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Solving environmental and social challenges such as climate change requires a shift

from our current non-renewable manufacturing model to a sustainable bioeconomy.

To lower carbon emissions in the production of fuels and chemicals, plant biomass

feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic

thermophile Clostridium thermocellum is a promising bacterium for bioconversion due

to its capability to efficiently degrade lignocellulosic biomass. However, the complex

metabolism of C. thermocellum is not fully understood, hindering metabolic engineering

to achieve high titers, rates, and yields of targeted molecules. In this study, we developed

an updated genome-scale metabolic model of C. thermocellum that accounts for recent

metabolic findings, has improved prediction accuracy, and is standard-conformant to

ensure easy reproducibility. We illustrated two applications of the developed model.

We first formulated a multi-omics integration protocol and used it to understand

redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in

C. thermocellum. Second, we used the metabolic model to design modular cells for

efficient production of alcohols and esters with broad applications as flavors, fragrances,

solvents, and fuels. The proposed designs not only feature intuitive push-and-pull

metabolic engineering strategies, but also present novel manipulations around important

central metabolic branch-points. We anticipate the developed genome-scale metabolic

model will provide a useful tool for system analysis of C. thermocellum metabolism to

fundamentally understand its physiology and guide metabolic engineering strategies to

rapidly generate modular production strains for effective biosynthesis of biofuels and

biochemicals from lignocellulosic biomass.

Keywords: Clostridium thermocellum, biofuels, genome-scale model, metabolic model, omics integration,
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1. INTRODUCTION

Global oil reserves will be soon depleted (Shafiee and Topal,
2009), and climate change could become a major driver
of civil conflict (Hsiang et al., 2011). These challenges to
security and the environment need to be addressed by
replacing our current non-renewable production of energy
and materials for a renewable and carbon neutral approach
(Ragauskas et al., 2006). The gram-positive, thermophilic,
cellulolytic, strict anaerobe C. thermocellum is capable of efficient
degradation of lignocellulosic biomass to produce biofuels and
biomaterial precursors, making this organism an ideal candidate
for consolidated bioprocessing (CBP), where production of
lignocellulosic enzymes, saccharification, and fermentation take
place in a single step (Olson et al., 2012). However, its complex
and poorly understood metabolism remains the main roadblock
to achieve industrially competitive titers, rates, and yields of
biofuels such as ethanol (Tian et al., 2016) and isobutanol
(Lin et al., 2015).

For the past decade, significant efforts have been dedicated

to characterize and manipulate the central metabolism of
C. thermocellum, due to increasing interest in developing
this organism as a CBP manufacturing platform for biofuels
production (Akinosho et al., 2014). C. thermocellum possesses
atypical central metabolism, characterized by the important

roles of pyrophosphate and ferredoxin (Zhou et al., 2013),
which makes redirection of both carbon and electron flows
for biofuel production challenging to achieve. Specifically,
the metabolic network of C. thermocellum contains various
reactions to regulate intracellular concentration levels of NADH,
NADPH, and reduced ferredoxin. These cofactors are used as
electron donors with high specificity throughout metabolism.
To maintain redox balance, C. thermocellum also possesses
several hydrogenases to oxidize these reduced cofactors to
molecular hydrogen that is secreted by the cell. Removal of these
hydrogenases through deletion of ech (encoding the ferredoxin-
dependent hydrogenase, ECH) and hydG (associated with the
bifurcating hydrogenase, BIF, and bidirectional hydrogenase,
H2ASE_syn) was successfully applied to increase ethanol yield by
electron rerouting (Biswas et al., 2015). Thompson et al. (2015)
characterized the 1hydG1ech strain in depth by flux analysis
of its core metabolism, concluding that the major driver for
ethanol production was redox rather than carbon balancing. In
particular, the conversion of reduced ferredoxin to NAD(P)H
is likely the most rate limiting step. In a subsequent study,
Lo et al. (2017) over-expressed rnf (encoding the ferredoxin-
NAD oxidoreductase, RNF) in the 1hydG1ech strain that
is expected to enhance NADH supply, but did not achieve
improved ethanol yield.

In an attempt to redirect carbon and electron flows for
enhanced ethanol production, Deng et al. (2013) manipulated
the pyruvate node and malate shunt of C. thermocellum. By
converting phosphoenolpyruvate (pep) to oxaloacetate (oaa) and
then to pyruvate (pyr), this shunt can interchange one mole
of NADPH with one mol of NADH generated from glycolysis.
Interestingly, the authors noted that replacement of the malate
shunt by alternative pathways not linked to NADPH increased

ethanol production and carbon recovery but reduced amino acid
formation, confirming the role of the malate shunt as an NADPH
source in C. thermocellum.

Sulfur metabolism also plays a key role in redox metabolism
of C. thermocellum and has been investigated for its role in
ethanol production. Sulfate, a component of C. thermocellum
media, serves as an electron acceptor, which is capable of
oxidizing sulfate to sulfite and then sulfide. Thompson et al.
(2015) demonstrated that the strain 1hydG1ech1pfl could not
grow in a conventional defined medium due to its inability to
secrete hydrogen or formate, but was able to rescue growth
by sulfate supplementation to the culture medium. More
recently, Biswas et al. (2017) reported an increase in final
sulfide concentration and over-expression of the associated
sulfate uptake and reduction pathway in the 1hydG strain,
but did not observe a significant difference in final sulfide
concentration in 1hydG1ech. Remarkably, neither of the strains
consumed cysteine from the medium, unlike the wild-type.
Sulfide can be converted to cysteine by CYSS (cysteine synthase)
or homocysteine and then methionine by SHSL2 (succinyl-
homoserine succinate lyase) and METS (methionine synthase),
but the connection between the cessation of cysteine uptake and
sulfate metabolism remains unclear.

Overall, the complex interactions of C. thermocellum
metabolic pathways remain challenging to understand and
engineer with conventional methods, and hence require a
quantitative systems biology approach to decipher. To this
end, several genome-scale metabolic models (GSMs) of
C. thermocellum have been developed. The first GSM, named
iSR432, was constructed for the strain ATCC27405 and applied
to identify gene deletion strategies for high ethanol yield
(Roberts et al., 2010). This model was then further curated
into iCth446 (Dash et al., 2017). More recently, Thompson
et al. developed the iAT601 genome-scale model (Thompson
et al., 2016) for the strain DSM1313, which is genetically
tractable (Argyros et al., 2011). The iAT601 model was used
to identify genetic manipulations for high ethanol, isobutanol,
and hydrogen production (Thompson et al., 2016), and to
understand growth cessation prior to substrate depletion
observed under high-substrate loading fermentations that
simulate industrial conditions (Thompson and Trinh, 2017). In
addition to these core and genome-scale steady-state metabolic
models, a kinetic model of central metabolism, k-ctherm118,
was recently developed and used to elucidate the mechanisms
of nitrogen limitation and ethanol stress (Dash et al., 2017).
Due to the biotechnological relevance of the Clostridium genus,
GSMs have also been developed for other species (Dash et al.,
2016), including C. acetobutylicum (Senger and Papoutsakis,
2008; Salimi et al., 2010; McAnulty et al., 2012; Wallenius et al.,
2013; Dash et al., 2014; Yoo et al., 2015; Lee and Trinh, 2019),
C. beijerinckii (Milne et al., 2011), C. butyricum (Serrano-
Bermúdez et al., 2017), C. cellulolyticum (Salimi et al., 2010), and
C. ljungdahlii (Nagarajan et al., 2013).

