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Background: The identification of aortic dissection (AD) at baseline plays a crucial role

in clinical practice. Non-contrast CT scans are widely available, convenient, and easy to

perform. However, the detection of AD on non-contrast CT scans by radiologists currently

lacks sensitivity and is suboptimal.

Methods: A total of 452 patients who underwent aortic CT angiography (CTA) were

enrolled retrospectively from two medical centers in China to form the internal cohort

(341 patients, 139 patients with AD, 202 patients with non-AD) and the external testing

cohort (111 patients, 46 patients with AD, 65 patients with non-AD). The internal cohort

was divided into the training cohort (n = 238), validation cohort (n = 35), and internal

testing cohort (n = 68). Morphological characteristics were extracted from the aortic

segmentation. A deep-integrated model based on the Gaussian Naive Bayes algorithm

was built to differentiate AD from non-AD, using the combination of the three-dimensional

(3D) deep-learning model score and morphological characteristics. The areas under the

receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were

used to evaluate the model performance. The proposed model was also compared with

the subjective assessment of radiologists.

Results: After the combination of all the morphological characteristics, our proposed

deep-integrated model significantly outperformed the 3D deep-learning model (AUC:

0.948 vs. 0.803 in the internal testing cohort and 0.969 vs. 0.814 in the external

testing cohort, both p < 0.05). The accuracy, sensitivity, and specificity of our model

reached 0.897, 0.862, and 0.923 in the internal testing cohort and 0.730, 0.978,

and 0.554 in the external testing cohort, respectively. The accuracy for AD detection

showed no significant difference between our model and the radiologists (p > 0.05).
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Conclusion: The proposed model presented good performance for AD detection on

non-contrast CT scans; thus, early diagnosis and prompt treatment would be available.

Keywords: aortic dissection, computed tomography angiography, diagnostic imaging, multidetector computed

tomography, deep learning

INTRODUCTION

Aortic dissection (AD) is a life-threatening disease for which
early diagnosis and treatment are critical. The mortality rate
increases by 1–2% per hour after symptom onset (1). Typically,
patients may present with symptoms such as sudden onset of
severe chest pain or back pain. To date, CT angiography (CTA)
is the best imaging modality for identifying displaced intimal
flaps in contrast-enhanced scans, with a sensitivity and specificity
approaching 100% (2, 3).

However, CTA is to some degree restricted due to the
allergenicity and nephrotoxicity of contrast agents and the lack
of 24-h availability in some emergency departments, particularly
in rural or underserved areas that lack technical and staff
support (4). Moreover, many patients who present atypical
or asymptomatic AD in the early stages have been missed
diagnosed and deteriorate rapidly (5). In comparison, non-
contrast CT scans are widely available, convenient and easy
to perform, and have relatively lower radiation doses (6–8).
The imaging characteristics of AD on non-contrast CT scans
include displaced calcified intimal flaps, intraluminal linear
high density, intramural hematoma, and aneurysmal dilatation.
However, technical level of the radiologists for AD detection
on non-contrast CT scans is suboptimal and currently lacks
sensitivity (9).

Compared with traditional methods, the deep learning (DL)
algorithms have advantages in the extraction and recognition
of subtle differences in digital imaging information. He et al.
proposed residual networks (ResNets) (10) that won first place
on the ImageNet Large Scale Visual Recognition Challenge (11),
which outperformed human accuracy in image classification.
Hata et al. (12) designed a DL algorithm for the detection of AD
on non-contrast CT; however, their method was limited to two-
dimensional (2D) models with image data from a single center.

In this study, we hypothesized that a machine learning
model that integrated the prediction of the DL model and
morphological characteristics could effectively detect AD on
non-contrast CT images. The aim of this study was to build
the DL-based model for the early detection of AD using non-
contrast CT scans and to demonstrate that the combination
of morphological characteristics can strengthen the model
performance. We further validated and compared its detection
performance with three radiologists at two independent centers.

MATERIALS AND METHODS

This study was reviewed and approved by the local clinical
Institutional Ethics Committees of the two centers involved and a
written informed consent was waived because of the retrospective
nature of this study.

Population of Patient
Between July 2014 and April 2020, 5,885 consecutive patients
underwent CTA scans at the Peking Union Medical College
Hospital (PUMCH), Beijing, China. The presence of AD was
confirmed by the CTA interpretation results and 191 patients
were diagnosed with AD. After the inclusion and exclusion
criteria were applied (detailed in Supplementary S1), 139
patients with AD were enrolled and 202 patients diagnosed
without AD from the same period were approximately propensity
matched from the remaining 5,694 patients with non-AD,
considering two variables (age and sex).

