 and IgD10 ranked Second and
third; Supplementary Fig. 16a, b), which basically recapitulate the
physicochemical properties of CAD drugs (LogP > 3; pKa > 7.4).°
The other descriptors ranked from position 4 to 10 (Supplemen-
tary Fig. 16a, c-f) include solubility at various pH (IgS9, 19S8, LgS7.5
and LgS4), the volume of hydrophobic interactions at —1kcal/mol
(D5) and the concentration of hydrophobic interactions on the
molecular surface at two energy levels (capacity descriptors CD2
at —0.4 kcal/mol and CD5 at —1 kcal/mol). This random-forest
model should be of value in the early identification of drug
candidates which may potentially cause lysosomal stress and PLD.

The PLD transcriptional signature affects transcriptional responses
to drug treatment in a concentration dependent manner

We next investigated whether the PLD expression signature was
linked to the elevated drug concentration used in the CMAP
experiments, in agreement with the HCS results indicating a dose
dependent TFEB nuclear translocation (Supplementary Fig. 17 and
Supplementary Table 7). Indeed 5747 out 6100 CMAP gene
expression profiles (94%) were measured at high drug
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concentrations ranging from 1 uM to 10 mM, while the remaining
353 (6%) at lower concentrations ranging from 10 nM to 0.5 uM.
We thus searched CMAP for PLD-inducing drugs for which both
high and low concentration instances were present. We selected
five drugs (out of 36 PLD) drugs: raloxifene (ER antagonist at 0.1 and
7.8 uM), tamoxifen (ER antagonist at 1 and 7.0 uM), amitriptyline
(antidepressant 1 and 12.8 uM), thioridazine (antipsychotic at 1 and
10 uM) and chlorpromazine (antipsychotic at 1 and 11.2 uM). We
then generated two additional transcriptional responses (LOW and
HIGH) for each of these five drugs by analyzing separately the low
and high concentration experiments (Methods, Supplementary
Fig. 18 and Supplementary Table 10).

The HIGH transcriptional responses for the five drugs were more
similar to the PLD signature than the corresponding LOW
transcriptional responses (Supplementary Table 10), confirming
an increased alteration of the transcriptional response caused by
high drug dosages. Moreover, the HIGH transcriptional responses
of four out of five drugs were connected to a much larger number
of drugs in the transcriptional network when compared to their
LOW transcriptional response counterparts (Supplementary Fig.
18). Raloxifen, a selective estrogen receptor modulator (SERM), is
the only drug tested also at sub-micromolar concentrations (0.1
pM). When using the HIGH transcriptional response, raloxifene is
predicted to be transcriptionally similar to 154 compounds
(Supplementary Fig. 18 and Supplementary Table 10), none of
which behaving as a SERM, with the most similar being
trifluoperazine, an antipsychotic drug with known PLD-inducing
properties. On the contrary, when the LOW transcriptional
response is used, raloxifene is predicted to be transcriptionally
similar only to four compounds, the most similar one being
tamoxifen, a well-known SERM.

DISCUSSION

By analyzing a large set of chemical structures, we generated a
network representing structural similarities among compounds
that can be used to automatically group together drugs with
similar scaffolds and MOA. Other methods to cluster drugs based
on structural similarity have been proposed in the literature'® but
no hierarchical classification of drugs in communities and rich-
clubs based on the network structure has been previously
performed. We also computed 128 physicochemical parameters
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for each compound and identified the dominant parameters for
each Rich-Club. These data are a useful resource for compound
characterization based on physicochemical properties. By compar-
ing the structural drug network with the transcriptional drug
network, we observed broad differences between the two: drugs
can be very similar in terms of the transcriptional response they
induce, but with unrelated chemical structures, or vice-versa have
very similar structures but induce diverse transcriptional
responses.

