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Abstract

Purpose

“Quantile-dependent expressivity” describes an effect of the genotype that depends upon

the level of the phenotype (e.g., whether a subject’s triglycerides are high or low relative to

its population distribution). Prior analyses suggest that the effect of a genetic risk score

(GRS) on fasting plasma triglyceride levels increases with the percentile of the triglyceride

distribution. Postprandial lipemia is well suited for testing quantile-dependent expressivity

because it exposes each individual’s genotype to substantial increases in their plasma tri-

glyceride concentrations. Ninety-seven published papers were identified that plotted mean

triglyceride response vs. time and genotype, which were converted into quantitative data.

Separately, for each published graph, standard least-squares regression analysis was used

to compare the genotype differences at time t (dependent variable) to average triglyceride

concentrations at time t (independent variable) to assess whether the genetic effect size

increased in association with higher triglyceride concentrations and whether the phenome-

non could explain purported genetic interactions with sex, diet, disease, BMI, and drugs.

Results

Consistent with the phenomenon, genetic effect sizes increased (P�0.05) with increasing

triglyceride concentrations for polymorphisms associated with ABCA1, ANGPTL4, APOA1,

APOA2, APOA4, APOA5, APOB, APOC3, APOE, CETP, FABP2, FATP6, GALNT2,

GCKR, HL, IL1b, LEPR, LOX-1, LPL, MC4R, MTTP, NPY, SORT1, SULF2, TNFA,

TCF7L2, and TM6SF2. The effect size for these polymorphisms showed a progressively

increasing dose-response, with intermediate effect sizes at intermediate triglyceride con-

centrations. Quantile-dependent expressivity provided an alternative interpretation to their

interactions with sex, drugs, disease, diet, and age, which have been traditionally ascribed

to gene-environment interactions and genetic predictors of drug efficacy (i.e., personalized

medicine).

Conclusion

Quantile-dependent expressivity applies to the majority of genetic variants affecting post-

prandial triglycerides, which may arise because the impaired functionalities of these variants

increase at higher triglyceride concentrations. Purported gene-drug interactions may be the
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manifestations of quantile-dependent expressivity, rather than genetic predictors of drug

efficacy.

Introduction

The majority of a person’s day is spent in the postprandial state, which is characterized by the

elevation of triglyceride-rich lipoproteins (TRL) [1]. Zilversmit initially proposed that post-

prandial lipemia contributes significantly to coronary heart disease [2].

Postprandial lipemia is the consequence of the relative rates of intestinal fat absorption,

TRL synthesis and lipolysis, intervascular lipid transfers, and plasma clearance of TRL rem-

nants [1]. Following a fatty meal, long-chain fatty acids are absorbed by the intestines and

esterified to form triglycerides that are then incorporated into chylomicrons for release into

the circulation. The triglycerides are subsequently removed from circulation by lipoprotein

lipase (LPL) which is a rate-limiting hydrolytic enzyme located on the vascular endothelium.

This requires apolipoprotein (apo) CII, a cofactor for LPL that is carried on the chylomicrons

after being received from high-density lipoproteins (HDL). The chylomicrons are called rem-

nant particles when approximately 90% of their original triglyceride content has been hydro-

lyzed. During this process there is a loss of apo CIII (an inhibitor of TRL catabolism and

clearance) and gain of apo E (a ligand for the receptor-mediated hepatic uptake of the rem-

nants). Hepatic lipase hydrolyzes some of the remaining triglycerides, which helps facilitate

hepatic receptor uptake of the remnant particles by exposing their apo E. LPL bound to the

chylomicron remnants also assists with their receptor uptake.

Quantile-dependent expressivity describes an effect of the genotype on the phenotype that

depends upon the level of the phenotype [3]. Using quantile regression, the relationship of

plasma triglyceride levels to its genetic risk score (GRS) has been shown to increase with the

percentile of the triglyceride distribution, i.e., the effect of the GRS depends upon whether an

individual has high or low triglycerides relative to the others in the population [3]. Postpran-

dial lipemia is particularly well suited for testing quantile-dependent expressivity because it

represents the exposure of each individual’s genotype to substantial increases of their plasma

triglyceride concentrations. Specifically, quantile-dependent expressivity hypothesizes that the

triglyceride difference between genotypes (dependent variable in a simple linear regression

analyses) will increase with the average triglyceride concentrations (independent variable)

over the time course of the postprandial response. This means there will be a larger genetic

effect size at hypertriglyceridemic (i.e., postprandial state) than at normotriglyceridemic con-

centrations (fasting state).

To test this hypothesis, quantitative data were extracted from the postprandial response

graphs from 97 published papers out of 128 identified as potentially relevant through Pubmed

search of genetics and postprandial triglycerides or oral fat tolerance test and literature cited

within each paper (S1 Table) [4–131]. Included among these were several articles that were

identified in preparation for another paper on gene-environment interactions of fasting tri-

glyceride and their cited references. Studies were only considered if they presented graphs of

the postprandial response by genotypes, provided information from which total and genotype-

specific triglyceride levels could be calculated for at least four time point, and whose subjects

were not selected for their pathological lipemic response. For each published response graph,

plots were created for the genetic effect at each time point “t” vs. the average triglyceride con-

centrations at time t. Their analyses show that the majority of genetic variants affecting the
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postprandial triglyceride response have effect sizes that change depending upon the average

triglyceride concentration at the time of measurement. Quantile-dependent expressivity pro-

vides an alternative explanation for: 1) purported genetic interactions of postprandial triglycer-

ides with sex, diet, and disease, and 2) purported genetic markers of fenofibrate efficacy (i.e.,

personalized medicine).

Results

The primary analyses are graphical as illustrated in Fig 1A and 1B. Fig 1A (upper left panel) is

a re-rendering of Delgado-Lista et al.’s graph [25] of the triglyceride response following an oral

fat tolerance test by APOA2 -265T/C genotypes (rs5082). For each genotype, average triglycer-

ide concentrations are presented for the fasting state at time 0, and the postprandial states at 1,

2, . . ., 6, 8.5 and 11 hours thereafter. The average triglyceride concentration across genotypes,

and average triglyceride difference between genotypes, were determined for each time point

(e.g., 0.92 and 0.15 mmol/L at time zero, respectively, 2.18 and 0.50 mmol/L at 3 hours, and

1.61 and 0.40 mmol/L at 6 hours) and used to create the quantile-dependent expressivity

graph of Fig 1B. Specifically, Fig 1B plots the triglyceride differences between genotypes (the Y

or dependent variable) vs. the average triglyceride value (the X or independent variable) at

each time t to assess the genetic effect size as a function of triglyceride concentrations. The

nine points (identified by time) exhibit a strong linear relationship as demonstrated by their

proximity to their least-squares regression line, corresponding adjusted R-square of 0.93, and

the statistical significance of the slope (P = 1.5x10-5). Therefore, consistent with the hypothesis

of its quantile-dependent expressivity, the APOA2 -265T/C effect size increased with increas-

ing plasma triglyceride concentrations.

