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Simple Summary: The availability of a child-friendly drug formulation can be an important de-
terminant of therapeutic success. 13-cis-retinoic acid (13-CRA) is a key component of high-risk
neuroblastoma treatment protocols, and yet there is no such formulation available in any country
worldwide. Typically, parents have an onerous and potentially hazardous daily task of extracting
13-CRA from capsules. We have developed a novel oral liquid formulation, which is stable and
permits accurate daily dosing. This study compared the pharmacokinetics (PK), safety and palata-
bility of the liquid formulation to the current capsule extraction approach to dosing. The liquid
formulation demonstrated superior bioavailability, increasing the likelihood of achieving therapeutic
levels, which in previous studies had proven difficult with 13-CRA extracted from capsules. The
adverse effect profile was as expected for 13-CRA and was similar between the two formulations.
Feedback on palatability was good with both dosing approaches, but parents found daily dosing
much easier with the liquid formulation.

Abstract: (1) Background: 13-cis-retinoic acid (13-CRA) is a key component of neuroblastoma treat-
ment protocols. This randomized crossover study compares the pharmacokinetics (PK), safety and
palatability of a novel oral liquid formulation to the current method of extracting 13-CRA from
capsules. (2) Methods: Pharmacokinetics was evaluated in two consecutive treatment cycles. Patients
were randomized to receive either liquid or capsule formulation on cycle 1 and then crossed over to
the alternative formulation on cycle 2. The daily dose was 200 mg/m2, reduced to 160 mg/m2 in
patients with weight ≤ 12 kg. (3) Results: A total of 20 children, median (range) age 4.3 (1–11.6) y
were recruited. Pharmacokinetic data were pooled and a population model describing the dispo-
sition of 13-CRA and 4-oxo-13-CRA was developed. Bioavailability of the liquid formulation was
estimated to be 65% higher (95% CI; 51–79%) than the extracted capsule. CmaxSS and AUC(0-12)SS
estimates were also significantly higher; mean (95% CI) differences were 489 (144–835) ng/mL and
3933 (2020–5846) ng/mL·h, respectively (p < 0.01). There were no significant differences in reported
adverse effects. Parents found dosing considerably easier with liquid formulation. (4) Conclusions:
The pharmacokinetics, safety and palatability of a new liquid formulation of 13-CRA compares fa-
vorably to 13-CRA extracted from capsules. Clinical Trial Registration: clinicaltrial.gov NCT03291080.
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1. Introduction

Neuroblastoma (NBL) is an aggressive childhood cancer with an annual EU and US
incidence of 850 and 600 cases per year, respectively. Approximately 45–50% of these
children will be diagnosed with high-risk neuroblastoma (HRNBL), defined by metastatic
disease in those over the age of 12 to 18 months and MYCN amplification at any age [1].

First-line therapy in children who present with HRNBL consists of multimodal thera-
peutic regimens including multi-agent induction chemotherapy, surgical resection of the
primary tumor, high-dose chemotherapy with autologous hematopoietic stem cell res-
cue, radiotherapy to the site of the primary tumor and post-consolidation treatment with
oral 13 cis-retinoic acid (13-CRA, also known as isotretinoin) and/or immunotherapy [1].
However, as about 40% of HRNBL patients relapse, there is not only an urgent need for
more efficacious treatment strategies, but also a need to optimize existing therapeutic
approaches.

13-CRA is one of several stereoisomers of retinoic acid, the main biologically active
derivative of vitamin A, and has been used as a cancer chemopreventive agent due to its
ability to induce cell differentiation, inhibit proliferation and induce apoptosis [2]. An
initial randomized clinical study utilizing low continuous dosing with 100 mg/m2/day 13-
CRA showed no clinical benefit [3]. However, in a subsequent randomized trial of HRNBL
patients, myeloablative chemotherapy and autologous hematopoietic stem cell transplant
resulted in a significantly better 5-year event-free survival (EFS) and overall survival (OS)
than non-myeloablative chemotherapy; in both groups high-dose 160 mg/m2/day pulsed
dosing 13-CRA, independently improved OS [4]. This suggests that optimizing the 13-CRA
dose is an important determinant of efficacy.