In this study, we developed an updated genome-scale
metabolic model of C. thermocellum, named iCBI655, with
more comprehensive and precise metabolic coverage, enhanced
prediction accuracy, and extensive documentation. This model
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is a human-curated database that coherently represents all
the available genetic, genomic, and metabolic knowledge
of C. thermocellum from both experimental literature and
bioinformatic predictions. Furthermore, the model can be
applied not only to enable metabolic flux simulation but also to
provide a framework to contextualize disparate datasets at the
system level. As a demonstration for the model application, we
first developed a quantitative multi-omics integration protocol
and used it to fundamentally study redox metabolism and
potential redox bottlenecks critical for production of biofuels
(e.g., ethanol) in C. thermocellum. Furthermore, we used the
model, in combination with the previously developed ModCell
tool (Garcia and Trinh, 2019c), to design modular (chassis) cells
(Garcia and Trinh, 2019b) for alcohol and ester production.

2. RESULTS

2.1. Development of an Upgraded
C. thermocellum Genome-Scale Model
Named iCBI655
The iCBI655 model was developed using the published iAT601
model (Thompson et al., 2016) as a starting point. The
model improvements include updated metabolic pathways,
new annotation, and new extensive documentation. A
detailed account of these changes can be found in the
Supplementary Datasheet 1. Here, we highlight the most
relevant modifications.

2.1.1. Modeling Updates
To facilitate model usage and reduce human error, the identifiers
of reactions and metabolites were converted from KEGG into
BiGG human-readable form (King et al., 2015). Additionally,
reaction andmetabolite identifiers were linked to themodelSEED
database (Henry et al., 2010) that enables analysis through
the KBase web interface (Arkin et al., 2018). The gene
identifiers and functional descriptions were updated to the most
current annotation (NCBI Reference Sequence: NC_017304.1).
Metabolite formulas and charges from the modelSEED database
(Henry et al., 2010) were included in the model and reactions
were systematically corrected for charge and mass balance by the
addition of protons and water.

2.1.2. Metabolic Updates
The automated construction process used in the previous model
introduced several inconsistencies that were corrected in the
current model. We removed reactions that were blocked and
non-gene-associated, apparently introduced during automated
gap-filling. Two notable examples are (i) the blocked selenate
pathway which lacks experimental evidence (e.g., selenoproteins
have not been found in C. thermocellum), and (ii) blocked
reactions involving molecular oxygen (e.g., oxidation of Fe2+

to Fe3+) that are not possible in strict anaerobes like
C. thermocellum. Furthermore, tRNA cycling reactions were
unblocked by including tRNA in the biomass reaction (Reimers
et al., 2017). Metabolite isomers were examined and consolidated
under the same metabolite identifier when possible, leading to
the removal of duplicated reactions and the elimination of gaps.

Transport and exchange reactions were updated to reflect the
export of amino acids and uptake of pyruvate as observed during
fermentation experiments (Holwerda et al., 2014).

In terms of specific reactions, oxaloaceate decarboxylase
was eliminated from the model in accordance with recent
findings (Olson et al., 2017). The stoichiometries of pentose-
phospate reactions, including sedoheptulose 1,7-bisphosphate
D-glyceraldehyde-3-phosphate-lyase (FBA3) and sedoheptulose
1,7-bisphosphate ppi-dependent phosphofructokinase
(PFK3_ppi), were corrected (according to experimental
evidence, Rydzak et al., 2012) from the previous model by
ensuring mass balance and avoiding lumping multiple steps
into one reaction. Transaldolase (TALA) was removed from the
model due to lack of annotation for this gene in C. thermocellum.

Several modifications were also performed in key bioenergetic
reactions. The reactions catalyzed by membrane-bound
enzymes, including inorganic diphosphatase (PPA) (Zhou
et al., 2013) and membrane-bound ferredoxin-dependent
hydrogenase (ECH) (Calusinska et al., 2010), were corrected
to capture proton translocation. Furthermore, hydrogenase
reactions were updated to ensure ferredoxin association for
all cases and remove those reactions that do not involve
ferredoxin and only use NAD(P)H as a cofactor, based on
our recent understanding of C. thermocellum metabolism
(Biswas et al., 2017). Gene-protein-reaction associations were
updated to represent experimental knowledge. For instance,
the hydrogenases BIF (CLO11313_RS09060-09070) and
H2ASE (CLO1313_RS12830, CLO1313_RS02840) require
the maturase Hyd (CLO1313_RS07925, CLO1313_RS11095,
CLO1313_RS12830) to be functional, and the maturase itself
requires all of its subunits to operate, which enables accurate
representations of hydG deletion genotypes (Biswas et al., 2015).

Two hypothetical reaction modifications were introduced to
ensure consistency with reported phenotypes. First, to enable
growth without the need for succinate secretion, as observed
in experimental data (Supplementary Datasheet 2), the reaction
homoserine-O-trans-acetylase (HSERTA) was added to enable
methionine biosynthesis (essential for growth). Although this
reaction is not currently known to be associated with any
gene in C. thermocellum, it is present as a gene-associated
reaction in other Clostridium GSMs (Nagarajan et al., 2013).
Next, the reaction deoxyribose-phosphate aldolase (DRPA) was
removed based on a systematic analysis (section 4.4) to ensure
correct lethality prediction of the 1hydG1ech1pfl mutant
strain as well as the correct prediction of growth recovery
in this mutant by addition of external electron sinks such as
sulfate or ketoisovalerate (Table 1). The correct prediction of
1hydG1ech1pfl-associated phenotypes is critical to successfully
use the model for computational strain design (Long et al.,
2015; Ng et al., 2015; Maranas and Zomorrodi, 2016; Wang and
Maranas, 2018; Garcia and Trinh, 2019a,b,c).

2.2. Comparison of iCBI655 Against Other
Genome-Scale Models
We compared iCBI655 with the previous GSMs of
C. thermocellum and the highly-curated GSM iML1515 of
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TABLE 1 | Comparison of mutant growth rates predicted by iAT601 and iCBI655.