Here, we identified a set of confounding factors that can hinder
the usefulness of transcriptional based methods. We introduced a
simple but powerful measure, 'Transcriptional Variability', to assess
the strength and robustness of the transcriptional response of a
cell to a drug treatment. Cardiac glycosides were among the drug
classes with the lowest TV, hence inducing the strongest
transcriptional responses. By analyzing their transcriptional
profiles, we found a strong induction of genes involved epigenetic
regulation, supporting the repositioning of cardiac glycosides as
epigenetic drugs.®

In the original CMAP study,” the authors indeed recognized that
although gene expression signatures can be highly sensitive, they
may be uninformative if measured in cells that lack the
appropriate physiological or molecular context, but offered no
solution to identify such cases. We propose the use of the TV score
to identify these uninformative profiles. We observed that
glucocorticoids tend to have a high TV, hence uninformative
transcriptional profiles. Indeed, MCF7,> 73 HL60 and PC3
(refs. 74, 75) cell lines used in CMAP may exhibit resistance to
glucocorticosteroids.” Hence, if not filtered out, computational
analysis of their transcriptional responses may be misleading and
lead to wrong conclusions, e.g., such that betamethasone and
dexamethansone have a different MOA (Fig. 2). Interestingly, the
TV score could be used also to uncover cell lines that a resistant to
a specific drug treatment, and hence have no or very weak
transcriptional response to that drug. Interestingly, we verified
that drug classes exhibiting a high TV tend to induce expression of
cytochrome P450 enzymes involved in drug metabolism, suggest-
ing that some drug classes may induce drug resistance, at least in
the CMAP cell lines. In contrast, drug classes with a low TV tend to
reduce expression of these enzymes (Supplementary Fig. 10).

We uncovered a transcriptional signature common to a subset
of transcriptionally similar but structurally distinct drugs profiled in
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CMAP that is not related to their MOA, but rather to cellular
toxicity caused by lysosomal stress and lipid accumulation. We
also derived a predictive model based on physicochemical
parameters to identify such compounds. We further demonstrated
by HCS that PLD-inducing drugs have little effect on ER and Golgi
morphology, but rather increase the number and size of
lysosomes, as previously reported in the literature, and induce
the nuclear translocation of the transcription factor TFEB, a master
regulator of lysosomal biogenesis and autophagy. The transcrip-
tional signature present in the transcriptional response of PLD-
inducing drugs is likely driven by TFEB activation. These results
may help in further elucidating the effect of lysosomotropic PLD-
inducing drugs on autophagy.’® Moreover, the PLD transcriptional
signature may be a useful tool for identifying and repositioning
drugs as inducers of TFEB activation and thus of authophagy.®®

Our findings are directly relevant for all those studies relying on
CMAP transcriptional responses to determine drug MOA and for
drug repositioning. Here, we show that very high and not
physiological compound concentrations, such as the ones used
in the CMAP dataset, increase the chance of off-target effects
including lysosomotropism and phospholipidosis. Somewhat
surprisingly, despite the high concentrations used, only a minority
of compounds in CMAP (~ 30%) have reproducible transcriptional
responses (TV < 0.8). Notwithstanding these limitations, the CMAP
still contains relevant information on drug activity if properly
analyzed, allowing to correctly discriminate among different
classes of drugs® and it can provide complementary information
to that obtained by HCS.* 7777°

Our results, although derived from the CMAP dataset, can be
used to draw general guidelines to prevent inconsistencies and
erroneous conclusion when using transcriptional responses of
small molecules for drug discovery and drug repositioning: (i) the
transcriptional response elicited by a drug in a specific cell line can
be uninformative. Hence these responses must be detected and
then excluded from further analyses. We demonstrated that this
can be achieved by assessing the Transcriptional Variability (TV) of
the drug-induced transcriptional response across multiple repli-
cates; (ii) drug treatment can cause cellular stress unrelated to the
drug MoA and thus affect the drug-induced transcriptional
response by partially masking transcriptional changes directly
related to the drug molecular targets. We generated a PLD
transcriptional signature which can be used to detect these
compounds. This signature is particularly strong if drug concen-
trations used to treat cells are above their clinically relevant
concentrations. One way to avoid this is to use clinically relevant
(sub-micromolar) concentrations; (iii) in the case of natural
compounds, computational approaches based on transcriptional
responses maybe more informative than those based on structural
approaches, because of the large size and molecular complexity of
these compounds.