13-CRA is now considered as standard maintenance treatment alongside immunother-
apy and is administered by the enteral route, at a dose of 80 mg/m2 twice daily (160 mg/m2/day),
in 2-week cycles for 6 months. However, it is still the case that the only marketed formula-
tion of 13-CRA is an oral capsule with an indication for severe acne. Young children with
NBL are often unwilling and/or unable to swallow capsules. Consequently, carers are
asked to open and extract the 13-CRA from the capsule and mix with foods prior to admin-
istration. This method of administration was shown to result in up to 20-fold variability
in patient drug exposure, with some patients experiencing substantially lower plasma
concentrations, potentially increasing the risk of treatment failure [5,6]. Protocol doses
were subsequently increased to 200 mg/m2/day for children unable to swallow intact
capsules. Furthermore, 13-CRA is a potential teratogen and it must be used and handled
with care. The practice of extracting drug from capsules puts mothers of childbearing age
at risk of accidental exposure to 13-CRA. While this situation is clearly unacceptable, both
from a treatment point of view and a safety perspective, it is a situation currently faced by
families of children with HRNBL around the world.

To overcome the challenge of dosing accuracy and palatability and to minimize
the teratogenic risk for women of childbearing potential with the current method of
manipulation of capsule, a convenient, ready-to-use, multi-dose, oral liquid formulation
of 13-CRA has been developed. The aims of this open label, randomized, multiple-dose,
crossover study were to compare the pharmacokinetics (PK), safety and palatability of
the newly developed oral liquid formulation with the method of extracting 13-CRA from
capsules.

2. Materials and Methods
2.1. Study Patients

The trial (ClinicalTrials.gov NCT03291080) was conducted in accordance with the
principles of the International Conference on Harmonization–Good Clinical Practice guide-
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lines and was approved by the UK Medicines and Healthcare Products Regulatory Agency
(MHRA) and the North East–Newcastle and Tyneside 1 Research Ethics Committee.

Children were recruited from 12 pediatric oncology centers across the UK (see list
of participating sites in acknowledgements). Eligibility for inclusion in the trial included:
diagnosis of HRNBL or unresectable unfavorable histology intermediate-risk neuroblas-
toma, the latter age ≥ 18 months at diagnosis; patients who were scheduled to receive
at least two treatment cycles of 13-CRA; patients who could not swallow intact 13-CRA
capsules (i.e., required extraction of 13-CRA from the capsules). Exclusion criteria were
appropriate for the study design and accounted for known potential safety concerns and
drug interactions that could compromise the PK analysis.

No formal sample size calculations were performed. The target sample size was
considered appropriate based on previous experience of population PK modelling stud-
ies. In order to develop a robust population PK model (i.e., precisely estimated param-
eters), PK concentration data from a minimum of >150 blood samples obtained from 20
(minimum 12) patients were required.

The relative bioavailability and PK of 13-CRA oral liquid (test product) and capsule-
extracted 13-CRA (reference product) were evaluated over a consecutive 2-month period
of a 6-cycle (6-month) treatment phase. Patients were randomized to receive either oral
liquid or extracted capsule formulation in cycle 1 and then crossed over to the alternative
formulation in cycle 2. Randomization was carried out once eligibility had been confirmed
and the next scheduled treatment visit arranged. This was done centrally by Nova accord-
ing to a randomization list consisting of allocated treatment sequences, generated by the
trial statistician. Each treatment cycle lasted 14 days, followed by a 14-day break between
treatment cycles, as per standard treatment protocols (Figure 1) and negating any carryover
effects.
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Figure 1. Schematic of study design.

13–CRA was prescribed according to local treatment protocols at each site and inde-
pendent of the study. The dose administered was 200 mg/m2/day (in two divided doses)
for both test and reference product. Patients with a body weight of ≤12 kg received a dose
of 160 mg/m2/day.