Thus, 341 patients were enrolled from the PUMCH and were
randomly divided into the training cohort (70%, 238 patients
with 96 patients with AD and 142 patients with non-AD),
validation cohort (10%, 35 patients with 14 patients with AD and
21 patients with non-AD), and internal testing cohort (20%, 68
patients with 29 patients with AD and 39 patients with non-AD).

From another independent medical center, the Shenzhen
Second People’s Hospital (SSPH), Shenzhen, China, 2,273
consecutive patients underwent CTA scans between July 2017
and June 2020. Among them, 70 patients were diagnosed with
AD. After the same inclusion and exclusion criteria were applied,
46 patients with AD were enrolled and 65 patients with AD
were propensity matched. Then, the external testing cohort was
constructed (Figure 1).

The DL model was trained on the training cohort and the
validation cohort was used to decide the stopping iteration. The
Gaussian Naive Bayes (Gaussian NB) algorithm-based models
were trained on the combined training and validation cohorts.
After the training procedure, both models were evaluated on the
internal testing cohort and external testing cohort.

Computed Tomography Image Data
Acquisition
All the CT scans were performed using post-64-detector row CT
scanners from Siemens (Somatom Definition Flash or Somatom
Force, Forchheim, Germany) and Philips (iCT Elite FHD or
IQon Spectral CT, The Netherlands). Every scan began with non-
contrast scanning from the thoracic inlet to the pubic symphysis
to cover the entire aorta. Afterward, contrast-enhanced CT
scans were performed over the same area during the systemic
arterial phase. The slice thickness was 1–5mm for non-contrast
CT images and 1mm for contrast-enhanced CTA images. The
other scanning parameters were as follows: rotation time 0.5 s,
pitch 1.2, matrix 512 × 512, standard resolution algorithms,
tube voltage 80–100 kV (Somatom Definition Flash, Somatom
Force, Forchheim, Germany) and 120 kVp (iCT Elite FHD,
IQon Spectral CT, The Netherlands), and the tube current
adjusted automatically.
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FIGURE 1 | Flowchart of enrollment of patient.

Radiologists Interpretation of CT Images
The diagnostic interpretations were performed by three
radiologists including a junior radiologist with 7 years of
experience in cardiovascular imaging [radiologist 1 (YY)] and
two senior radiologists with 14 and 16 years of experience
[radiologist 2 (ZD) and radiologist 3 (YW), respectively]. These
three radiologists interpreted the anonymous non-contrast CT
images independently and indicated their dichotomous diagnosis
(AD and non-AD).

The characteristics of AD on the non-enhanced CT
images included aortic calcification deviation (>5.0mm),
signs of intimal flap, and high-density areas in the
aorta; the indirect parameters included uneven density
in the aorta, limited or extensive aortic dilatation,
irregular aortic morphology, and pericardial or pleural
effusions (9, 13, 14).

Overview of the Model Construction
An overview of the model construction is given in Figure 2.
Before AD detection model building, aorta segmentation was
performed to find the three-dimensional (3D) Volume of Interest
(VOI) region of the aorta. Then, it was used to crop the aorta
volume and extract the morphological characteristics including
the aortic maximum diameters and general morphological
features. In this study, a 2-stage AD detection model was
built. First, as shown in Figure 2B, the 3D DL model based

on ResNet34 was built and the prediction probability of the
DL model was used as the DL score. Finally, as shown in
Figure 2C, our proposed deep-integratedmodel was based on the
Gaussian NB algorithm and trained on the combination of the
DL score and all the morphological characteristics to predict the
AD status.

Aorta Segmentation and the Extraction of
Morphological Characteristics
The aorta mask was extracted by the 2.5DUNet-based DLmodel,
which was trained and validated on the in-house dataset and is
given in Supplementary S2. Morphological characteristics were
extracted from the aorta mask including the aortic maximum
diameters [the maximum diameter of the ascending aorta (AC)
and the maximum diameter of the descending aorta (DC)] and
14 general morphological features extracted by PyRadiomics
(version 3.0). The aortic maximum diameters were binarized
by the threshold of 4 and 5 cm to form four aortic maximum
diameter features, i.e., AC > 4 cm (1 for AC > 4 cm and 0 for
AC ≤ 4 cm), AC > 5 cm (1 for AC > 5 cm and 0 for AC ≤
5 cm), DC > 4 cm (1 for DC > 4 cm and 0 for DC ≤ 4 cm),
and DC > 5 cm (1 for DC > 5 cm and 0 for DC ≤ 5 cm).
The general morphological features were normalized by z-score
normalization. The morphological characteristics are given in
Supplementary S3.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 January 2022 | Volume 8 | Article 762958