Apo E isoforms are the most-reported genetic modifier of postprandial triglyceride concen-

trations, with heightened responses reported for both E2-carriers [22, 51,104] and E4-carriers

[7,11,18,22,23,60,104]. Apo E is thought to be a cofactor of VLDL catabolism, and reverse cho-

lesterol transport, and is located on the surface of remnant particles where it is recognized by

remnant receptors [18]. Fig 2 shows the differences between E4-carriers and E33 homozygotes

(dependent variable) increased an average of 0.48 mmol/L for each one mmol/L increment in

average triglyceride levels (0.39 mmol/L slope when weighted by study sample sizes) and dif-

ferences between E2-carriers and E33 homozygotes increased an average of 0.12 mmol/L for

each one mmol/L increment in average triglyceride levels (the same as when weighted by

study sample size).

The LPL enzyme plays a central role in TRL catabolism by hydrolyzing triglyceride, and it

participates in hepatic TRL clearance via the LDL receptor-related protein. The 447X variant

of the Serine447-Stop S447X (rs328) polymorphism has a 2 amino acid truncation on LPL’s

carboxyl-terminal domain, which enhances binding of cell surface receptors to TRL. The

S447X polymorphism is in complete linkage disequilibrium with the HindIII polymorphism

(rs320) [49,68]. Fig 1C–1G display the quantile dependence expressivity of these and other

lipoprotein lipase genetic variants on postprandial triglyceride concentrations. Fig 1G shows

that quantile-dependent expressivity also affected the postprandial triglyceride levels associ-

ated with the -93G allele of LPL promoter (rs1800590) [117]. Quantile-dependent expressivity

is evident for the -514C/T polymorphism in the promoter region of the hepatic lipase (HL)

gene (rs1800588, Fig 1H) [40].

The APOA5 gene is the strongest genetic determinant of plasma triglyceride concentrations

[132]. It is thought to participate in hepatic synthesis and secretion of TRL, stimulate LPL

activity, and facilitate receptor-mediated clearance of TRL [133]. Located in the promoter

region of APOA5 gene, -1131T>C (rs662799) might lower apo AV levels by down-regulating
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APOA5 mRNA translation [134]. Jang et al. [56], Moreno et al. [79], Martin et al. [71], Car-

dona et al. [16], and Zemánková et al. [131] all report significantly greater postprandial triglyc-

eride increases in carriers of the C allele than in TT homozygote. Fig 3A–3C illustrate

quantile-dependent expressivity for APOA5 genetic variants. In addition, Cardona et al.

reported that C-carriers had triglyceride concentrations that were 55% higher at baseline, 61%

higher after 3 hours postprandial, and 68% higher after 4 hours postprandial than in TT homo-

zygotes [16] (their results are examined in the Discussion Section in the context of drug treat-

ment). Fig 3D shows the rs1263177 polymorphism in the intergenic region between APOA4
and APOA5, which is thought to be a nonfunctional variant, also exhibits quantile-dependent

expressivity [27].

Apo C-III is a component of TRLs that inhibits apoE-mediated remnant clearance [19].

Multiple APOC3 genetic variants exhibit quantile-dependent expressivity. These include the

Saleheen et al. report of lower fasting and postprandial triglycerides in loss of function (LofF)

APOC3 p.Arg19Ter homozygotes (rs76353203, Fig 3E) [108], the Pollin et al. report of hetero-

zygous carriers of a null mutation (R19X) in the APOC3 gene that express half the apoC-III of

non-carriers (rs76353203, Fig 3F) [100], and the Waterworth et al. [126] (Fig 3G) and Woo

et al. [130] (Fig 3H) reports of the T-2854G site that lies in the APOC3-APOA4 intergenic

region within an APOC3 and APOA4 enhancer element.

In addition to these four important examples, significant quantile-dependent expressivity is

suggested across a broad spectrum of other genetic variants affecting postprandial lipemia.

Those achieving P�0.05 significance are presented in Figs 4–7. Included among these are vari-

ants affecting secretion, lipolysis, and clearance, including APOB insertion/deletion

(rs172404441, Fig 4A and 4B), familial hypobetalipoproteinemia cases with truncated apoB

(Fig 4C), APOB L343V mutation (Fig 4D), APOB R463W substitution (Fig 4E), SORT1 (Fig

4F), APOA4 Q360H substitution (Fig 4G) and 347 Ser mutation (Fig 4H), Apo A-1Milano (Fig

5A), APOA1–2803 polymorphism (Fig 5B), cholesterol ester transfer protein (CETP) isoleu-

cine 405 to valine substitution (I405! V) in exon 14 (Fig 5C), CETP deficiency (Fig 5D),

Tangier disease (Fig 5E), ABCA1 i48168 (rs4149272, Fig 5F) and i27943 genetic variants

(rs2575875, Fig 5G), the rs7903146C/T polymorphism in Transcription factor 7–like 2

(TCF7L2, Fig 5H), rs1260326/P446L polymorphism of the glucokinase regulatory protein gene

(GCKR, Fig 6A), the D314A mutation of the GALNT2 gene which codes the UDP-N-Acetyl-

D-galactosamine:polypeptide N-Acetylgalactosaminyl-transferase 2 enzyme (Fig 6B), the com-

mon leptin receptor (LEPR) Gln223Arg polymorphism (rs1137101, Fig 6C), the rs1800629

(-308G>A) polymorphism in the promoter region of tumor necrosis factor-alpha gene

(TNFA, Fig 6D), the fatty acid transport protein 6 (FATP6)–7T>A polymorphism (rs2526246,

Fig 6E), Mature Onset Diabetes of the Young type 3 (Fig 6F), the rs12970134 polymorphism

near the melanocortin-4 receptor gene (MC4R, Fig 6G), the -1473G/C polymorphism of the

Fig 1. Quantile-dependent expressivity plots for postprandial triglyceride responses by APOA2, HL, and LPL
polymorphisms. Panels (a) and (b) illustrate the methodology: (a) the re-rendering of the published triglyceride

response to an oral fat tolerance test by APOA2 -265T/C genotypes (rs5082) [25], from which is produced: (b) its

quantile-dependent expressivity plot showing the linear relationship between the genotype differences (dependent

variable) vs. the average triglyceride values (independent variable) at each time point “t” and its significance level. The

lower panels present quantile-dependent expressivity plots derived from figures by: (c) Reiber et al. for 27 H+/+ and H

+/- vs. 5 H-/- patients for the LPL intron 8 HindIII polymorphism (rs320) [103]; (d) López-Miranda et al. for 26

H2S447 vs. 15 H1X447 haplotypes (rs328) [68]; (e) Humphries et al. for 70.4% H+S447 and 19.2% H-S447 vs. 10.4%

H-X447 male haplotypes (rs328) [49]; (f) Pimstone et al. for three Asn291Ser mutations of the LPL gene vs. five

controls (rs268) [99]; (g) Talmud et al. for 70 TT homozygotes vs. 25 G-allele carriers of the -93T/G polymorphism in

the LPL promoter region (rs1800590) [117]; and (h) Gómez et al. for 26 CC, 22 CT, and 3 TT of the -514C/T

polymorphism in the promoter region of the hepatic lipase (HL) gene (rs1800588) [40]. The numerical labels refer to

time (“0” is fasting).

https://doi.org/10.1371/journal.pone.0229495.g001
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Fig 2. Quantile-dependent expressivity plots for postprandial triglyceride responses by APOE genotypes.