2.2. Adverse Event Reporting

All adverse events (AE) were recorded and graded as per Common Terminology
Criteria for Adverse Events (CTCAE, version 4.03) during the trial and for 14 days follow-
up. Oropharyngeal tolerability and symptoms (dry skin, peeling skin, cracked lips and
dry eyes) were separately assessed at baseline (prior to each treatment cycle) and on Day
14 using a four-point scale: 0 = none, 1 = mild, 2 = moderate and 3 = severe. Patients and
parents were provided with a diary to record any oropharyngeal events during treatment.
An independent Data Safety Monitoring Committee (DSMC) reviewed the interim safety
and PK data at periodic intervals.



Cancers 2021, 13, 1868 4 of 13

2.3. Palatability and Acceptability

At the end of each of the two treatment cycles the palatability and acceptability of
the two methods of administering 13-CRA were assessed using a previously reported
questionnaire tool [7]. This tool uses a combination of a 0–100 mm visual (hedonic)
analogue scale (0 mm being “bad” and 100 mm being “good”) and verbal responses to
perception of taste, smell and ease of drug administration. This assessment was conducted
face-to-face. In the case of patients <6 years of age, the view of one or both parents was
surveyed. For patients >6 years of age, the views of the patient and the parents were
surveyed.

Analysis of safety and palatability data was of a descriptive nature, using appro-
priate summary statistics (e.g., mean, SD, median, minimum, maximum) or frequency
distributions (n%) by age group.

2.4. PK Blood Sampling and Analysis

Blood samples for PK analysis were taken on Day 1 and Day 14 of each of the two
treatment cycles. Patients were administered morning doses in the clinic and post-dose
samples were taken at 0.5, 1, 1.5, 2, 3, 4, 5 and/or 6 h. The 2 h and 6 h samples were
mandatory, with at least three further samples (where possible) selected over 0.5 to 5 h. In
addition, an additional sample at 24–48 h following their final dose on Day 14 of each of
the two treatment cycles was obtained in patients for whom this was practicable. Blood
samples (2 mL) were collected in heparinized tubes and centrifuged at 1200 g for 5 min
at 4 ◦C. Plasma was separated and frozen at −20 ◦C prior to analysis. All blood and
plasma samples were wrapped in aluminum foil to protect them from light, and all sample
handling was carried out in dim light.

Quantification of 13-CRA and 4-oxo-13-CRA (active metabolite) levels was carried
out by LC/MS/MS analysis using an API4000 triple quadrupole mass spectrometer from
SCIEX (Foster City, CA, USA), attached to a Prominence series HPLC system (Shimadzu,
Milton Keynes, Buckinghamshire, UK). A Supelcosil ABZ+Plus (10 cm × 2.1 mm, 3 µm)
column (Sigma Aldrich, Dorset, UK) with a Phenomenex Security guard containing a C18
cartridge (4 × 2 mm) was utilized for sample separation following acetonitrile extraction.
Mobile phase A (MP A) consisted of 0.1% formic acid in Milli-Q water and MP B was 0.1%
formic acid in acetonitrile. The HPLC system was set at a constant flow rate of 0.4 mL/min
and run at ambient temperature under gradient conditions: step 1: 40% MP A to 5% over
6 min; step 2: 5% MP A to 40% over 0.5 min; step 3: constant for 3.5 min.

The assay was validated with regards to specificity, linearity, reproducibility, carry
over, recovery and stability of the analytes according to EMA guidelines. The assay had
a limit of detection (LOD) of 5 ng/mL and a lower limit of quantification (LLOQ) of
20 ng/mL for both 13-CRA and 4-oxo-13-CRA, and exhibited within- and between-run
coefficients of variation and bias below 15%. Quality Control (QC) samples for both the
parent drug and metabolite were included in each assay. Calibration curves were linear
between 20–1000 ng/mL with r2 values > 0.99. Samples containing concentrations of
analytes above the linear range were diluted with blank plasma.