Gene deletions Medium Percent of W.T. growth rate (%)

iAT601 iCBI655 Experiment

hydg MTC 100 100 73

hydg-ech MTC 85 85 67

hydg-pta-ack MTC 100 100 48

hydG-ech-pfl MTC 58 0 0

hydG-ech-pfl MTC + fumarate 377 726 0

hydG-ech-pfl MTC + sulfate 58 65 +

hydG-ech-pfl MTC + ketoisovalerate 97 101 +

Experimental values are taken from Thompson et al. (2015); for some mutants whose

growth recovery, not growth rate, was reported, they are presented with “+”. W.T.,

wildtype; MTC, Medium for Thermophilic Clostridia.

TABLE 2 | Comparison of all genome-scale metabolic models of C. thermocellum

and the latest E. coli model.

iSR432 iCth446 iAT601 iCBI665 iML1515

Strain ATCC27405 ATCC27405 DSM1313 DSM1313 MG1655

Genes 432 446 601 665 1515

Metabolites 583 599 903 795 1877

Reactions 632 660 872 854 2712

Blocked

reactions

39.2% 32.1% 40.8% 35.1% 9.8%

Reference Roberts

et al., 2010

Dash et al.,

2017

Thompson

et al., 2016

This study Monk

et al., 2017

the extensively studied bacterium Escherichia coli (Table 2).
The increased number of genes in iCBI655 with respect to
iAT601 cover a variety of functions, including hydrogenase
chaperones, cellulosome and cellulase, ATP synthase, and
transporters. Remarkably, iCBI655 has a smaller percentage of
blocked reactions than iAT601, indicating higher biochemical
consistency. The number of metabolites in iCBI655 is smaller
than those in iAT601 mainly due to the removal of metabolites
that did not appear in any reaction, duplicated metabolites (e.g.,
certain isomers), and blocked pathways added automatically
during gap-filling without any gene association. C. thermocellum
DSM1313 has 2911 protein coding genes, 22% of which is
captured by iCB655, while E. coli MG1655 has 4240 genes,
35% of which is included in iML1515. Overall, iCBI655
has the increased coverage of the metabolic functionality of
C. thermocellum but remains far from the well-studied E. coli.

2.3. Training of Model Parameters Under
Diverse Conditions
Growth and non-growth associated maintenance (GAM and
NGAM) are parameters that capture the consumption of ATP
toward cell division and homeostasis, respectively. These are
known to be condition-specific; however, genome-scale models
do not include a mechanistic description that allows to determine
these ATP consumption rates as part of the simulation. Instead,
GAM is incorporated into the biomass pseudo-reaction and

NGAMhas its own pseudo-reaction that hydrolyzes ATP at a rate
tuned by the constraint parameters.

To increase model prediction accuracy for various
conditions, we trained GAM and NGAM parameters of
iCBI655 using an extensive dataset of 28 extracellular fluxes
(Supplementary Datasheet 2) measured during the growth
phase under different reactor configurations, carbon sources,
and gene deletion mutants. This approach is based on the
method used to train the iML1655 E. coli model (Monk et al.,
2017). Remarkably, we observed highly linear trends under three
different conditions, including chemostat reactor with cellobiose
as a carbon source, chemostat reactor with cellulose as a carbon
source, and batch reactor with either cellobiose or cellulose as
a carbon source (Figure 1A). This model training has led to
improved growth rate prediction of iCBI655 as compared to
iAT601 that has previously been trained with only a smaller
dataset (Figure 1B). Specifically, the iAT601 training dataset was
limited to batch conditions; hence, the inaccurate predictions of
iAT601 were observed for chemostat conditions (Figure 1C).

2.4. Assessment of Model Quality and
Standard Compliance With Memote
The field of metabolic network modeling suffers from a lack
of standard enforcement and quality control metrics that limit
model reproducibility and applicability. To address this issue,
Lieven et al. (2020) recently developed the Memote framework
that systematically tests for standards and best practices in GSMs.
We applied Memote to both the iCBI655 and E. coli iML1515
models for comparison (Figure 1D). This analysis produced five
independent scores that assess model quality. The consistency
score measures basic biochemical requirements, such as mass
and charge balance of metabolic reactions, and it was near 100%
for both models. Additionally, the different annotation scores
quantify how many elements in the model contain relevant
metadata. More specifically, the systems biology ontology (SBO)
annotation indicates if an object in the model refers to a
metabolite, reaction, or gene, while the respective annotation
scores of these elements correspond to properties (e.g., name,
chemical formula, etc.) and identifiers linking them to relevant
databases (e.g., KEGG Kanehisa and Goto, 2000 or modelSEED
Henry et al., 2010). The overall score is computed as a weighted
average of all the individual scores with additional emphasis
on the consistency score. In summary, the high scores obtained
by iCBI655 indicate the quality of the model and ensure its
applicability for future studies.

2.5. Model-Guided Analysis of Proteomics
and Flux Datasets Sheds Light on Redox
Metabolism Critical for Biofuel Production
in C. thermocellum
For the first application of the genome-scale metabolic model,
we aimed to understand the complex redox metabolism
and potential redox bottlenecks critical for enhanced biofuel
production in C. thermocellum. We used the model as a scaffold
to analyze proteomics and metabolic flux data collected for
the C. thermocellum wild-type and 1hydG1ech strains. The
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FIGURE 1 | Training and validation of the iCBI655 model. (A) Training of GAM and NGAM parameters. Discrete points correspond to experimental data. The slope of

the linear regression function corresponds to GAM, while the intercept corresponds to NGAM. The data points circled as outliers were not included in any of the linear

regression calculations. (B) Comparison of growth prediction error between iCBI655 and iAT601. Each maximum growth rate was predicted by constraining the

models with the measured substrate uptake and product secretion fluxes (Supplementary Datasheet 2). r2 corresponds to the Pearson correlation coefficient.

(C) Error in growth predictions under batch and chemostat conditions. Predicted and measured growth rates correspond to the values included in (B). (D) Scores

provided by the quality control tool Memote (Lieven et al., 2020) for iCBI655 and iML1515. “Overall score” is shown in the legend.

1hydG1ech mutant was engineered to redirect electron flow
from hydrogen to ethanol by removal of primary hydrogenases
(Biswas et al., 2015; Thompson et al., 2015). Previous studies of
1hydG1ech based on analysis of secretion fluxes (Thompson
et al., 2015) or omics (Biswas et al., 2017) suggested the presence
of redox bottlenecks in this mutant but did not identify which
specific pathways and cofactors (i.e., NADH vs. NADPH) are
responsible.We aim to solve this problem through integrated and
quantitative analysis of omics and fluxes at the genome scale.