Quantile-dependent expressivity showing increasing genetic effect of apo E4- and E2-carriers vs. E33 homozygotes

with increasing average triglyceride levels. Data estimated from the published excursion plots from 10,876

measurements in E33, 4682 measurements in E4-carriers, and 2311 measurements in E2-carriers. Point source coded

as follows: a) Bergeron et al. [7], b) Boerwinkle et al. [9], c) Brown et al. [11], d) Carvalho-Wells et al. [18], e)

Dallongeville et al. [22], f) Dart et al. [23], g) Erkkila et al. at 8 weeks [30], h) Erkkilä et al. at baseline [30], i) Ferreira

et al. for intensive training [32], j) Ferreira et al. for moderate training [32], k) Ferreira et al. for sedentary activity [32],

l) Irvin et al. post-treatment [51], m) Irvin et al. pre-treatment [51], n) Kobayashi et al. [60], o) Nikkilä et al. cases [85],

p) Nikkilä et al. controls [85], q) Reiber et al. [103], r) Reznik et al. [104], s) Vansant et al. [122], and t) Wolever et al.

[129].

https://doi.org/10.1371/journal.pone.0229495.g002
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interleukin 1 beta gene (IL1b, rs1143623, Fig 6H), the transmembrane 6 superfamily member

2 (TM6SF2) loss-of-function variant (rs58542926, Fig 7A), the -493G>T polymorphism in the

promoter region of the microsomal triglyceride transfer protein (MTTP, rs1800591, Fig 7B),

the Leu7Pro polymorphism of the neuropeptide Y (NPY) gene (Fig 7C); the lectin-like oxi-

dized LDL receptor-1 (LOX-1) IVS4-14 A/G polymorphism (Fig 7D), and the angiopoietin-

like protein 4 (ANGPTL4) T266M SNP (rs1044250, Fig 7E). Other example of quantile depen-

dence are examined in the Discussion Section in relation to sex, age, disease, treatment and

diet: APOE (Figs 7F, 9 and 13), APOA5 (Figs 8 and 10), FABP2 codon 54 (Fig 11), SULF2
rs2281279 polymorphism (Fig 11), and TCF7L2, TM6SF2, and MTTP (Fig 12).

Twenty-six other reports did not provide significant evidence for quantile-dependent

expressivity. Twelve of these were not actually negative results because they reported no signif-

icant effect of genotypes on postprandial triglyceride in their original publications and there-

fore could not be expected to provide evidence for quantile dependence, i.e., Byrne et al. for

the APOB insertion/deletion polymorphism [12], Fisher et al. for APOA4 Gln360His [33],

Gerdes et al. analysis of LPL D9S [38], Jansen et al. for the C-480T transition in the HL pro-

moter [57], Jayewardene analysis of CD36 gene polymorphisms [58], Masana et al. for APOA
5-1131T>C [72], Mooij et al. for hereditary multiple exostosis [77], Nierman et al. for LPL
S447X [84]; Ostos et al. analyses of APOA4 Gln360His [92], Pratley et al. for FABP2 Ala54Thr

[101], Tahvanainen et al. for FABP2 Ala54Thr [116], and Tilly-Kiesi et al. for apoA-1 deletion

of the codon for Lys 107 [121]. The remaining 14 papers showed limited or no statistically sig-

nificant evidence for quantile dependence because of their limited statistical power, or lack of

effect: Delgado-Lista et al. for APOC3 at binding site -640 (P = 0.85) [27], Gerdes et al. for LPL
N291S (P = 0.48) [38], Gertow et al. for FATP1 intron 8 G/A polymorphism (P = 0.10) [39],

Gudnason et al. for CETP Taq1B polymorphism (P = 0.11) [42], Jang et al. for APOA5
-1131T>C (P = 0.17) [56], Kolovou et al. for CETP Taq1B polymorphism (P = 0.47) [62],

Gomez-Delgado et al. for TNF-alpha rs1800629 (P = 0.08) [41], Martin et al. for APOA5 S19W

(P = 0.17) and APOA5 -1131T>C (P = 0.11) [71], Masuda et al. for CD36 deficiency (P = 0.72)

[73], Mero et al. for LPL Asn291Ser (P = 0.76) [75], Miesenböck et al. for LPL missense muta-

tion at codon 188 (P = 0.41) [76], Ooi et al. for PCSK9 loss of function carriers (P = 0.35) [89],

and Perez-Martinez et al. for the APOB -516C/T polymorphism (P = 0.07) [94]. Contrary to

quantile dependent expressivity, Carpentier et al. report that 3 lipoprotein lipase deficient indi-

vidual with extreme phenotype (fasting triglycerides >18 mmol/L) showed significantly

smaller effect size when the controls postprandial triglycerides were highest [17].

Discussion

Genetic variants are traditionally characterized by a fixed effect size, whereas the analyses pre-

sented in this report show that the effect size for the majority of genes affecting plasma

Fig 3. Quantile-dependent expressivity plots for postprandial triglyceride responses by APOA4, APOA5, and

APOC3 polymorphisms. Derived from the postprandial response figures published by: (a) Zemánková et al. for ten

heterozygotes (seven -1131T->C and three 56C>G heterozygotes, rs662799 and rs3135506, respectively) vs. 20 wild

type carriers of the APOA5 gene [131]; (b) Moreno et al. for 12 C-allele carriers vs. 39 TT patients for the -1131T>C

polymorphism of the APOA5 promoter region (rs662799) [79]; (c) Moreno-Luna et al. for 65 patients with the

haplotype defined by homozygous for the major alleles of -1131T>C (rs662799), c.-3A>G (rs651821), c56C>G

(rs3135506), IVS3+476G>A (rs2072560) and c.1259T>C (rs2266788) vs. 21 others [80]; (d) Delgado-Lista et al. for 30

TT, 42 TC and 16 CC genotypes from the intergenic region between APOA4 and APOA5 (rs1263177) [27]; (e)

Saleheen et al. for seven normal vs. six APOC3 loss of function homozygotes (rs76353203) [108]; (f) Pollin et al. for 763