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yi et al. Aortic Dissection on Non-Contrast CT

FIGURE 2 | Overview of the model construction for aortic detection. (A) The non-contrast CT images were segmented automatically to obtain the aorta mask. Then,

the morphological characteristics were extracted from the aorta mask including the aortic maximum diameters and general morphological features. (B) The input of

the three-dimensional (3D) ResNet34 model was cropped and masked by aorta segmentation and the prediction probability of the deep learning (DL) model was used

as the DL score. (C) The deep-integrated model was based on the Gaussian Naive Bayes (NB) algorithm and trained on the combination of the DL score and all the

morphological characteristics to predict the status of aortic dissection (AD).

Three-Dimensional Deep-Learning Model
for AD Classification
After aorta segmentation, the aorta mask was used to crop the
aorta volume. Only aorta pixel values were kept in the aorta
volume and then the aorta volume was resized to 64 × 64 × 64.
The values were truncated to the mediastinum window (50, 350)
and the volumes were employed as the input of the 3DDLmodel.

We used 3D ResNet (15) as a basic structure of the
detection model. 3D ResNet combined an encoder with a
fully connected layer for classification (classifier). The same
modification of the encoder as MedicalNet (15) was adopted
to perform transfer learning using the pre-trained weight from
23 public medical datasets. The optimization was performed by
binary cross-entropy loss with the Stochastic Gradient Descent
(SGD) optimizer with learning rates of 0.001 and 0.01 for the
encoder and classifier, respectively. The weight decay of the SGD
optimizer was 0.001 and the momentum was 0.9.

After the 3D DL model was built, the prediction
probability of the existence of AD was used as the DL score
(Figure 2B). The higher the DL score is, the more likely that the
3D DL model indicates the existence of AD.

Proposed Model Combined With the DL
Score and Morphological Characteristics
Based on the previously calculated morphological characteristics
(the aortic maximum diameters and general morphological
features) and the DL score, a model based on the Gaussian NB
algorithm was built to predict the AD status (deep-integrated
model). The deep-integrated model was built on the basis of

the 3D DL model; thus, it integrated the 3D information. The
optimal subset of morphological characteristics was selected by
the Spearman’s rank correlation test and the characteristics with
a p-value <0.05/18 (Bonferroni correction, 18 tested features)
was remained.

The deep-integrated model was trained based on the
Gaussian NB algorithm and for the Gaussian NB algorithm
for classification, the likelihood of the features is assumed to
be Gaussian:

P(xi|y) =
1

√
2πσy

exp

(

−
(xi − µy)

2

2σ 2
y

)

The parameters µ and σ are estimated using
maximum likelihood.

The training cohort and the validation cohort were merged
to train the deep-integrated model using the 10-fold cross-
validation procedure. For each iteration of the cross-validation,
the model was trained 9-fold and validated on the remaining
1-fold. Then, the validation folds were assembled to form
the cross-validation result. After the optimal hyperparameters
were selected by the cross-validation result, the final integrated
model was retrained on the merged cohort using the optimal
hyperparameters and the performance on the internal and
external testing cohorts was evaluated by quantifying the
accuracy, sensitivity, specificity, and the area under the receiver
operating characteristic curve (AUC) (Figure 2C).
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TABLE 1 | Demographics of patient and CT image parameters in all the cohorts.

Training and

validation cohorts

Internal testing

cohort

External testing

cohort

p-value

Number of patients 273 69 117 –

Patients demographics

Age, mean ± SD, year 55.47 ± 15.41 55.88 ± 16.64 54.62 ± 17.51 0.851

Sex, No. (%) 0.002

Male 183 (67.03) 37 (54.62) 92 (78.63)

Female 90 (32.97) 32 (46.38) 25 (21.37)

CT image parameters

Slice thickness 2.66 ± 2.34 2.72 ± 2.37 7.25 ± 3.43 <0.001

Stanford type 0.401

A 39 13 21

B 71 16 25

The p-values were calculated by the ANOVA test or the Pearson’s chi-squared test when appropriate.