2.5. PK Modelling Analysis

PK disposition and systemic exposure parameters (clearance, volume of distribution,
relative bioavailability, Cmax, AUC) were estimated using a population PK modelling
approach. Development of a population PK (popPK) model for 13-CRA and 4-oxo-13-CRA
was performed with the nonlinear mixed effects modelling program NONMEM (ICON De-
velopment Solutions, version 7.4 [8]). The FOCE model parameter estimation method was
used at all times, except when concentrations below the LLOQ were included in the dataset,
at which point the M3 method along with Monte Carlo importance sampling (IMP) estima-
tion method was used. Data file preparation, model evaluation and all other graphical and
statistical analyses were executed using the R software, version [9]. Simulations for visual
predictive checks (VPC) were executed using NONMEM [10]. Simulations of exposure
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variables on the basis of the final selected popPK model were done in R using the “RxODE”
library [11]. The full modelling methodology can be found in Supplement File S1.

3. Results
3.1. Patients

The study was initiated in June 2018 and recruitment stopped in July 2019 once the
target sample size was reached. Parents of 22 children diagnosed with neuroblastoma
consented to take part in the study and 20 were screened and entered the study; 18 patients
had a diagnosis of high-risk neuroblastoma, 2 with intermediate-risk neuroblastoma.

Eleven subjects received liquid formulation in the first cycle followed by capsule-
extracted 13-CRA in the next cycle and vice versa for the remaining 9 subjects. Twelve
patients received the medicine via a nasogastric or gastrostomy tube, 8 patients received
medication orally. Compliance with therapy was excellent in all patients as recorded on
diary cards. Only one patient withdrew early due to a serious adverse event.

Table 1 summarizes the demographics of the study population: 25% of the subjects
were female and baseline median (range) age and body weight were 4.3 (1–11.6) y and 14.2
(9.3–38.9) kg, respectively. The median measured BSA at baseline was 0.6 m2 (range 0.4 to
1.3) and the median BMI at baseline was 15.8 kg/m2 (range 13.4 to 18.2). Eighteen patients
received a dose of 200 mg/m2, 2 patients received 160 mg/m2.

Table 1. Demographics of the study population.

Characteristics (n = 20) Statistic Value

Age (years) Median (range) 4.3 (1–11.6)

Sex
Male/Female 15 (75%)/5 (25%)

Race

White n (%) 15 (25%)

Asian or Asian British n (%) 4 (20%)

Other n (%) 1 (5%)

Height (m) Median (range) 100 (74–152)

Weight (kg) Median (range) 14.2 (9.3–38.9)

BMI (kg/m2) Median (range) 15.8 (13.4–18.2)

Sequence of formulation administration (A or B) 1 A = 11
B = 9

Dose (mg/m2) Mean (SD) 192.1 (23.6)
1 A = subjects received liquid formulation first, B = subjects received capsule-extracted formulation first.

3.2. Pharmacokinetic Model and Relative Bioavailability

A total of 20 patients provided 373 plasma samples that were above the LLOQ for
13-CRA, and 262 concentrations above the LLOQ for 4-oxo-13-CRA from 15 patients.
Twenty-one 13-CRA concentrations and twenty-eight 4-oxo-13-CRA concentrations were
below the LLOQ. The mean (SD) plasma concentration profiles for the two formulations
are shown in Figure 2. A popPK parent–metabolite model to describe 13-CRA and 4-oxo-
13-CRA was developed from pooled plasma concentration data. LLOQ concentrations
were included in the final model development phase.
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It was observed for the liquid formulation that there was a time delay in the absorption
phase. To compensate for over-prediction by the model during the early time-points, transit
compartments were included, although no such time delay was necessary for the capsule-
extracted formulation. Furthermore, whilst a one-compartment disposition model with
a first-order absorption rate constant for liquid and capsule-extracted formulation, along
with two transit compartments and relative bioavailability estimated for liquid formulation
adequately described the drug behavior during the first few hours after dosing, an under-
prediction was observed for later time points. The probable cause for this under-prediction
was presumed to be the biphasic behavior of 13-CRA, as it is known to have enterohepatic
recirculation properties [12]. To incorporate this behavior, a second compartment was
included and intercompartmental rate constants were estimated. This second compartment
imitates the gall bladder, wherein 13-CRA is returned to the circulatory system of the
body at patient meal times. In the absence of meal-time information, it was assumed that
the enterohepatic recirculation could be adequately described by a 2-compartment model
(Figure S1). The inclusion of this additional compartment dropped the objective function
value (OFV) significantly and the under-prediction of the later time-points was reduced.
Individual parameter values from the model for 13-CRA were carried forward in order to
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separately model the 4-oxo-13-CRA concentrations. The obtained individual models were
then combined and both 13-CRA and 4-oxo-13-CRA data were simultaneously modelled
(see Supplement File S1).