CC vs. 39 CT for the R19X mutation of the APOC3 gene (rs76353203) [100]; (g) Waterworth et al. for 284 TT, 348 TG,

and 85GG patients for the T-2854G polymorphism (rs1263177) within the APOC3-APOA4 intergenic region [126];

and (h) Woo et al. for 18 GG vs. 42 T-carriers for this polymorphism within the APOC3-APOA4 intergenic region

[130].

https://doi.org/10.1371/journal.pone.0229495.g003
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triglyceride concentrations increase as plasma concentrations increase in the postprandial

state. This phenomenon, quantile-dependent expressivity, may arise because the impaired

functionalities of these genetic variants increase at higher triglyceride concentrations. These

genetic variants showed a progressively increasing dose-response, with intermediate effect

sizes at intermediate triglyceride concentrations. Postprandial observations are particularly

compelling arguments for quantile-dependent expressivity because they demonstrate the phe-

nomenon when triglyceride levels are manipulated within individuals, while factors contribut-

ing to the substantial between-person variability in lipemic response remain constant.

Quantile-dependent expressivity affects biological interpretation. Factors affecting plasma

triglyceride concentration (e.g., sex, drugs, disease, diet, age [135]) will appear to interact sig-

nificantly with genetic variants, leading to conclusions of gene-environment interactions and

genetic predictors of drug efficacy (i.e., personalized medicine). Examples to follow show that

such results may be more simply explained by the factors’ effects on triglyceride concentra-

tions, which in turn change the genotype’s effect size in accordance with quantile-dependent

expressivity.

Sex differences

Olano-Martin et al.’s report on APOA5–1131 T>C polymorphism [88], Jackson et al.’s report

on the LEPR Gln223Arg polymorphism (rs1137101) [52], Vimaleswaran et al. ‘s report on the

APOB insertion/deletion polymorphism (rs17240441) [124], and Swatwan et al. reported on

LPL S447X polymorphism [110] all hypothesize sex-dependent genetic effects. However, males

are reported to have 63% higher fasting triglycerides, 61% higher maximum concentrations

during the postprandial period, 63% greater area under the curve (AUC), and 77% greater

incremental AUC when fasting triglycerides are subtracted (IAUC) [136]. All four genetic vari-

ants show strong dependence on total triglyceride concentrations during lipemia. Thus, quan-

tile-dependent expressivity would predict a greater difference between genotypes in males

than females in the postprandial state, as observed.

As a specific example, Fig 8 (upper panel) shows the TC vs. TT postprandial triglyceride dif-

ference for the APOA5–1131 T>C polymorphism in men and women [88]. The sex differences

were originally attributed to the effects of sex steroids on receptor- and nonreceptor-depen-

dent stages in TRL metabolism. The quantile-dependent expressivity plot in the lower panel

shows that males and females represent largely nonoverlapping range of values over which the

mean triglyceride concentrations predict increasingly larger TC vs. TT postprandial triglycer-

ide differences. The graph clearly ascribes the difference between the sexes to male-female dif-

ferences in plasma triglyceride levels and a shared (i.e., non-sex specific) underlying

relationship between the effect size and overall average triglyceride levels.

Fig 4. Quantile-dependent expressivity plots for postprandial triglyceride responses by APOA4, APOB, and

SORT1 polymorphisms. Derived from the postprandial response figures published by: (a) Vimaleswaran et al. for 52

del/del, 70 del/ins, and 25 ins/ins patients for the APOB insertion/deletion (ins/del) polymorphism (rs17240441) [124];

(b) Lopez-Miranda et al. for 31 carriers of the X+ allele vs. 20 X- homozygotes for the XbaI restriction site adjacent to

APOB (rs693) [67]; (c) Hooper et al. for 10 normolipidemic controls vs. six heterozygous (three apoB-6.9, one apoB-

25.8, and two apoB-40.3) familial hypobetalipoproteinemia (FHBL) patients [47]; (d) Hooper et al. for 10 healthy

controls v. three heterogeneous APOB L343V mutations for FHBL [48]; (e) Noto et al. for six healthy controls vs. four

heterogeneous APOB R463W mutations [86]; (f) Connors et al. for 15 TT homozygotes vs. 15 C-allele carriers for

rs646776 variant of the 1p13 locus (near SORT1) [20]; (g) Hockey et al. for 14 A-IV-2 heterozygous vs. 14 A-IV-1

homozygous and for the APOA4 Q360H polymorphism (rs5110) [45]; and (h) Ostos et al. for 36 Thr/Thr homozygote

vs. 14 Ser-allele carriers for the APOA4 347Ser polymorphism [91].

https://doi.org/10.1371/journal.pone.0229495.g004
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Fenofibrate treatment

Fenofibrate is a highly effective triglyceride-lowering treatment [137]. The effects of fenofi-

brate on postprandial triglycerides have been reported by apo E isoforms [51], −1131T>C

APOA5 polymorphism [16], APOA5 56G carriers vs. noncarriers [63], S19W polymorphism

in APOA5 [114], and the exon 1 G2S variant of the SCARB1 gene [66]. All five studies con-

cluded that the genotype predicted the efficacy of fenofibrate treatment to lower postprandial

triglyceride concentrations.

Using data presented by Irvin et al. [51], the histogram in Fig 9 (upper panel) was created

showing that fenofibrate-induced reductions in mean plasma triglyceride concentrations were

greater in E4-carriers and E2-carriers than E33 homozygotes. This was true at fasting (time 0)

and postprandially at 3.5 and 6 hours. This histogram of the treatment effect by genotype

ignores the mean triglyceride concentrations pre- and post treatment, which are displayed in

the middle panel. This middle panel emphasizes the difference between genotypes with arrows

connecting the mean triglyceride concentrations from the E33 to the E2 carriers (E4-carriers

always had an intermediate concentration). The far right section within the middle panel com-

bines the arrows without regard to postprandial time. It shows that the genotype differences

increase with average triglyceride concentrations, as illustrated by the quantile dependent

expressivity plot of the E2-E33 effect size (dependent variable) vs. average triglyceride concen-

trations (independent variable) in the bottom panel. These analyses show an underlying rela-

tionship between the genetic effect size and average triglyceride concentration (bottom panel)

that produces the difference between E2 and E33 genotypes (upper panel) when average tri-

glyceride concentrations change in response to fenofibrate and fat ingestion (middle panel).

Fig 10 repeats these analyses for the results presented by Cardona et al. [16] and Lai et al.

[63], showing: 1) genotype-specific mean reductions in fasting and postprandial triglycerides

from fenofibrate treatment (left column), 2) different genetic effect sizes by fenofibrate use and

postprandial status (center column), and 3) the underlying relationship between the genetic

effect size (dependent variable) and average triglyceride concentration (independent variable)

in the quantile-dependent expressivity plots (right column). Thus, each case suggests an

underlying relationship between the genetic effect size and average triglyceride concentration

(right column) that produces the difference between genotypes (left column) when average tri-

glyceride concentrations change in response to fenofibrate and fat ingestion (center column).