2.5.1. Development of Fold Change-Based Omics

Integration Protocol
To perform the analysis, we formulated an omics integration
protocol anchored at the quantification of fold change (FC)
between case and control samples (Figure 2A). In this approach,
we first compared FCs between simulated intracellular fluxes and

measured omics data. Next, we identified consistent reactions
with FCs of the same sign and different from zero in
both measured proteomics and simulated fluxes for further
analysis (section 4.6).

To start the FC-based omics integration, we obtained
measured FCs by mapping the measured proteomics data to 510
out of the 856 reactions in the model through the gene-protein-
reaction (GPR) associations (Figure 2B). Then, we identified 70
consistent reactions by comparing measured FCs with two types
of simulated FCs: (i) parsimonious flux balance analysis (pFBA)
that determines the most efficient flux distribution (assuming all
enzymes are roughly as efficient) and (ii) flux variability analysis
(FVA) that identifies the feasible flux range of each reaction.

The Pearson correlation coefficients between simulated and
measured FCs for the consistent reactions were 0.26 and
0.09 for pFBA and FVA, respectively (Figure 2C). In general,
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FIGURE 2 | Multi-omics data integration procedure. (A) Fold change-based multi-omics data integration and analysis protocol. (B) Mapping of proteomic data for the

1hydG1ech case study to model reactions. (C) Correlation between measured and simulated fold changes (pFBA in blue and FVA in orange) for all 70 consistent

reactions of the 1hydG1 ech case study.

the FVA reaction flux ranges remained mostly unchanged,
suggesting that pFBA is a better representation of actual
metabolic fluxes as previously observed (Machado and Herrgård,
2014). The top consistent reactions with the highest proteomics
FCs (Table S1) belong primarily to the central metabolism
of C. thermocellum (Figure 3). Interestingly, discrepancies in
magnitude between flux and protein FCs for consistent reactions
could be used to identify bottlenecks. For example, for a
given enzyme, a small increase in flux combined with a large
increase in translation could be an indicator of low catalytic
efficiency; alternatively, such discrepancy could also point at
an upstream thermodynamic bottleneck. Similar comparisons
between simulated flux and omics has previously been used to
identify regulatory mechanisms (Bordel et al., 2010). Overall, the
identification and analysis of consistent reactions is an effective
approach to gain certainty on the activity changes of metabolic
pathways between conditions.

2.5.2. FC-Based Omics Integration Reveals

Redirection of Electron Flow for NADPH Supply in

1hydG1ech Strain
Our identification of the consistent reactions by using the FC-
based omics integration protocol revealed coherent indications
of increased NADPH biosynthesis in the 1hydG1ech mutant
with respect to the wild-type across three major metabolic
areas: (i) an increased protein level of FRNDPR2r (also
known as NFN) that converts one mol of reduced ferredoxin
(fdxr_42) and one mole of NADH into two moles of NADPH
(Figure 3A), (ii) an increased protein level of all three malate
shunt enzymes and a decreased protein level of the alternative
route PPDK (Figure 3B), and (iii) a decreased protein level
of sulfur transporter and of HSOR that oxidizes sulfite into
sulfide consuming NADPH (Figure 3C). These observations
are consistent with the failure of rnf over-expression to
enhance ethanol production (Lo et al., 2017), since RNF
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FIGURE 3 | Metabolic map visualization for (A) redox and hydrogenases pathway, (B) pyruvate node that links glycolysis, incomplete Krebs cycle, anapleurotic

pathway, and fermentative pathway, and (C) sulfur metabolism using the Escher tool. Values next to reaction labels correspond to proteomics fold change between

the 1hydG1ech and wild-type strains only for the 70 consistent reactions identified by using the FC-based omics integration protocol (section 2.5). The labels of

extracellular metabolites are appended with “_e.” Reactions marked with a red cross are deleted in 1hydG1ech.
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produces NADH but the key cofactor bottleneck seems to be
NADPH. Furthermore, a direct look at the proteomics data
revealed that RNF subunits (Clo1313_0061-Clo1313_0066) had
a statistically significant decrease in protein levels of the mutant
(Supplementary Datasheet 2). The preference of 1hydG1ech
toward NADPH could be due to the cofactor specificity of
the remaining redox balancing pathways (e.g., isobutanol),
thermodynamics and protein cost constraints, or a combination
of both. While the contribution of thermodynamic constraints
is beyond the scope of this study, a recent analysis (Dash et al.,
2019) of the ethanol production pathway in C. thermocellum
highlighted the importance of engineering strategies to increase
NADPH, for instance, introduction of NADPH-linked GAPDH
that converts glyceraldehyde-3-phosphate to 3-phospho-D-
glyceroyl phosphate in glycolysis or overexpression of NADPH-
FNOR that transfers electrons from reduced ferredoxin to
NADPH. The contribution of alternative redox balancing
pathway toward the increased NADPH biosynthesis will be
examined next.

2.5.3. Analysis of Simulated Fluxes Reveals the Role

of NADPH in Redox Balancing
The analysis based on consistent reactions strongly indicates that
NADPH production is important in the 1hydG1ech mutant
to achieve redox balance. However, the pathways oxidizing
NADPH remain unknown since not all reactions in the model
could be mapped to proteomics measurements and carbon
recovery was lower in the mutant strain (Thompson et al.,
2015). To identify these pathways, we examined the simulated
fluxes of all reactions (instead of only consistent reactions) that
differed in value between wild-type and mutant, and limited
this search to exchange reactions and reactions that involve
NADPH (Table S2). These simulated fluxes predicted an increase
in the isobutanol pathway, including keto-acid reductoisomerase
(KARA1) that consumes NADPH and isobutanol secretion
(EX_ibutoh_e). The isobutanol pathway can consume NADPH
through several enzymes (Lin et al., 2015) and has increased flux
during overflowmetabolism at high-substrate loading (Holwerda
et al., 2014; Thompson and Trinh, 2017). The model also
predicted a decrease in valine secretion (EX_val__L_e), since
the isobutanol pathway competes with the valine pathway after
KARA1. Remarkably, this prediction is consistent with the lower
valine secretion measured in 1hydG1ech (Biswas et al., 2017).
A certain amount of NADPH is likely oxidized by the mutated
alcohol-dehydrogenase enzyme observed after short adaptation
in 1hydG that is compatible with both NADH and NADPH
(Biswas et al., 2015). However, this feature is not captured by
the model since in general gene knock-outs are simulated by
blocking the associated reactions. Overall this analysis indicates
that 1hydG1ech likely increases isobutanol secretion to alleviate
redox imbalance.

Taken altogether, model-guided data analysis illustrates the
power of the model as contextualization tool and provides new
insights into the redox bottlenecks present in C. thermocellum
that are critical in the production of reduced molecules. The
integration of omics and fluxes led to the resolution of NADPH
as the key cofactor in redox bottleneck of 1hydG1ech. It

helped identify specific pathways that undergo major changes
in protein levels, providing interesting target reactions for
further engineering. Generally, the developed FC-based omics
integration protocol can be applied to different omics data
types due to its simplicity. The method does not require one
to formulate or assume a quantitative relationship between
omics measurements and simulated fluxes. Furthermore,
fold change in biomolecule concentrations implemented
in the method is currently much easier to measure in a
quantitatively reliable manner for many molecules than
case-specific absolute concentrations.