METHODS

Compounds

We retrieved the chemical structure of 5500 small-molecules part of the
Library of Integrate Network-based Cellular Signatures (LINCS—http://
lincscloud.org) project in the form of SMILES string annotations
(Supplementary Information). 4719 out of 5500 SMILES strings were
retrieved according to their annotated ChemSpider ID (CSID) and
PubChem ID (PID) in the NIH LINCS database. The remaining 779 NHS
LINCS structures, for which no CSID or PID annotation was found, were
retrieved by a web-API search in ChemSpider according to the molecule
names. Six compounds were restricted structures. Thus, a final collection of
4927 LINCS unique structures was obtained. In addition, we retrieved
chemical structures for the 1309 small-molecules part of the CMAP data
set.> 7 784 out of 1309 small-molecules were already present among the
4929 LINCS unique structures. Thus only 523 unique CMAP structures were
retrieved as described before (Supplementary Fig. 1). The total number of
chemical structure used for further analysis was thus equal to 5452.
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The ChemAxon Standardizer tool (v. 14.9) was run to convert SMILES
string annotations into two-dimensional multi-structure-data File (SDF)
structural files.®® The 'remove fragments' and 'neutralize' options were
used to fix all the molecular structures, to remove counter-ions and other
various kinds of molecular fragments, which may be present in branded
drug formulation but not useful in this work (e.g., besilates, mesilates,
chlorides, bromides, sulfates, etc.). Protonation state of each structure was
calculated with MoKa software v. 2.0 considering physiological pH 7.4.5'

Finally, 3D minimized conformations were generated with the MMFF4x
force field in the MOE software (v. 2013)%? and stored as 3D multi-SDF
structural files. The MMFF4x is the standard force field parameterized for
small organic molecules such as drugs. Partial charges are based on bond-
charge increments. Conjugated nitrogens are considered as planar. Thus, a
unique 3D multi-SDF file was obtained and used as input file for all the
subsequent analyses.

Physicochemical and pharmacokinetic properties

Starting from the three-dimensional (3D) coordinates multi-SDF file, each
structure was the imported in the Volsurf+ v.1.5 software®® normalizing
their protonation state at pH 7.4. A set of 128 physicochemical and
pharmacokinetic descriptors were calculated using Volsurf+ v. 1.5, using a
grid spatial resolution of 0.5 A. A final matrix of 5452 objects (drugs and
chemical substances) and 128 descriptors was thus obtained. The
molecular descriptors matrix was then visualized through the PCA tool
integrated in Volsurf+. Only the first five PCs were considered for the
analysis. PCA score and loading plots are shown in Supplementary Fig. 2a
and Fig. 2b. Analysis of the physicochemical descriptor distribution plots
are shown in Supplementary Fig. 3.

3D structural similarities by pharmacophore descriptors

The software FLAP v. 2.0°3 was used to compute all-against-all pairwise 3D
structural similarities among the 5452 compounds. FLAP allows 3D
molecular superimposition of two molecules and computes a pairwise
similarity score based on MIFs, in order to evaluate type, strength, and
direction of the interactions a molecule can have. The GRID tool,*® part of
the FLAP software was used to compute the MIFs based on three
interaction probes: H, DRY and OH2. The hydrogen probe H is used to
compute the shape of a small molecule. The hydrophobic probe DRY finds
places at which hydrophobic atoms on the surface of a target molecule will
make favorable interactions with hydrophobic ligand atoms. The probe
OH2 represents polar and hydrophilic interactions mainly generated by
hydrogen bond donor and acceptor functional groups and charges
interactions. Four-point pharmacophores derived from the MIFs were used
to align molecules with specific biological activity.>> 83 8* The evaluation of
MIF volume superimpositions between the two structures is reported as a
similarity score ranging from 0 to 1 for each of the three probes. A global
score (GLOB-Sum) is then obtained as the sum of the three scores of the
individual probes. Higher GLOB-S values correspond to more similar
structures. For this study, we transformed the GLOB-Sum similarity score
matrix (S) of dimension 5452 x 5452 into a distance matrix defined as D=
1-S/3.

Since the distance matrix is symmetric (i.e., the distance between A and
B is the same as the distance between B and A), the total number of drug-
pairs to consider is 14,859,426 (5452 x 5451 /2).