Quantile-dependent expressivity provides a very different conceptual framework affecting

the translation of these findings to clinical practice. There are two different interpretations to

Figs 7 and 8: 1) the genetic variant predicts the change in postprandial lipemia (personalized

medicine perspective represented by the histograms), and 2) postprandial triglyceride concen-

trations predict the effect size of the genetic variant (quantile-dependent expressivity).

Whereas, some advocate individualized drug prescriptions through the use of genetic markers

to identify patients most likely to benefit from fenofibrate treatment [138], quantile-dependent

Fig 5. Quantile-dependent expressivity plots for postprandial triglyceride responses by ABCA1, APOA1, CETP,

and TCF7L2 polymorphisms. Derived from the postprandial response figures published by: (a) Calabresi et al. for 6

heterozygous apo A-IMilano vs. 6 matched controls [13]; (b) Delgado-Lista et al. for 32 GA vs. 9 AA genotypes for the

-2803G/A polymorphisn in the APOA1 promoter region (rs2727784) [27]; (c) Gudnason et al. for 60 I/I, 55 I/V, and 27

V/V men for the I405V CETP polymorphism in men homozygous for the TaqIB B2 allele (rs5882) [42]; (d) Inazu et al.

for 10 normal vs. 4 CETP deficient patients (mutations of intron 14(+1) G-to-A (14A) and D442G) [50]; (e) Kolovou

et al. for five Tangier disease patients (3 homozygotes, 2 heterozygotes) vs. 25 normal male controls [61]; (f) Delgado-

Lista et al. for 65 T-carriers vs. 23 CC homozygotes for the i48168 variant of the ABCA1 gene (rs4149272) [26]; (g)

Delgado-Lista et al. for 67 A-allele carriers vs. 15 GG homozygotes vs. for the i27943 variant (rs2575875) of the ABCA1
gene [26]; and (h) Engelbrechtsen et al. for 31 CC vs. 31 TT homozygotes of the TCF7L2 polymorphism (rs7903146)

[29].

https://doi.org/10.1371/journal.pone.0229495.g005
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expressivity postulates that the results represent a basic phenomenon where the genetic effect

size increases with plasma triglyceride concentration.

Disease conditions

Metabolic syndrome, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease

(NAFLD) and nonalcoholic steatohepatitis (NASH, NAFLD patients with inflammation) are

all conditions known to increase plasma triglyceride concentration in fasting and postprandial

states [135].

Fig 11 (upper panel) present apparent differences between T2DM and non-T2DM patients

that we attribute to quantile-dependent expressivity. The first example involves the Fatty

Acid–Binding Protein 2 (FABP2) gene codon 54, which produces a Thr-containing (mutated-

type) intestinal fatty acid binding protein that has 2-fold greater affinity for long-chain fatty

acids than the wild type Ala-containing protein. This mutation is hypothesized to increase

intestinal absorption and processing of fatty acids leading to increased postprandial triglycer-

ides observed in three studies [4,37,44]. Fig 11A shows the effect size increased with increasing

average triglyceride concentrations separately within non-diabetics and diabetic patients, and

for the patient populations combined. Thus, the apparent difference between T2DM and

nonT2DM is consistent with their different triglyceride concentrations in the context of the

gene’s greater effect size at higher triglyceride concentrations.

The second example involves the sulfate glucosamine-6-O- endosulfatase 2 (SULF2) gene,

which is thought to play a role in hepatic clearance of postprandial remnants [43]. Fig 11B

shows that carriers of the minor G allele of the SULF2 rs2281279(A>G) SNP had lower post-

prandial triglycerides. Again, the different effect size in T2DM [43] than nonT2DM patients

[74] was consistent with quantile-dependent expressivity and the difference in average triglyc-

eride levels between T2DM vs. nonT2DM. Fig 12 presents three examples where apparent dif-

ferences between patients with nonalcoholic fatty liver disease (NAFLD) and healthy controls

can be attributed to quantile-dependent expressivity. Musso et al. reported that the transmem-

brane 6 superfamily member 2 (TM6SF2) rs58542926 polymorphism [83] and the transcrip-

tion Factor 7–Like 2 (TCF7L2) rs7903146 polymorphism [81] had no effect on fasting plasma

triglyceride concentrations. However, both polymorphisms affected postprandial triglyceride

concentrations in patients with NAFLD. In NASH patients, carriers of the T allele of TCF7L2

showed significantly greater increases in postprandial plasma triglycerides than CC homozy-

gotes, and the difference between genotypes in NASH patients was significantly greater than

the difference in healthy patients (Fig 12A). In NAFLD patients, CC homozygotes of TM6SF2

showed significantly greater increases in postprandial plasma triglycerides than carriers of the

T allele, and the difference between genotypes in NAFLD patients was again significantly

greater than the difference in healthy patients (Fig 12B). The combined patient data show that

Fig 6. Quantile-dependent expressivity plots for postprandial triglycerides by GALNT2, GCKR, lL1B, LEPR,

MC4R and TNFA polymorphisms. Derived from the postprandial response figures published by: (a) Shen et al. in 80

TT homozygotes vs. 690 carriers of the C allele of the P446L polymorphism in the GCKR gene (rs1260326) [112]; (b)

Holleboom et al. for 4 normal and 4 patients with c.941A>C, p.D314A mutations in the GALNT2 gene [46]; (c)

Jackson et al. for 71 patients with zero, 122 with one, and 38 patients with two doses of the Gln allele for the Gln223Arg

polymorphism (rs1137101) in the common leptin receptor (LEPR) gene [52]; (d) Jackson et al. for 64 carriers of the A

allele vs. 162 GG homozygotes for the TNFA −308 G/A polymorphism (rs1800629) [54]; (e) Auinger et al. 583 T

carriers vs. 102 AA homozygotes for the FATP6 –7T>A polymorphism (rs2526246) [6]; (f) St-Jean et al. for 9 normal

vs. 5 genotypically confirmed Mature Onset Diabetes of the Young type 3 (MODY3) patients (two C.872insC and three

P.arg159trp patients) [115]; (g) Perez-Martinez et al. for 53 GG homozygotes vs. 35 A-carriers for rs12970134

polymorphism near the MC4R gene [97], and (h) Delgado-Lista et al. for 43 carriers of the C allele vs. 45 GG

homozygotes of the -1473G/C polymorphism (rs1143623) in the lL1B promoter region [28].

https://doi.org/10.1371/journal.pone.0229495.g006
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Fig 7. Quantile-dependent expressivity plots for postprandial triglycerides by ANGPTL4, APOE, LOX-1, MTTP,