2.6. Model-Guided Design of Modular
Production Strains for Biofuel Synthesis
Another common application of genome-scale models is strain
design (Long et al., 2015; Ng et al., 2015;Maranas and Zomorrodi,
2016; Wang and Maranas, 2018; Garcia and Trinh, 2019a,b,c).
We used the iCBI655 model combined with the ModCell tool
(section 4.9) to design C. thermocellum modular production
strains for efficient biosynthesis of alcohols and esters. Briefly,
with ModCell we aim to design a modular (chassis) cell that
can be rapidly combined with exchangeable pathway modules
in a plug-and-play fashion to obtain modular production strains
exhibiting target phenotypes with minimal strain optimization
cycles (Trinh, 2012; Trinh et al., 2015; Garcia and Trinh, 2019b,c).
In this study, the target phenotype for modular production
strains is growth-coupled to product synthesis (wGCP), that
corresponds to the minimum product synthesis rate at the
maximum growth rate. The ModCell mathematical formulation,
computational algorithm, and implementation were described
in details previously (Garcia and Trinh, 2019a,c, 2020). The
design variables to attain the target phenotypes involve genetic
manipulations of two types: (i) reaction deletions, constrained
by the parameter α, that corresponds to gene knock-outs; and
(ii) module reactions, constrained by the parameter β , that
corresponds to reactions deleted in the modular cell but added
back to specific modules to enhance the compatibility of the
modular cell. Once these two parameters are specified, the
solution to the problem is a set of Pareto optimal designs named
Pareto front. In a Pareto optimal design, the performance (i.e.,
objective value) of a given module can only be increased at the
expense of lowering the performance of another module. To
characterize the practicality of each design, we say a modular
cell is compatible with certain modules if the design objective
is above a specific threshold (e.g., 0.5 in this study). Hence,
the compatibility of a design corresponds to the number of
compatible modules.

To design C. thermocellum modular cells, we first evaluated a
range of design parameters α and β with an increasing number
of genetic manipulations (Figure 4A). As expected, increasing
the number of deletions leads to more compatible designs, at the
expense of more complexity in the implementation. We selected
an intermediate point of α = 6, β = 0 for further analysis. This
Pareto front is composed of 12 designs that can be clustered into
two groups (Figure 4B). The first group (e.g., designs 3, 8, and 9)
are compatible with all products except butanol and its derived
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FIGURE 4 | Modular cell designs for biosynthesis of 12 alcohols and esters. (A) Module compatibility for various design parameters. (B) Pareto front for parameters

α = 6,β = 0. (C) Pareto set for parameters α = 6,β = 0. Reaction names and formulas are included in Table 3. (D) Feasible phenotypic spaces for select designs.

esters, whereas the second group (e.g., designs 1, 2, 10, and 12)
have high objective values for butanol and its derived esters.

To understand the characteristics of each group, we can
inspect the deletions of each design (Figure 4C,Table 3). Designs
3, 8, and 9 all have in common H2ASE_syn, GLUDy, PPDK, and

FRNDPR2r deletion, while the last two deletions never appear in
design 1, 2, 10, or 12. The majority of deletion targets are central
metabolic reactions (Table 3). The common targets include
deletion of hydrogenases that appear in the cluster of designs
2, 4, 7, 10, 11, and 12 with the 1hydG1ech genotype discussed
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TABLE 3 | Reaction deletions sorted by appearance frequency (counts) in the designs of the Pareto front for α = 6, β = 0.

ID Name Formula Counts (%)

PGM Phosphoglycerate mutase 2pg_c ↔ 3pg_c 75

H2ASE_syn Bidirectional [NiFe] Hydrogenase (Fe-H2) h2_c + nadp_c ↔ h_c + nadph_c 75

ECH (FeFe)-hydrogenase, ferredoxin dependent,

membrane-bound

2.0 fdxr_42_c + 3.0 h_c ↔ 2.0 fdxo_42_c + h2_c + h_e 66.7

BIF Bifurcating Hydrogenase 2.0 fdxr_42_c + 3.0 h_c + nadh_c ↔ 2.0 fdxo_42_c + 2.0 h2_c + nad_c 66.7

GLUDy Glutamate dehydrogenase (NADP) glu__L_c + h2o_c + nadp_c ↔ akg_c + h_c + nadph_c + nh4_c 50

FRNDPR2r Ferredoxin: nadp reductase (NFN) 2.0 fdxr_42_c + h_c + nadh_c + 2.0 nadp_c ↔ 2.0 fdxo_42_c + nad_c + 2.0 nadph_c 41.7

RNF Ferredoxin:NAD oxidoreductase (membrane bound) 2.0 fdxr_42_c + 2.0 h_c + nad_c ↔ 2.0 fdxo_42_c + h_e + nadh_c 33.3

PEPCK_re Phosphoenolpyruvate carboxykinase (GTP) co2_c + gdp_c + pep_c → gtp_c + oaa_c 33.3

ALCD2x Alcohol dehydrogenase (ethanol) acald_c + h_c + nadh_c → etoh_c + nad_c 25

ACALD Acetaldehyde dehydrogenase (acetylating) accoa_c + h_c + nadh_c → acald_c + coa_c + nad_c 25

PPDK Pyruvate, phosphate dikinase amp_c + 2.0 h_c + pep_c + ppi_c → atp_c + pi_c + pyr_c 25

GLUSy Glutamate synthase (NADPH) akg_c + gln__L_c + h_c + nadph_c → 2.0 glu__L_c + nadp_c 16.7

PFL Pyruvate formate lyase coa_c + pyr_c → accoa_c + for_c 16.7

LDH_L L-lactate dehydrogenase h_c + nadh_c + pyr_c → lac__L_c + nad_c 16.7

POR Pyruvate-ferredoxin oxidoreductase coa_c + 2.0 fdxo_42_c + pyr_c → accoa_c + co2_c + 2.0 fdxr_42_c + h_c 8.3

CEPA Cellobiose phosphorylase cellb_c + pi_c → g1p_c + glc__D_c 8.3

GMPS GMP synthase atp_c + nh4_c + xmp_c → amp_c + gmp_c + 3.0 h_c + ppi_c 8.3

AHSL O-Acetyl-L-homoserine succinate-lyase achms_c + cys__L_c ↔ ac_c + cyst_L_c + h_c 8.3

earlier or removal of reactions that form fermentative byproducts
such as ALCD2x and ACALD (ethanol), PFL (formate), LDH_L
(lactate). Interestingly, ACKr or PTA (acetate) does not appear
in this list, likely because acetate production can serve as a
regulatory valve for redox metabolism, especially in a modular
cell that must be compatible with products of diverse degrees
of reduction.