Construction of the drug network

We ranked drug-pairs according to their structural distance in ascending
order and considered as significant only those drug-pairs in the top 5% of
the ranked list, as previously described by lorio et al.* to reduce the total
amount of egdes in the MANTRA network (The distance threshold is 0.51
when considering the 5452 x 5452 network or 0.65 when considering only
the CMAP 1309 X 1309 sub-network). We then represented drugs as nodes
connected by edges. The resulting Structural Drug Network has a giant
connected component with 5312 nodes (i.e., drugs) out of 5452 and 35,527
edges, corresponding to 5% of a fully connected network with the same
number of nodes (14,859,426 edges) (Supplementary Fig. 4). In order to
visualize and extract useful information from the SDN, we identified
communities via the AP Clustering algorithm, as implemented in the R
package apcluster (v. 1.3.5).3> 8 A community is defined as a group of
nodes densely interconnected with each other and with fewer connections
to nodes outside the group.®® Each community was coded with a
numerical identifier, a color, and one of its nodes was identified as the
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‘exemplar' of the community, i.e., the drug whose effect best represents
the effects of the other drugs in the community.*

Enrichment of physicochemical parameters for the 42 rich-clubs

In the physicochemical Volsurf+ matrix (5452 x 128), we sorted the 5542
drugs independently in each column, thus obtaining 128 ranked lists of
drugs. In each list, drugs are sorted according to their value of the Volsurf+
parameter in descending order. We then applied the Kolmogorov-Smirnov
(KS) test, similar to the Gene Set Enrichment Analysis, to each of the 42
Rich-Clubs in order to identify whether drugs in the same Rich Club were
significantly found in the top ranks of one, or more, of the 128 ranked lists.
We thus obtained an Enrichment Score and a p-value of the 128 VolSurf+
parameters from the KS test for each Rich Club. These results are reported
in Supplementary Table 1.

Validation of the structural drug network

To validate the drug structural network, we assessed whether pairs of
drugs connected by an edge in the network (i.e., structurally similar
according to our distance) shared a common clinical application. To this
end, we collected for each drug the correspondent Anatomical Therapeutic
Chemical (ATC) code (version Index 2014). This drugs classification method
developed by the World Health Organization in collaboration with the
Drug Statistics Methodology (WHOCC),®” hierarchically classifies com-
pounds according to five different levels: (first level) Organ or system on
which they act; (second level) Therapeutic class; (third level) Pharmaco-
logical subgroup; (fourth level) Chemical subgroup; (fifth level) Compound
identifier. ATC code collisions often occur for the same drug. For instance,
Aspirin has three distinct ATC codes: AOTADO5 (drug for alimentary tract
and metabolism), BO1AC06 (blood agent as platelet inhibitor) and
NO2BAOT (nervous system agent as analgesic and antipyretic). In such
cases we considered multiple ATC codes for the same drug in the network.
ATC codes available from the WHOCC were 936 out of 5452 drugs (17%).

We then sorted drug-pairs according their structural distance in
ascending order and for each drug-pair we checked whether they shared
the same ATC to assess whether it was a true positive (TP) or a false
positive (FP). Supplementary Fig. 5 reports the PPV =TP/(TP+FP) vs. the
drug-pair distance for different ATC code levels.

Furthermore, in order to assess whether a community in the drug
network was enriched for a common ATC code, we counted the number of
drugs with the same ATC code at the 4th level (pharmacological subclass)
in community. We then computed a P-value for each community by
applying the hypergeometric probability distribution test.

Transcriptional variability score

TV was computed for all the compounds having at least two profiles
available in CMAP for the same cell line. The number of such small
molecules for each cell line is: 1165 in MCF7, 398 in PC3, 32 in HL60, two in
ssMCF7. We took advantage of the large majority of MCF7 experiments to
avoid the problematic integration of TV values across different cell types
and discarded all non-MCF7 data. About 15% of the CMAP small molecules
have more than two profiles in MCF7 cells, producing an average of
16.08 ‘'within-molecule' profile pairs and a maximum of 630 (for
tanespimycin). We computed the TV of a small-molecule as follows: given
M transcriptional responses to the same small-molecule in the same cell
line (i.e, ranked list of differentially expressed genes as in CMAP), we
evaluate the transcriptional distances between all the M(M-1)/2 pairs of
transcriptional responses and then take their median value as a measure of
TV (if M=2 then TV is defined as the maximum distance). The pairwise
transcriptional distance is based on the enrichment of the top (bottom)
genes of one profile among the top (bottom genes) of the other profile
and vice-versa, as detailed in lorio et al.” Since the TV is based on the same
transcriptional distance measure used to derive the transcriptional network
in lorio et al.,* we set as a significance threshold for the TV the same
threshold used to derive the transcriptional network (TVy, = 0.8).