NPY, and TM6SF2 polymorphisms. Derived from the postprandial response figures published by: (a) O’Hare et al. for

853 CC homozygotes vs.130 T-carriers for the TM6SF2 loss-of-function variant (rs58542926) [87]; (b) Lundahl et al.

for 24 GG homozygote vs. 36 carriers of the T-allele of the -493G/T polymorphism of the microsomal triglyceride

transfer protein (MTTP, rs1800591) (P = 0.02) [69]; (c) Schwab et al. for 7 LeuPro heterozygotes vs. 7 LeuLeu

homozygotes for the Leu7Pro polymorphism of the neuropeptide Y (NPY, rs16139) gene [109]; (d) Musso et al. for 26

AA homozygotes vs. 54 G-carriers of the lectin-like oxidized LDL receptor-1 (LOX-1) IVS4-14 A/G polymorphism in

the pooled sample of NASH and healthy control patients [82]; (e) Talmud et al. for 1355 TT, 1108 TM, and 262 MM

genotypes of ANGPTL4 T266M (rs1044250) [118]; (f) Carvalho-Wells et al. for 143 E33 and 64 E4 carriers verifying

their different postprandial response by age when matched for average triglyceride concentrations [18].

https://doi.org/10.1371/journal.pone.0229495.g007
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for both polymorphisms, the difference between genotypes increased linearly with increasing

average triglyceride concentrations, with the healthy patients clustered in the lower left quad-

rant and the NASH and NAFLD patients distributed along the diagonal (lower panels). The

quantile-dependent expressivity interpretation is that the genetic effect size of the each poly-

morphism increases with increasing triglyceride concentrations, with NAFLD patients occu-

pying different portions of the underlying triglyceride distribution (higher triglyceride) than

healthy patients (lower triglycerides).

The third example involves the microsomal triglyceride transport protein’s lipid transfer

activity that is required to lipidate and assemble chylomicrons, VLDL and LDL. Inhibition of

the protein leads to decreased hepatic VLDL triglyceride secretion and triglyceride accumula-

tion in hepatic cells leading to hepatic steatosis. The functional -493G->T polymorphism

(rs1800591) occurs in the MTTP gene’s promoter region. Gambino et al. reported that carriers

of the T allele had lower incremental area under the curve (iAUC) for triglycerides despite

slightly higher fasting triglycerides in both healthy and NASH patients [35]. Fig 12C shows a

somewhat greater increase in the triglyceride difference between genotypes with increasing tri-

glyceride concentrations, with similar effects in healthy and NASH patients except for a larger

genotype difference for NASH patients in accordance with their high average postprandial

triglycerides.

Fig 8. Sex-specific postprandial triglyceride responses in C-carrier vs. TT homozygotes of the APOA5–1131 T>C

polymorphism. Re-rendering of the sex-specific postprandial triglyceride response published by Olano-Martin et al. [88].

The insert presents the quantile-dependent expressivity plot showing that males and females represent largely

nonoverlapping triglyceride concentrations over which higher mean triglyceride concentrations predict increasing larger

effect size between the C-carriers and TT homozygotes (P = 3.9x10-10).

https://doi.org/10.1371/journal.pone.0229495.g008
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Diet

Consistent with the quantile-dependence expressivity of Fig 2, Fig 13 shows that the triglycer-

ide differences between APOE E3/E4 and E3/E3 genotypes tend to be intermediate on a low fat

diet (when plasma and postprandial triglycerides were intermediate), highest on a high fat,

high-saturated fat diet (corresponding to higher average triglyceride concentrations), and low-

est on a high fat, high-saturated fat diet consumed with 3.45 g/day docosahexaenoic acid (cor-

responding to lowest average triglyceride concentrations).

Limitations

In almost all cases, the data were extracted using the vertical dimension of lines superimposed

on figures that were imported into a computer-drawing program (Microsoft Powerpoint).

This, no doubt, introduced error from both the original author’s rendering of the figures and

my drawing of lines to extract their numerical data. The t-test for the linear regression slope

should include these sources of measurement error. Regression analysis was performed sepa-

rately from data extraction to ensure their independence. Approximately eighteen percent of

the figures did not include standard errors, and those that did seemed less exactly drawn than

the genotype-specific means themselves. Therefore, no effort was made to use the supplied

standard errors to further improve upon the test for significant regression slopes. It is the

author’s belief that the simple regression analyses presented in the figures is likely robust given

that the fitted points are the average of multiple observations, and the genetic makeup of the

sample did not change during the oral fat tolerance test. The extracted data are included as

supplementary information that will hopefully motivate alternative analyses by others. My use

of published results will certainly include publication bias in that there is little motivation for

publishing nonsignificant results and that the vast majority of genotype data goes unreported

for nonsignificant results. However, it is unlikely that publication bias affected the test of quan-

tile-dependence given the hypothesis was heretofore largely unknown.

The analyses presented in this manuscript are not proposed as an alternative to the repeated

measures analysis of variance or linear mixed models used in the studies identified by Parnell

and colleagues [139,140]. Those analyses are designed test whether the genotypes affect the

mean levels and the time course of the postprandial lipemia responses by genotype. The exam-

ples presented herein were selected on the basis of the repeated measures analyses attaining

the statistical significance required to warrant publication, and nothing in our analyses raises

questions about the validity of those original findings. Several of the included examples tested

whether environmental factors significantly affect the genotypic postprandial lipemia

response, as evidence for gene-environment interactions. Again, the analyses of this report do

not challenge the statistical significance of the environmental effect.

The current analyses represent a post-hoc test of a very different question, whether the dif-

ference between genotypes increases linearly in association with mean plasma triglyceride con-

centrations. as a test of quantile-dependent expressivity. Biological explanations of gene-

environment interactions traditionally assume epigenetic processes [139]. Quantile-dependent

expressivity proposes that for genetic effects that are quantile dependent, environmental

Fig 9. Quantile-dependent expressivity plots for pre- and post-fenofibrate treated postprandial triglyceride

responses by APOE genotypes. Using data presented by Irvin et al. [51]: pre vs. post fenofibrate treated triglyceride

concentrations by genotype (upper panel); genotype-specific mean triglyceride concentrations by treatment and

genotype by time since meal (middle panel); quantile-dependent expressivity plot of the E2-E33 effect size vs. average

triglyceride concentrations (bottom panel), suggesting the effect size is largely attributable to its relationship to mean

triglyceride concentrations.

https://doi.org/10.1371/journal.pone.0229495.g009
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Fig 10. Quantile-dependent expressivity plots for pre- and post-fenofibrate treated postprandial triglyceride responses by APOA5 genotypes.