Comprehensive Comparison of the
Deep-Integrated Model
To further validate the effectiveness of each feature, based on the
aortic maximum diameters and DL scores, the deep maximum
diameters model (deep MD model) was built on the basis of the
Gaussian NB algorithm by the same procedure as the integrated
model and a comparison of the 3D DL model, deep MD model,
and deep-integrated model was performed.

The performance of the integrated model on different
subtypes was compared. The internal testing cohort and the
external testing cohort were divided by the Stanford type
diagnosed by the CTA scans and the accuracy of the model and
radiologist on these subsets were evaluated and compared.

The robustness of the deep-integrated model at different slice
thicknesses was further evaluated. Among the 111 patients in
the external testing cohort (SSPH), 63 patients only underwent
non-contrast scans with a slice thickness > 8mm. However,
the slice thickness of the training cohort and internal testing
cohort from PUMCH was <5mm. It is important to monitor
the impact of performance based on the slice thickness. The
external testing cohort was divided according to whether
the scans were thicker than 8mm and the performance
was compared.

Statistical Analysis
All the statistical results were calculated in Python and R
(version 3.6.0; https://www.r-project.org/) environments. The
demographics of the patient among the three cohorts were
compared by the ANOVA tests or the Pearson’s chi-squared test
when appropriate. For the AD detection model and radiologist
assessment, we used the Pearson’s chi-squared test with the
Yates’ continuity correction to compare the sensitivity, specificity,
negative predictive value (NPV), and positive predictive value
(PPV) of the classification model and artificial interpretation
of non-enhanced CT scans. The Fleiss’s kappa coefficient was
used to measure the consistency of the 3 radiologists. The AUC
(0.95 CI) was calculated to evaluate model performance in the
two data centers. The two AUCs were compared by the DeLong

method (16). A p-value of <0.05 was considered to indicate a
significant difference.

RESULTS

Population of Patient
In total, 452 patients were enrolled and divided into the
training cohort (n = 238), validation cohort (n = 35), internal
testing cohort (n = 68), and external testing cohort (n =
111). Table 1 shows the detailed demographics of patient
and CT image parameters of the training, validation, internal
testing, and external testing cohorts. The training cohort
and the validation cohort were combined because they were
used to find the optimal hyperparameters and to train the
model. There were no significant differences in terms of age
among the cohorts (p = 0.845), but sex was significantly
different (p = 0.002). It should be noted that the slice
thickness was significantly different (p < 0.001) and the CT
scans in the SSPH cohort were thicker than those in the
PUMCH cohort.

Performance of the Models
The diagnostic performance of each model is shown in Table 2

and the results of the receiver operating characteristic (ROC)
curve analysis are shown in Figure 3.

The deep-integrated model built on the combination of the
DL score and all the morphological characteristics achieved an
AUC of 0.948 (95%CI, 0.898–0.998) in the internal testing cohort
and 0.969 (95% CI, 0.937–1) in the external testing cohort. The
cutoff value that maximized the Youden index was 0.33, resulting
in an accuracy of 0.897 (95% CI, 0.793–0.954), a sensitivity of
0.862 (95% CI, 0.674–0.955), and a specificity of 0.923 (95% CI,
0.78–0.98) in the internal testing cohort and an accuracy of 0.73
(95%CI, 0.636–0.808), a sensitivity of 0.978 (95%CI, 0.87–0.999),
and a specificity of 0.554 (95% CI, 0.426–0.675) in the external
testing cohort.

After the feature selection procedure, 16 features were
used to build the deep-integrated model including the DL
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TABLE 2 | Detailed aortic dissection (AD) detection performance results of the models.

AUC

(95% CI)

Accuracy

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

The 3D DL model

Training cohort 0.997

(0.993–1)

0.958

(0.922–0.979)

0.927

(0.851–0.968)

0.979

(0.935–0.995)

Cross validation result 0.84

(0.7–0.98)

0.857

(0.69–0.946)

0.857

(0.562–0.975)

0.857

(0.626–0.962)

Internal testing cohort 0.803

(0.688–0.917)

0.794

(0.675–0.879)

0.655

(0.457–0.814)

0.897

(0.748–0.967)

External testing cohort 0.814

(0.733–0.895)

0.757

(0.664–0.831)

0.891

(0.756–0.959)

0.662

(0.533–0.771)

The deep-MD model

Training cohort 0.961

(0.938–0.985)

0.919

(0.879–0.948)

0.936

(0.869–0.972)

0.908

(0.85–0.946)

Cross validation result 0.953

(0.923–0.983)

0.916

(0.875–0.945)