Only allometric scaling by weight (to a fixed exponent of 0.75) was found to be an
influential covariate on the kinetics of 13-CRA and 4-oxo-13-CRA. The parameter estimates
from the final model (Table S1), as well as the diagnostic plots (Figures S2–S4) are presented
in the Supplement (File S1).

3.3. Model Estimates of Systemic Exposure

The bioavailability of the oral liquid formulation of 13-CRA relative to the capsule-
extracted 13-CRA was estimated by the model to be 65% higher (95% CI 51–79%).

Significantly higher CmaxSS and AUC(0-12)SS values were estimated for both 13-CRA
and 4-oxo-13-CRA when patients were administered the new oral liquid formulation
(Figure 3); for 13-CRA, mean (95% CI) difference between the two formulations was 489
(144–835) ng/mL and 3933 (2020–5846) ng/mL·h, respectively (p < 0.01). Despite the slight
delay in the onset absorption of the oral liquid, there was no difference in the Tmaxss
(p > 0.9).
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There is no indication that the variability in exposure of either 13-CRA or 4-oxo-13-
CRA is reduced when administration is via the oral liquid formulation compared to the
capsule-extracted 13-CRA. However, it is difficult to make robust conclusions regarding
inter-subject variability with a small population of 20 pediatric patients.

3.4. Safety and Tolerability

There was a total of 35 drug-related events (includes definite, probable or possible
classification) reported by 13 patients in the oral liquid cycle compared to 26 related events
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reported by 9 patients in the extracted capsules cycle (Table 2). The majority of AEs were
mild in severity. There were no drug-related Grade 3+ treatment-emergent AEs or deaths.
There was no correlation between adverse events and Cmax/AUC.

Table 2. Summary of drug-related adverse events.

Adverse Effect * 13-CRA Oral Liquid (n = 20) 13-CRA Extracted Capsule (n = 20)

Number (%) of patients reporting Number (%) of patients reporting

Dry eye 3 (15%) 2 (10%)
Chapped/dry lips 8 (40%) 6 (30%)

Dermatitis (exfoliative) 1 (5%) 0
Dry skin 8 (40%) 9 (45%)

Rash (maculo-papular) 1 (5%) 0
Skin exfoliation 7 (35%) 4 (20%)

Diarrhea 1 (5%) 1 (5%)
Hematemesis ** 1 (5%) 0

Vomiting 2 (10%) 1 (5%)
Headache 0 1 (5%)

Acute kidney injury ** 1 (5%) 0
Epistaxis 1 (5%) 0

* Severity of all AE’s was graded ≤ 3; ** Reported as SAE.

“Chapped lips” was reported by 8 (40%) patients in the oral liquid cycle and 5 (25%)
patients in the extracted capsules cycle. Skin and subcutaneous tissue disorders such as
dry skin were recorded by 9 (45%) patients in the oral liquid cycle and 11 (55%) patients in
the extracted capsules cycle. “Dry eye” was also frequently reported; 4 (20%) patients in
the oral liquid cycle and 2 (10%) patients in the extracted capsules cycle.

Two serious adverse events (SAE), gastrointestinal bleed with hematemesis leading
to cessation of therapy, and acute renal failure, were considered possibly related in two
(10%) patients during the oral liquid cycle compared to none in the extracted capsule cycle.
However, there was no suggestion this was influenced by the formulation.

Overall, there were no significant differences between the two treatment cycles in
terms of known AE of 13-CRA, expected events for HRNBL patients and overall safety
during the study. The independent DSMC reviewed the interim safety and PK data and
recommended that the study continue without modification at all review meetings.