Derived from data presented by Cardona et al. for the -1131T>C of the APOA5 gene (top row) [16] and Lai et al. for the -1131T>C (middle row) and

56C>G polymorphisms (bottom row) of the APOA5 gene [63]. Left column presents pre vs. post fenofibrate treated triglyceride concentrations by

genotype; center column present genotype-specific mean triglyceride concentrations by treatment and genotype by time since meal, and right column

present quantile-dependent expressivity plot of the genetic effect size vs. average triglyceride concentrations, suggesting the effect sizes are largely

attributable to their relationship to overall mean triglyceride concentrations.

https://doi.org/10.1371/journal.pone.0229495.g010
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factors that distinguish high from low triglyceride concentrations will create a statistically sig-

nificant environment-genotype interaction.

Conclusion

Quantile-dependent expressivity applies to the majority of genetic variants affecting postpran-

dial triglycerides. It provides an alternative explanation for sex, disease, and dietary interac-

tions with genotype, and an alternative explanation to genetic markers for fenofibrate efficacy.

Other results are fortified by controlling for quantile-dependent expressivity, such as Car-

valho-Wells et al. claim that APOE genetic variants had a greater effect on postprandial triglyc-

erides in older than younger patients (Fig 7F) [18]. Elsewhere it has been shown that quantile-

dependent expressivity affects the genetic determination of other phenotypes (body mass

index, HDL-cholesterol, LDL-cholesterol, fasting glucose concentrations) [3], that heritability

of coffee consumption is quantile specific [141], and that quantile effects may partially explain

the obesity epidemic affecting Western societies [142].

Methods

The analyses presented in this paper are based exclusively on the published graphs of postpran-

dial triglyceride responses over time. Of the 128 published papers, we identified 97 papers pro-

viding plots of postprandial triglyceride lipoprotein differences between genotypes at four or

more time points (S1 Table). The figures were imported from the articles’ pdf files into Micro-

soft Powerpoint to extract their quantitative information (version 12.3.6 for Macintosh com-

puters, Microsoft corporation, Redmond WA). For each figure, vertical lines were drawn to

correspond to the overall height of the Y-axis, and the vertical distances between the X-axis

and each plotted point. Their heights were recorded from the software’s formatting pallet and

the individual plotted points were converted into concentrations based on the relative heights

of the Y-axis and the plotted points (88.5 mg/dl = 1 mmol/L). The resultant dataset is provided

as supplementary material (S1 Data). For each published figure, plots were created for the

genetic effect by average triglyceride concentrations at each time point. Except where noted

(Figs 2 and 11), the regression slopes were calculated within each study. In most cases the

genetic effect was calculated as the difference between two genotypes with the heterozygote

combined with one of the homozygotes, in other cases it was estimated from least squares

regression as the average effect per dose of the higher-valued allele. Within each figure, the

average triglyceride concentration at each time point “t” was calculated from triglyceride aver-

ages and sample sizes of the genotype-specific means. Specifically, if genotype “1” had a fre-

quency of P1 and an average triglyceride of X1(t) and genotype “2” a frequency of (1- P1) and

an average triglyceride of X2(t) then the average triglyceride for the total sample at time t was

P1
�X1(t) + (1-P1)�X2(t). For three genotypes with frequencies of P1, P2, and 1-P1-P2 and average

triglycerides of X1(t), X2(t) and X3(t), respectively, the average triglycerides at time t was calcu-

lated as P1
�X1(t) + P2

�X2(t) + (1-P1-P2)�X3(t). In the case of a rare genotype vs. unaffected

Fig 11. Quantile-dependent expressivity plots for postprandial triglyceride responses by FABP2 and SULF2
polymorphisms. (a) Derived from the postprandial response figures published by Helwig et al. for 360 AlaAla, 287

AlaThr, and 53 ThrThr nondiabetic patients [44] (shaded circles, P = 2.2x10-5), Agren et al. for 7 AlaAla and 8 ThrThr

nondiabetic patients [4] (open circles, P = 0.003), and Georgopoulos et al. for 9 T2DM AlaAla and 6 T2DM ThrThr

(P = 0.10) [37] of the codon 54 polymorphism of the FABP2 gene (solid black circles rs1799883). Significance of the

combined data: P = 8.1x10-8. (b) Matikainen et al. for 22 AA and 46 carriers of the G allele in nondiabetics (P = 0.54)

[74] and Hassing et al. for 11 AA and 18 carriers of the G-allele in T2DM (P = 0.007) of the SULF2 rs2281279

polymorphism [43] (combined data: P = 6.3x10-6).

https://doi.org/10.1371/journal.pone.0229495.g011
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controls, the average triglyceride concentration was taken as the mean triglyceride concentra-

tion of the unaffected controls.

Linear regression analyses of the genetic effect (dependent variable) versus mean triglycer-

ide concentrations (independent variable) were performed using JMP (version 5.1, SAS insti-

tute, Cary North Carolina). The regression models are based on the mean triglyceride values

presented in the published figures and not individual subject responses. Adjusted coefficients

of determination (R2
adj) are presented to assess the level of correspondence between the aver-

age triglyceride differences between genotypes vs. average triglyceride concentrations at each

time point, including the fasting (baseline) value. Although all of the regression models include

only one explanatory variable, the adjusted R2 was used to penalize the R2 for the small number

of observations (time points) used in the model. The slopes are presented with their standard

error, and their significances based on the degrees of freedom (number of time points with

fasting or postprandial measurements minus two).

The data is based on published summary reports that are publically available. A spreadsheet

of the extracted quantified information by time and genotype are provided in supplementary

material (S1 Data).

Fig 12. Quantile-dependent expressivity plots for postprandial triglyceride responses by TCF7L2, TM6SF2, and

MTTP polymorphisms. Derived from the postprandial responses in NAFLD and non-NAFLD patients published by:

a) Musso et al. for 38 T-carriers vs. 30 CC homozygotes of the rs7903146 polymorphism in the TCF7L2 gene

(P = 0.003) [81]; b) Musso et al. for 853 CC homozygotes vs. 130 T-carriers for the TM6SF2 loss-of-function variant

(rs58542926, P = 2.5x10-5) [83]; c) Gambino et al. for 32 GG homozygotes vs. 24 T-carriers for the -493 G/T

polymorphism in the MTTP gene (P = 0.05) [35].

https://doi.org/10.1371/journal.pone.0229495.g012

Fig 13. Quantile-dependent expressivity plots for postprandial triglyceride responses by APOE polymorphisms

and diet. Derived from the postprandial response figures published by Jackson et al. for differences between 11 APOE

E34 vs. 12 E33 men on low-fat diet; high saturated-fat diet; and high saturated-fat diet with fish oil [53].

https://doi.org/10.1371/journal.pone.0229495.g013
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70. Marı́n C, López-Miranda J, Gómez P, Paz E, Pérez-Martı́nez P, Fuentes F, et al. Effects of the human

apolipoprotein A-I promoter G-A mutation on postprandial lipoprotein metabolism. Am J Clin Nutr

2002; 76:319–325. https://doi.org/10.1093/ajcn/76.2.319 PMID: 12145001

71. Martin S, Nicaud V, Humphries SE, Talmud PJ; EARS group. Contribution of APOA5 gene variants to

plasma triglyceride determination and to the response to both fat and glucose tolerance challenges.