More interestingly, we also found important branch-point
deletion reactions (Stephanopoulos and Vallino, 1991) in central
metabolism that have not yet been explored for strain design.
Most prominently, these reactions include GLUDy, PEPCK_re,
and PPDK, which appear with percentage frequencies of 50%,
33.3%, and 25%, respectively (Table 3). Both PEPCK_re and
PPDK present two alternative routes that influence the ratio of
NADPH to NADH, which is relevant to control metabolic fluxes
though the specific dependencies of certain enzymes toward each
redox cofactor. Since GLUDy consumes NADPH and is a key
reaction in amino-acid metabolism, this enzyme and related ones
(e.g., GLUSy) are interesting targets for practical implementation.
We speculate the two product groups emerge likely because
the butanol pathway strictly depends on NADH due to the
reactions ACOAD1z (acyl-CoA dehydrogenase) and HACD1 (3-
hydroxyacyl-CoA dehydrogenase), while the ethanol, propanol,
and isobutanol pathways are more flexible in their use of NADH
or NADPH. The designs 3, 8, and 9 perform poorly with butanol,
and are also the only ones containing PPDK deletion. This
deletion forces pep to pyruvate flux through the malate shunt
that converts NADH to NADPH. Engineering of the cofactor
specificities of the butanol pathway can be used to build one
modular cell compatible with all products under consideration.

Two representative designs from the groupsmentioned earlier
are 3 and 12. Their feasible growth and production phenotypes

reveal a tight coupling between product formation and growth
rate (Figure 4D). This phenotype enables pathway optimization
through adaptive laboratory evolution, as previously done for
ethanol (Tian et al., 2016), overcoming one of themain challenges
of C. thermocellum engineering that is optimization of enzyme
expression levels. Hence, the proposed modular cells can also
serve as platforms for pathway selection and optimization. In
summary, this analysis demonstrates the potential of the model
to identify non-intuitive metabolic engineering strategies that
can be key to build effective modular platform strains for the
production of biofuels and biochemicals in C. thermocellum.

3. CONCLUSIONS

In this study, we developed a genome-scale metabolic model of
the biotechnologically relevant organismC. thermocellum. Model
development followed standards and best practices to ensure
reproducibility and accessibility. We demonstrated the enhanced
predictions of the model for diverse fermentation conditions
and gene lethality. Genome-scale models have a broad range of
applications in systems biology, including metabolic engineering,
physiological discovery, phenotype interpretation, and studies
of evolutionary processes (Feist and Palsson, 2008; Palsson,
2015). To illustrate the model applications, we chose to tackle
the challenge of disparate data integration and interpretation
at the systems level. We developed a fold-change-based omics
integrationmethod for this purpose, and used it to identify routes
in central metabolism that were selected to increase NADPH
generation in the 1hydG1ech strain. This analysis revealed
the importance of NADPH cofactor over its alternatives and
provided new engineering targets for enhanced biosynthesis of
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reduced products in C. thermocellum. We also illustrated the
use of the model to design C. thermocellum modular cells, using
the ModCell tool (Garcia and Trinh, 2019b). The proposed
designs cover C2 through C4 alcohols and their derived esters,
which are key target molecules for renewable production with
C. thermocellum (Peters, 2018). The proposed designs feature
a combination of previously-explored and novel strategies to
couple target metabolite production with cellular growth. Like
the well-developed genome-scale models (Monk et al., 2017; Lu
et al., 2019) of the important organisms Escherichia coli and
Saccharomyces cerevisiae broadly used for strain engineering
both in academia (Blazeck and Alper, 2010) and industry (Yim
et al., 2011), we anticipate the iCBI655 genome-scale model will
also provide a versatile tool for systems metabolic engineering
of C. thermocellum.

4. METHODS

4.1. Model Curation
The genome scale model iCBI655 was constructed from iAT601
(Thompson et al., 2016) by following the standard GSM
development protocol (Thiele and Palsson, 2010). Reaction
and metabolite identifiers were mapped from KEGG to BiGG
using the BiGG API (King et al., 2015). Metabolite charges
were obtained from modelSEED when available, and otherwise
calculated using the Chemaxon pKa plugin (Szegezdi and
Csizmadia, 2007) for a pH of 7.2 (Thiele and Palsson, 2010). The
biomass objective function was consolidated into one pseudo-
reaction avoiding the use of intermediate pseudo-metabolites
present in iAT601. Reactions were assigned with a confidence
level based on a standard genome-scale model annotations
(Thiele and Palsson, 2010).

4.2. Metabolic Flux Simulations
Constraint-based metabolic network modeling (Palsson, 2015)
is based on the feasible flux space, �k, defined by network
stoichiometry and flux bounds that represent thermodynamic
constraints and measured values:

�k : = {vjk ∈ R :

∑

j∈J

Sijvjk = 0 ∀i ∈ I (1)

ljk ≤ vjk ≤ ujk ∀j ∈ J } (2)

Here I and J are the sets of metabolites and reactions
in the model, respectively, and vjk is the metabolic flux
(mmol/gCDW/h) through reaction j in the simulation condition
k. Constraint (1) enforces mass balance for all metabolites in the
network, where Sij represents the stoichiometric coefficient of
metabolite i in reaction j. Constraint (2) enforces lower and upper
bounds ljk and ujk, respectively, for each reaction j in the network.

In different simulation conditions, k, Sij remains fixed given
the structure of the network for all i, j ∈ I ,J . However,
certain bounds ujk and ljk are modified to represent specific
metabolic constraints. For example, to apply measured reaction
fluxes such as in the case of GAM and NGAM calculation or the

omics integration protocol (section 4.6), ljk and ujk are specified
using the experimentally measured average (µjk) and standard
deviation (σjk), which for normally distributed samples with 3
replicates produces an interval with a confidence level above 90%
(3-4). Similarly, to represent a certain gene deletion mutant k, the
bounds are set to be ujk = ljk = 0 for the associated reaction j.

ljk = µjk − σjk ∀j ∈ Measuredk (3)

ujk = µjk + σjk ∀j ∈ Measuredk (4)

The feasible flux space �k can be explored in different ways;
(Trinh et al., 2009; Palsson, 2015) for instance, an optimization
objective is often defined to identify specific flux distributions
vsim
jk

∀j ∈ J :

vsimjk ∈ argmax







∑

j∈J

cjvjk : vjk ∈ �k







∀j ∈ J (5)

Here cj is the coefficient of reaction j in the linear objective
function, which is changed according to the simulation context.
For example, to train GAM andNGAM (Figure 1A) the objective
was set to maximize flux through the ATP hydrolysis reaction,
i.e., cj = 1 for j corresponding to ATP hydrolysis reaction,
and 0 otherwise. To evaluate growth prediction accuracy
(Figures 1B,C), the objective was set to maximize growth, i.e.,
cj = 1 for j corresponding to growth pseudo-reaction and
0 otherwise.