3.5. Palatability and Acceptability

The results are presented in Table 3. The majority of children found the taste and smell
of both the liquid and the capsule-extracted 13-CRA to be “fairly good” or “good”, with
only one subject reporting a residual aftertaste with both formulations. As anticipated, there
was a large difference in terms of the perception of ease of preparation and administration.
The liquid formulation was perceived as being easier to take (85.7% reporting it is “easy
to take all of the time” and 14.3% reporting it to be “easy to take most of the time”). In
contrast, with the extracted capsules, only 50.0% reported it is “easy to take all of the time”,
and 18.8% reported it as being “not at all easy to take”. The vast majority of parents found
the liquid easier to administer, with no parent reporting the liquid difficult to administer.
In contrast, 73.3% of parents found it “not easy” to “extremely difficult” to extract 13-CRA
from capsules.
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Table 3. Palatability and Acceptability.

Parameter 13-CRA Oral Liquid 13-CRA Extracted Capsule

Taste (mm) * 81.7 (9.6)
N = 7

77.3 (17.7)
N = 6

Smell (mm) * 80.8 (19.3)
N = 6

73.7 (15.2)
N = 6

Easy to take ** Not at all easy 0 3 (18.8%)
Easy sometimes 0 4 (25.0%)

Easy most of the time 2 (14.3%) 1 (6.3%)
Easy all of the time 12 (85.7%) 8 (50.0%)

Ease of preparation and
administering ** Extremely difficult 0 6 (40.0%)

Very difficult 0 1 (6.7%)
Difficult 0 2 (13.3%)
Not easy 1 (7.7%) 2 (13.3%)

Quite easy 3 (23.1%) 2 (13.3%)
Easy 2 (15.4%) 1 (6.7%)

Very easy 7 (53.8%) 1 (6.7%)
* Mean (SD) visual (hedonic) analogue scale ranging from 0 (‘Bad’) to 100 (Good) mm. ** Number of subjects (% of total) responding to question.

4. Discussion

The importance of child-appropriate formulations of medicines has been highlighted
continuously by healthcare professionals, regulatory authorities and international organiza-
tions including the WHO [13]. 13-CRA has been a key component of the HRNBL treatment
protocol for almost 20 years and yet the lack of a child-appropriate formulation has been a
glaring omission. This formulation development project goes some way to rectify a major
inadequacy in current treatment options.

The present study investigated the PK characteristics of the novel oral liquid formula-
tion of 13-CRA and capsule-extracted 13-CRA. The model estimated a 65% higher mean
bioavailability for the oral liquid and implies a marked improvement in dose delivery.
Previous studies have also shown that children able to chew and/or swallow intact 13-CRA
capsules are significantly more likely to achieve target concentrations than those who have
the drug extracted from capsules prior to administration. Veal et al. (2013) observed a
significantly higher mean (SD) Cmax value of 1200 (660) ng/mL in patients who swallowed
capsules as compared to 780 (545) ng/mL in patients who required the drug to be extracted
prior to administration (p = 0.0012) [6]. They also noted that a target Cmax of 600 ng/mL
was achieved by 93% (25/27) versus 55% (42/76) of patients in the two groups, respectively.
In the present study, 80% (16/20) of patients exceeded a Cmax of 600 ng/mL with the
oral liquid, compared to 45% (9/20) of patients with the capsule-extract method. Similarly,
Gota et al. (2016) also showed that children who swallowed intact 13-CRA capsules (n = 18)
achieved higher AUC0–6h values compared to those who could not (n = 16); mean AUC
6470 vs. 2810 ng/mL·h (p < 0.05) [14]. Cho et al. (2017) assessed the PK of 13-CRA and
4-oxo-13-CRA (thought to be equally pharmacologically active) in Children’s Oncology
Group (COG) phase III studies that treated HRNBL patients with 13-CRA and immunother-
apy [15]. Of 617 patients, 370 (60%) achieved median combined plasma concentrations
of 13-CRA + 4-oxo-13-CRA >1500 ng/mL. Plasma levels were higher in patients taking
intact capsules relative to open capsule takers (13-CRA: 522 vs. 310, 4-oxo-13-CRA: 2160 vs.
990 ng/mL, respectively, p < 0.001).