Biochim Biophys Acta. 2003; 1637:217–225. https://doi.org/10.1016/s0925-4439(03)00033-4 PMID:

12697303

72. Masana L, Ribalta J, Salazar J, Fernández-Ballart J, Joven J, Cabezas MC. The apolipoprotein AV

gene and diurnal triglyceridaemia in normolipidaemic subjects. Clin Chem Lab Med. 2003; 41:517–

521. https://doi.org/10.1515/CCLM.2003.078 PMID: 12747596

73. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R, Yuasa-Kawase M, et al. Chylomicron remnants

are increased in the postprandial state in CD36 deficiency. J Lipid Res. 2009; 50:999–1011. https://

doi.org/10.1194/jlr.P700032-JLR200 PMID: 18753675

74. Matikainen N, Burza MA, Romeo S, Hakkarainen A, Adiels M, Folkersen L, et al. Genetic variation in

SULF2 is associated with postprandial clearance of triglyceride-rich remnant particles and triglyceride

levels in healthy subjects. PLoS One. 2013; 8:e79473. https://doi.org/10.1371/journal.pone.0079473

PMID: 24278138

75. Mero N, Suurinkeroinen L, Syvänne M, Knudsen P, Yki-Järvinen H, Taskinen MR. Delayed clearance

of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant. J

Lipid Res. 1999; 40:1663–1670. PMID: 10484613
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86. Noto D, Cefalù AB, Cannizzaro A, MinàM, Fayer F, Valenti V, et al. Familial hypobetalipoproteinemia

due to apolipoprotein B R463W mutation causes intestinal fat accumulation and low postprandial lipe-

mia. Atherosclerosis. 2009; 206:193–198. https://doi.org/10.1016/j.atherosclerosis.2009.01.037

PMID: 19344897

87. O’Hare EA, Yang R, Yerges-Armstrong LM, Sreenivasan U, McFarland R, Leitch CC, et al. TM6SF2

rs58542926 impacts lipid processing in liver and small intestine. Hepatology. 2017; 65:1526–1542.

https://doi.org/10.1002/hep.29021 PMID: 28027591

88. Olano-Martin E, Abraham EC, Gill-Garrison R, Valdes AM, Grimaldi K, Tang F, et al. Influence of

apoA-V gene variants on postprandial triglyceride metabolism: impact of gender. J Lipid Res. 2008;

49:945–953. https://doi.org/10.1194/jlr.M700112-JLR200 PMID: 18263854

89. Ooi TC, Krysa JA, Chaker S, Abujrad H, Mayne J, Henry K, et al. The Effect of PCSK9 Loss-of-Func-

tion Variants on the Postprandial Lipid and ApoB-Lipoprotein Response. J Clin Endocrinol Metab.

2017; 102:3452–3460. https://doi.org/10.1210/jc.2017-00684 PMID: 28673045

90. Orth M, Wahl S, Hanisch M, Friedrich I, Wieland H, Luley C. Clearance of postprandial lipoproteins in

normolipemics: role of the apolipoprotein E phenotype. Biochim Biophys Acta. 1996; 1303:22–30.

https://doi.org/10.1016/0005-2760(96)00075-6 PMID: 8816849

91. Ostos MA, Lopez-Miranda J, Ordovas JM, Marin C, Blanco A, Castro P, et al. Dietary fat clearance is

modulated by genetic variation in apolipoprotein A-IV gene locus. J Lipid Res. 1998; 39:2493–2500.

PMID: 9831639

92. Ostos MA, Lopez-Miranda J, Marin C, Castro P, Gomez P, Paz E, et al. The apolipoprotein A-IV-

360His polymorphism determines the dietary fat clearance in normal subjects. Atherosclerosis. 2000;

153:209–217. https://doi.org/10.1016/s0021-9150(00)00400-7 PMID: 11058717
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99. Pimstone SN, Clee SM, Gagné SE, Miao L, Zhang H, Stein EA, et al. A frequently occurring mutation

in the lipoprotein lipase gene (Asn291Ser) results in altered postprandial chylomicron triglyceride and

retinyl palmitate response in normolipidemic carriers. J Lipid Res. 1996; 37:1675–84. PMID: 8864951

100. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, et al. A null mutation in human

APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;

322:1702–1705. https://doi.org/10.1126/science.1161524 PMID: 19074352

101. Pratley RE, Baier L, Pan DA, Salbe AD, Storlien L, Ravussin E, et al. Effects of an Ala54Thr polymor-

phism in the intestinal fatty acid–binding protein on responses to dietary fat in humans. J Lipid Res

2000; 41:2002–2008 PMID: 11108733

102. Regis-Bailly A, Visvikis S, Steinmetz J, Fournier B, Gueguen R, Siest G. Effects of apo B and apo E

gene polymorphisms on lipid and apolipoprotein concentrations after a test meal. Clin Chim Acta.

1996; 253:127–43. https://doi.org/10.1016/0009-8981(96)06364-4 PMID: 8879844

103. Reiber I, Mezõ I, Kalina A, Pálos G, Romics L, Császár A. Postprandial triglyceride levels in familial

combined hyperlipidemia. The role of apolipoprotein E and lipoprotein lipase polymorphisms. J Nutr

Biochem. 2003; 14:394–400. https://doi.org/10.1016/s0955-2863(03)00061-5 PMID: 12915220

104. Reznik Y, Pousse P, Herrou M, Morello R, Mahoudeau J, Drosdowsky MA, et al. Postprandial lipopro-

tein metabolism in normotriglyceridemic non-insulin-dependent diabetic patients: influence of apolipo-

protein E polymorphism. Metabolism. 1996; 45:63–71.

105. Reznik Y, Morello R, Pousse P, Mahoudeau J, Fradin S. The effect of age, body mass index, and fast-

ing triglyceride level on postprandial lipemia is dependenton apolipoprotein E polymorphism in sub-

jects with non-insulin-dependent diabetes mellitus. Metabolism. 2002; 51:1088–1092. https://doi.org/

10.1053/meta.2002.34696 PMID: 12200750

106. Ribalta J, Halkes CJ, Salazar J, Masana L, Cabezas MC. Additive effects of the PPARgamma, APOE,

and FABP-2 genes in increasing daylong triglycerides of normolipidemic women to concentrations

comparable to those in men. Clin Chem. 2005; 51:864–871. https://doi.org/10.1373/clinchem.2004.

044347 PMID: 15764642

107. Rubin D, Helwig U, Nothnagel M, Lemke N, Schreiber S, Fölsch UR, et al. Postprandial plasma adipo-
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