Analysis of drug-pairs in quadrant Il

To quantify how many drug-pairs in this quadrant have targets that
despite being different are found in the same pathway, we considered the
subset of the drug-pairs in quadrant Ill (excluding those ones including
large molecules) with known molecular targets according to the EMBL-
STITCH database (http:/stitch.embl.de) for a total of 8065 drug-pairs (out
of a total of 33994 drug-pairs). We then mapped the targets of each drug-
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pair to three pathway databases (Gene Ontology BP, MF, and CC). We then
quantified how many drug-pairs had targets in the same pathway, which
yielded 61% of drug-pairs when considering the GO:BP database, 35% of
drug-pairs according to GO:MF and 32% of drug-pairs according to GO:CC.

Phospholipidosis stress signature

The PLD stress signature was built by merging together 36 PRLs,
corresponding to drugs searched in the literature known to induce
PLD,* into a single node using the Kruskal Algorithm strategy and the
Borda Merging Method implemented the online tool MANTRA (http://
mantra.tigem.it) and previously described 3. Briefly, the algorithm first
searches for the two ranked lists with the smallest Spearman’s Footrule
distance. Then it merges them using the Borda Merging Method, obtaining
a new ranked list of genes. The process restarts until only one list remains.

Random forest modeling

We generated a predictive Random Forest model using as features the 128
VolSurf+ physicochemical parameters of the 1309 CMAP compounds and
the subset of 258 compounds exhibiting the PLD 'transcriptional signature'
for testing and training (Supplementary Table 11). To this end, we used the
R (v.3.4) programming environment with the RandomForest function (v.
4.6-12). We optimized parameters to build a classification model with 500
number of trees and 11 variables tried at each split, with downsampling to
obtain a balanced training set. For more details, please refer to the
Supplementary Material.

HCS (high content screening) assays

TFEB nuclear translocation: To quantify TFEB subcellular localization, a high-
content assay upon the compound treatments indicated was performed
using stable HeLa cells overexpressing TFEB-GFP according to our previous
protocols (Medina et al., 2015). Lysosome, Golgi and Endoplasmic Reticulum
assays: Hela cells were seeded in a 384-well plate, incubated for 24 h and
treated with the different compounds at 0.1, 1 and 10 uM for additional 24
h. After that cells were fixed with 4% paraformaldehyde (for LAMP1 and
GM130 stainings) or ice-cold methanol (for PDI staining) and permeabi-
lized/blocked with 0.05% (w/v) saponin, 0.5% (w/v) BSA and 50 mM NH4CI
in PBS (blocking buffer). LAMP-1, GM130 and PDI detection was performed
by incubating with the corresponding primary antibodies (anti-LAMP1,
Santa Cruz Biotechnology; anti-GM130 and anti-PDI, Cell Signaling
Technology) followed by the incubation with an AlexaFluor-conjugated
secondary antibodies (Life Technologies) diluted in blocking buffer.
LysoTracker Red DND-99 (Life Technologies) staining was performed by
the incubating the dye for the last 30 min before fixation. DAPI and
CellMask Deep Red Plasma membrane Stain (Life Technologies) were used
for nuclei and plasma membrane staining, respectively. Images of of
lysosomes (LAMP-1 and LysoTracker Red DND-99), Golgi (GM130) and ER
(PDI) were acquired using an automated confocal microscopy (Opera High
Content System, Perkin-EImer). The fluorescent intensity and area of the
different stainings were analyzed by using dedicated scripts developed in
the Columbus Image Data Management and Analysis Software (Perkin-
Elmer).

High Content Lipid accumulation assay: LipidTOX green phospholipidosis
detection reagent (Life Technologies) was added to the cells along with
the different compounds at the indicated concentrations for 48 h before
fixation with 4% paraformaldehyde. DAPI and CellMask Deep Red Plasma
membrane Stain (Life Technologies) were used for nuclei and plasma
membrane staining, respectively. Lysosomal phospholipid accumulation
was analyzed by measuring fluorescent dye intensity using an automated
confocal microscopy (Opera High Content System, Perkin-Elmer) and a
Columbus Image Data Management and Analysis Software (Perkin-Elmer).

Code availability and supplementary information

Supplementary information and the relative programming code are
available without any restrictions on the npj Systems Biology and
Application website. All the relevant data are available from the authors
and from the website: http://chemantra.tigem.it. The CMAP dataset is
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5258.
The VolSurf+ physics chemical features are available as Supplementary
Table 11
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