One possible explanation for why capsule-extracted 13-CRA results in under-dosing
(lower systemic exposures) may be that the drug is not uniformly distributed in the capsule
vehicle, with potentially some drug adsorbed onto the inner surface of the gelatin capsule.
Alternatively, it may be related to the technical dexterity and experience of the person
extracting the drug from the capsule, commonly the parent of the child being treated. Either
way, the current situation is clearly unacceptable when multiple studies from different
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countries have highlighted the reduced 13-CRA drug exposures being achieved due to the
limitations of the available drug formulation.

The increased relative bioavailability of the newly developed liquid has implications
for dosing in practice. The standard protocol dose of 13-CRA for patients swallowing intact
capsules is 160 mg/m2. In a HRNBL setting in the UK and Europe this dose is increased
to 200 mg/m2 for patients unable to swallow intact capsules, based on earlier studies
that revealed lower exposures for capsule-extracted 13-CRA [6,7]. This increased dose
was deemed necessary to replace inherent loss of drug when extracting from a capsule
in order to achieve comparable exposures in all patients. The improved bioavailability
of the new liquid formulation suggests that the delivered dose is more accurate and
therefore a daily dose of 160 mg/m2, commensurate with the intact capsule dose, is
appropriate. Nevertheless, the study confirms previous observations of significant inter-
subject variability in exposures; Cmax and AUC concentrations ranged from 200–1200
and 250–2500 ng/mL, and 250–1000 and 400–1500 ng/mL·h, with the extracted capsule
and liquid formulations, respectively. The observation that variability in systemic drug
delivery was not reduced with the liquid formulation suggests that it is the physicochemical
characteristic of 13-CRA that is most influential rather than formulation per se. Since
dosing with 13-CRA is not adjusted according to blood levels, inherent variability in dose
delivery runs the risk of under- and over-dosing with either formulation. However, there
are limited clinical data investigating the relationship between plasma 13-CRA data and
clinical outcomes, or indeed the optimum therapeutic plasma concentration range.

The current protocol dose of 160 mg/m2/day was determined from PK studies that
demonstrated plasma concentrations in the region of 1500 ng/mL, the concentration at
which in vitro models show a halt in the growth of neuroblastoma cell lines [16]. The
two aforementioned PK studies also suggest, based on analysis of uncontrolled data,
that systemic exposure is correlated with disease relapse. Gota et al. (2017) noted that
children who were event-free at one year tended to have higher 13-CRA AUC compared
to those who progressed or died, although this was a post-hoc analysis and was not
statistically significant [14]. Cho et al. (2017) assessed the relationship of PK to overall
survival (OS) in 13 CRA-treated patients [15]. In patients ≥18 months old at diagnosis
(n = 445/524) the 5-year OS was significantly higher for patients with upper quartile
13-CRA levels (750 ng/mL, 73%) relative to lower quartile (180 ng/mL, 60%, p = 0.039),
although event-free survival was not significantly different (p = 0.44). Higher active
metabolite concentrations (4-oxo-13-CRA > 1500 ng/mL, 76%) were also associated with
significantly higher OS relative to lower levels (<300 ng/mL, 66%, p = 0.032).

Overall, the incidence of drug-related adverse events was as anticipated in this pop-
ulation of patients (mainly cheilitis, skin rash, dry skin, conjunctivitis), no greater than
Grade 3 and all described as mild by Day 29. Two SAE’s were temporally related to the
administration of oral 13-CRA liquid. In the case of acute renal failure (raised serum creati-
nine), the investigator confirmed that concomitant medication gabapentin or acyclovir or
both could possibly be the likely cause of this SAE since they can both cause acute renal
failure. The patient responded to intravenous fluids and the severity was graded as 1.
In the case of hematemesis, the investigator assessed the event of upper gastrointestinal
bleed with underlying varices as possibly related to administration of oral liquid 13-CRA.
Although the investigator considered portal hypertension as the most likely cause, streaks
of bleeding with vomit could also be secondary to dry/friable mucus and membranes and
low platelets (<100). The bleeding resolved and again the severity was graded as 1.