4.3. Simulation of Different Growth
Environments
The model is configured to generally represent different medium
and reactor conditions by modifying three features. The first
feature involves model boundaries specifying which metabolites
may enter the intracellular environment (i.e., present in the
growth medium) or may exit the intracellular environment
(i.e., secreted by C. thermocellum). This feature can be adjusted
through ujk and ljk for exchange reactions. In our simulations,
only essential metabolites required for in silico growth may
be consumed and only commonly observed metabolites may
be produced, unless otherwise noted. The second feature
involves biomass objective function. iCBI655 contains 3
possible biomass reactions: (i) BIOMASS_CELLOBIOSE
used for growth in cellobiose with cellulosan constituting
2% of cell dry weight (CDW) (Zhang and Lynd, 2005), (ii)
BIOMASS_CELLULOSE used for growth on cellulose with
cellulosan constituting 20% of CDW (Zhang and Lynd, 2005),
and (iii) BIOMASS_NO_CELLULOSOME, a biomass function
that does not consider cellulosan production and only used as a
control. The combination of cellulosome and protein fractions
accounts for 52.85% of the CDW in all cases (Roberts et al., 2010;
Thompson et al., 2015). Cellobiose conditions were used in all
simulations unless otherwise noted. The third feature involves
GAM/NGAM. Three sets of these parameters are considered
including batch, chemostat-cellulose, and chemostat-cellobiose,
based on fitting the model to experimental data. Batch conditions
were used in all simulations unless otherwise noted.
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For growth on cellulose, the experimentally measured
glucose-equivalent uptake was represented in the model through
the following pseudo-reactions: 3 glceq_e → cell3_e; 4 glceq_e
→ cell4_e; 5 glceq_e → cell5_e; and 6 glceq_e → cell6_e. Here,
cell3_e, cell4_e, cell5_e, and cell6_e are cellodextrin polymers with
3, 4, 5, and 6 glucosemonomers, respectively. These polymers can
be imported inside the cell through the oligo-cellulose transport
ABC system. The model is free to use any cellodextrin length,
although utilization of longer cellodextrins results in higher ATP
yield (Zhang and Lynd, 2005; Thompson et al., 2016).

4.4. Single-Reaction Deletion Analysis to
Match Experimentally Observed Phenotype
A core model of C. thermocellum (Thompson et al., 2015)
correctly predicted the experimentally observed lethality of
1hydG1ech1pfl; however, the iAT601 genome-scale model built
by extension of this core model failed, suggesting that the
genome-scale model has alternative active pathways leading
to the false growth prediction in silico. To resolve this false
positive prediction in iCBI655, we calculated the maximum
growth rates for all possible additional single reaction deletions
in the 1hydG1ech1pfl mutant. This analysis resulted in three
possible additional reaction deletions that are predicted to
be lethal (i.e., maximum growth rate prediction below 20%
of the simulated wild-type value Palsson, 2015), including
the removal of (i) glycine secretion (EX_gly_e), (ii) 5,10-
methylenetetrahydrofolate oxidoreductase (MTHFC), and (iii)
deoxyribose-phosphate aldolase (DRPA). For the first removal,
addition of sulfate or ketoisovalerate in the growth medium of
1hydG1ech1pfl fails to predict growth recovery as observed
experimentally (Thompson et al., 2015), making this option
invalid. Likewise, the second removal is invalid because it makes
PFL an essential reaction in the wild-type strain; however,
experimental evidence demonstrates that 1pfl mutant is able to
grow (Papanek et al., 2015). The last option was chosen since it
correctly predicts growth recovery of 1hydG1ech1pfl by sulfate
or ketoisovalerate addition in the growth medium, and does not
make PFL essential in the wild-type strain.

4.5. Model Comparison
The C. thermocellum and E. coli models were obtained
from their respective publications in SBML format. Blocked
reactions were calculated by allowing all exchange reactions
to have an unconstrained flux (i.e., lbjk = −1, 000, ubjk =

1, 000 ∀j ∈ Exchange). This procedure enables the most
general scenario which produces the smallest number of blocked
reactions in each model. Additional details can be found in
Supplementary Datasheet 1.

4.6. Omics Integration Protocol
The omics integration protocol developed in this study consists
of three steps: (i) simulation of fold changes, (ii) mapping of
measured gene fold changes to reactions, and (iii) comparison of
measured and simulated fold changes.

4.6.1. Calculation of Simulated Fold Changes
To simulate metabolic fluxes, lower and upper bounds (2) are
constrained according to experimental data as described in
section 4.2. Then, for the pFBAmethod, a quadratic optimization
problem (6) is solved, leading to a unique flux distribution

v
pFBA
jk

∀j ∈ J .

v
pFBA
jk

∈ argmin







∑

j∈J

v2jk : vjk ∈ �k







∀j ∈ J (6)

For the FVA method, a sequence of linear programming
problems is solved where each flux is minimized (7) and
maximized (8):

vmin
jk ∈ argmin

{

vjk : vjk ∈ �k

}

∀j ∈ J (7)

vmax
jk ∈ argmax

{

vjk : vjk ∈ �k

}

∀j ∈ J (8)

Note that for computation we applied the loop-less FVA method
(Schellenberger et al., 2011; Chan et al., 2018), as implemented
in cobrapy (Ebrahim et al., 2013), that introduces additional
constraints in �k to remove thermodynamically infeasible cycles
from all feasible flux distributions.

FVA produces a flux range [vmin
jk

, vmax
jk

] for each reaction j ∈ J .

To compare between states k (e.g., wild-type and mutant), we
define the FVA center, a scalar variable that generally indicates
a change in this range (9).

vFVAjk =
vmax
jk

+ vmin
jk

2
(9)

The FVA center is a heuristic analysis with the main purpose of
determining whether a reaction exhibits an upward shift (center
increase) or a downward shift (center decrease) between two
conditions k. It should be emphasized that the FVA center, vFVA

jk
,

does not attempt to quantify the fraction of overlap between
ranges nor to identify what type of shift might occur from all

possible permutations. Unlike v
pFBA
jk

, vFVA
jk

does not necessarily

represent a feasible flux distribution of�k. Furthermore, the FVA
center could potentially fail to capture hypothetical permutations
of fluxes. Despite these considerations, the FVA center remains a
useful heuristic to analyze simulated fold changes.