Previous studies have observed that Grade 3 or 4 toxicity is related to peak plasma
concentrations > 3000 ng/mL, higher than the maximum peak concentration of 2440 ng/mL
observed in this study with the oral liquid formulation. There was also no evidence that
higher mean systemic exposure with the novel oral liquid resulted in increased rates of all
adverse events, although the sample size is small and therefore no definitive conclusions
can be drawn. The latter point is particularly relevant bearing in mind the significant
overlap in observed systemic exposures.
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Neuroblastoma is the most common cancer in babies and 90% of cases occur in children
less than 5 years of age [1]. Therefore, the availability of a child-friendly formulation is
of paramount importance. However, the development of an oral liquid formulation of
13-CRA is not trivial: 13-CRA readily oxidizes and isomerizes in the presence of light or
excessive heat, posing significant difficulties in handling and processing of raw material,
manufacturing and analytical testing. It is also virtually insoluble in water. To overcome
these challenges, bespoke processes were developed for receipt, pack down and storage
of bulk material, manufacturing (in an isolator) and analytical testing under blocked UV
light and bottle filling under nitrogen purging. The final formulation developed is a stable,
multi-dose, ready-to-use, child-friendly preparation of 13-CRA. It has a shelf-life of 18
months and an in-use shelf-life of 4 weeks when stored below 25 ◦C. Due to the lack of
a commercial opportunity, the formulation will be made available to pediatric oncology
centers as an unlicensed “special”.

The palatability and acceptability assessment confirmed that the oral liquid had good
palatability rating, but also made daily dose administration much easier and convenient
compared to the elaborate multi-step process necessary with capsules. The burden of
accurately dosing and administering daily 13-CRA when extracted from capsules can
only really be described by those intimately involved in this practice. Many healthcare
professionals would struggle to perform this task even under ideal conditions. A ready-to-
use oral liquid is not only much more convenient, but also minimizes the teratogenic risk
for women of childbearing potential, with the current method requiring manipulation of
capsules.

Optimizing dosing regimens of anticancer drugs for children presents a major chal-
lenge in the clinical oncology setting. This is particularly evident in infants and very young
children due to the considerable developmental physiological changes occurring in this age
group. Anticancer drugs are generally associated with large between-patient variability
in PK and pharmacodynamics, in addition to the considerable effect of pharmacogenetics.
It is generally accepted that a significant contributor to the failure of treatment in cancer
chemotherapy, despite selection of the correct drug(s), is the failure to select the correct
dose [16]. Chemotherapeutic drugs are typically adjusted for body size, but it is in general
a one-size-fits–all approach. Personalized dosing through “therapeutic drug monitoring”
feedback or Bayesian forecasting algorithms has been shown to improve clinical outcomes
with chemotherapeutic drugs, but with oral therapy this is only achievable in children
when there is a formulation that permits flexible dosing [17–20]. Importantly, the avail-
ability of a ready-to-use oral liquid will also allow doses to be personalized to young
children using an oral syringe. As yet, personalized dosing of 13-CRA in the treatment of
neuroblastoma does not have any supporting clinical outcomes data.

5. Conclusions

A novel oral liquid formulation of 13-CRA has been developed and evaluated in an
open label PK, safety and palatability study. It can be concluded that the oral liquid com-
pares favorably to 13-CRA extracted from the licensed capsule formulation. The population
PK model shows that the administration of the liquid formulation significantly improves
bioavailability, although there remains significant inter-patient variability and overlap of
systemic exposures. Higher bioavailability increases the likelihood of achieving target
systemic exposures, which in previous studies has proven to be challenging when 13-CRA
is extracted from a capsule. However, the clinical significance of improved bioavailability
is unknown and needs to be investigated in a larger clinical trial.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10.3
390/cancers13081868/s1, File S1: Pharmacokinetic Modelling Methodology, Figure S1: structure of
the parent–metabolite model, Figure S2: visual predictive checks, Figure S3: NPDE goodness of fit
plots from the final model for the liquid formulation of 13-CRA, Figure S4: NPDE goodness of fit
plots from the final model for the capsule-extracted 13-CRA, Table S1: model parameters.
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