Finally, to determine the fold change for either pFBA or FVA
simulated fluxes, the conventional procedure for fold change
calculation in omics data is emulated. First, values are floored
to avoid very large (or infinite) fold changes in cases with very
small magnitude change. This is accomplished through a flooring
piece-wise function (10), where ǫ = 0.0001 is theminimum value
and x is an arbitrary scalar variable.

floor(x) =











x+ ǫ if 0 < x < ǫ

x− ǫ if 0 > x > −ǫ

x otherwise

(10)
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Then, the fluxes are normalized to the substrate uptake
rate vuptake,k and fold change is calculated in log2
space (11).

FCsim
j (vj,mut, vj,wt) = log2

[

floor

(

vj,mut

|vuptake,mut|

)]

− log2

[

floor

(

vj,wt

|vuptake,wt|

)]

(11)

4.6.2. Calculation of Measured Fold Changes
Fold change between case and control samples, FCl, is calculated
in log2 space for each gene l ∈ L, where L is the set of
genes in the model. These gene fold changes can be mapped to
metabolic reaction fold changes using the gene-protein reaction
associations (GPR), given Gj as the set of genes with FCl 6= 0 in
the GPR of reaction j:

FCmeas
j =

1

card(Gj)

∑

l∈Gj

FCl (12)

4.6.3. Identification of Consistent Fold Changes
A reaction j is said to have a consistent fold change if the
measured fold change has the same sign of at least one of the
simulated fold changes, more formally:

M : =
{

j ∈ J :

([

(FC
sim,pFBA
j < 0) ∨ (FCsim,FVA

j < 0)
]

∧ (FCmeas
j < 0)

)

∨
([

(FC
sim,pFBA
j > 0) ∨ (FCsim,FVA

j > 0)
]

∧ (FCmeas
j > 0)

) }

(13)

where M ⊆ J is the set of consistent reactions which is
considered for further analysis and the simulated fold changes
are re-defined for brevity (14-15).

FC
sim,pFBA
j : = FCsim

j (v
pFBA
j,mut , v

pFBA
j,wt ) (14)

FCsim,FVA
j : = FCsim

j (vFVAj,mut, v
FVA
j,wt ) (15)

4.7. Software Implementation
Model development was performed using Python and Jupyter
notebooks with open-source Python libraries including cobrapy
(Ebrahim et al., 2016). The sequence of upgrades and
improvements can be seen in the Git version control records.
The repository is available online through Github (https://github.
com/trinhlab/ctherm-gem) and in Supplementary Datasheet 1.

4.8. Proteomics Data Collection
C. thermocellumwild-type and1hydG1ech strains were cultured
in batch reactors and metabolic fluxes were calculated as
previously described (Thompson et al., 2015). For proteomics
measurements, the wild-type andmutant strains were cultured in
MNM and MTC media (Kridelbaugh et al., 2013), respectively.
While both wild-type and mutant were originally cultured in
MTC (Thompson et al., 2015), the wild-type had to be cultured
separately in MNM medium due to insufficient volume for
proteomics sampling in the MTC culture. MTC has higher

nitrogen and trace mineral concentrations, but previous studies
have shown no effect on growth rates (Kridelbaugh et al., 2013).
During the mid-exponential growth phase 10mL samples were
collected, centrifuged, and the resulting pellet was stored at
−20 ◦C. Cell pellets were then prepared for LC-MS/MS-based
proteomic analysis. Briefly, proteins extracted via SDS, boiling,
and sonic disruption were precipitated with trichloroacetic
acid (Giannone et al., 2015b). The precipitated protein was
then resolubilized in urea and treated with dithiothreitol and
iodoacetamide to reduce and block disulfide bonds prior
to digestion with sequencing-grade trypsin (Sigma-Aldrich).
Following two-rounds of proteolysis, tryptic peptides were
salted, acidified, and filtered through a 10 kDa MWCO spin
column (Vivaspin 2; GE Healthcare) and quantified by BCA
assay (Pierce).

For each LC-MS/MS run, 25 µg of peptides were loaded via
pressure cell onto a biphasic MudPIT column for online 2D
HPLC separation and concurrent analysis via nanospray MS/MS
using a LTQ-Orbitrap XL mass spectrometer (Thermo Scientific)
operating in data-dependent acquisition (one full scan at 15 k
resolution followed by 10 MS/MS scans in the LTQ, all one
µscan; monoisotopic precursor selection; rejection of analytes
with an undecipherable charge; dynamic exclusion = 30 s)
(Giannone et al., 2015a).

Eleven salt cuts (25, 30, 35, 40, 45, 50, 65, 80, 100, 175, and 500
mM ammonium acetate) were performed per sample run with
each followed by 120min organic gradient to separate peptides.

Resultant peptide fragmentation spectra (MS/MS) were
searched against the C. thermocellum DSM1313 proteome
database concatenated with common contaminants and reversed
sequences to control false-discovery rates using MyriMatch v.2.1.
(Tabb et al., 2007). Peptide spectrummatches (PSM) were filtered
by IDPicker v.3 (Ma et al., 2009) to achieve a peptide-level FDR
of <1 % per sample run and assigned matched-ion intensities
(MIT) based on observed peptide fragment peaks. PSM MITs
were summed on a per-peptide basis and those uniquely mapping
to their respective proteins were imported into InfernoRDN
(Taverner et al., 2012). Peptide intensities were log2-transformed,
normalized across replicates by LOESS, standardized by median
absolute deviation, and median centered across all samples.
Peptide abundance data were then assembled to proteins via
RRollup and further filtered to maintain at least two values in at
least one replicate set. Protein abundances were then used for the
modeling efforts describe herein.

All raw and database-searched LC-MS/MS data pertaining to
this study have been deposited into the MassIVE proteomic data
repository and have been assigned the following accession
numbers: MSV000084488 (MassIVE) and PXD015973
(ProteomeXchange). Data files are available upon publication
(ftp://massive.ucsd.edu/MSV000084488/).

4.9. Modular Cell Design
The ModCell formulation, computational algorithm, and
implementation followed the previous reports (Garcia and Trinh,
2019a,c, 2020). The iCBI655 model with cellobiose as a carbon
source in the batch reactors (Supplementary Datasheet 4) was
used as an input for modular cell design. The alcohol pathways
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were curated from recent literature (Holwerda et al., 2014; Lin
et al., 2015; Loder et al., 2015), where adapted Adh can use
either NADH or NADPH as an electron donor to synthesize
the target alcohol (Biswas et al., 2015). The esters-producing
pathways require an alcohol acetyltransferase (AAT) reaction to
condense an alcohol and acyl-CoA that are already present in
the alcohols-producing pathways. Even though a thermostable
AAT has not yet been reported in literature to function at high
temperature, an engineered chloramphenicol acetyl transferase
(CAT) can be repurposed as a thermostable AAT (Seo et al.,
2019, 2020). The ModCell software is available online at https://
github.com/TrinhLab/ModCell2.
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