0.936

(0.869–0.972)

0.902

(0.843–0.941)

Internal testing cohort 0.878*

(0.788–0.968)

0.794

(0.675–0.879)

0.690

(0.49–0.84)

0.872

(0.718–0.952)

External testing cohort 0.828

(0.751–0.906)

0.721

(0.626–0.8)

0.957

(0.84–0.992)

0.554

(0.426–0.675)

The deep-integrated model

Training cohort 0.962

(0.939–0.986)

0.919

(0.879–0.948)

0.9

(0.824–0.947)

0.933

(0.879–0.964)

Cross validation result 0.956

(0.929–0.983)

0.919

(0.879–0.948)

0.909

(0.835–0.953)

0.926

(0.872–0.96)

Internal testing cohort 0.948**

(0.898–0.998)

0.897

(0.793–0.954)

0.862

(0.674–0.955)

0.923

(0.78–0.98)

External testing cohort 0.969***

(0.937–1)

0.73

(0.636–0.808)

0.978

(0.87–0.999)

0.554

(0.426–0.675)

The p-value was calculated by the DeLong test on the internal testing cohort and the external testing cohort.

*p < 0.05.

**p < 0.01.

***p < 0.001.

score, 4 maximum aortic diameter features, and 11 general
morphological features. Figure 4 shows the µ and σ parameters
of the trained integrated model (17) as well as the feature
names. The µ parameter is the mean of each feature per
class and the σ parameter is the SD of each feature per
class. In general, patients with AD tend to have higher
DL scores and higher AC and DC. However, most of the
general morphological features were lower in AD cases, except
sphericity. It should be noted that the radiomic scores were
normalized by z-score normalization. The selected features
and the corresponding µ and σ coefficients were given
in Table 3.

Comprehensive Analysis of the
Performance of the Model
After training for 20 epochs [8 Garment Production Units
(GPUs), Nvidia Titan Xp, ∼34 h], the performance of the 3D DL
model was evaluated (1 GPU, Nvidia Titan Xp, 1.2 s per CT).
The 3D DL model reached an AUC of 0.803 (0.688–0.917) in
the internal testing cohort and 0.814 (0.733–0.895) in the external
testing cohort, which was significantly inferior to the integrated
model (p = 0.02 and p < 0.001, respectively). Combined with

the aortic maximum diameters, the MD model reached an AUC
of 0.878 (0.788–0.968) in the internal testing cohort, which was
significantly superior to the 3D DL model (p = 0.04). In the
external testing cohort, the MD model reached an AUC of 0.828
(0.751–0.906), which was superior to the 3D DL model, but
not significantly. For the comparison between the MD model
and the integrated model, the AUC of the integrated model was
significantly higher than that of the MD model, indicating the
effectiveness of the general morphological features.

In the internal testing cohort, the deep-integrated model
reached accuracies of 0.923 and 0.813 on the Stanford type A
subset and the Stanford type B subset, respectively, while in
the external testing cohort, they were 1.000 and 0.960. The
performance on the Stanford type A subset was better than
that on the Stanford type B subset, but the difference was not
significant (Table 4).

In the external testing cohort, the sensitivity was lower than
that in the internal testing cohort. The AUC and sensitivity of
the deep-integrated model were consistently determined on the
subsets divided by the slice thickness. However, the specificity on
the thicker subset was lower than that on the thinner subset (p=
0.06) (Table 5).
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FIGURE 3 | The receiver operating characteristic (ROC) curves. (A) The internal testing cohort. (B) The external testing cohort.

Compared With the Radiologists
Interpretation
The Fleiss’s kappa coefficient among the three radiologists was
0.80 and 0.51 in the internal testing cohort and the external
testing cohort, indicating substantial consistency and moderate
consistency, respectively.

The accuracy of the deep-integrated model was superior
or equal to that of the three radiologists in both the
internal and external testing cohorts, but not significantly.
The sensitivity of the deep-integrated model was higher
than that of all the three radiologists. It was significant
between the deep-integrated model and radiologist 2
(p = 0.04) in the internal testing cohort and was significant
between the deep-integrated model and all the three radiologists
in the external validation cohort (p < 0.001). However, the
specificity of the deep-integrated model was lower than that of all
the three radiologists. No significance was found in the internal
testing cohort, but it was significant in the external testing cohort
(p < 0.001) (Table 6, Figure 5). Figure 6 shows the AD cases
with CT images.

DISCUSSION

This study initially developed and trained a machine model that
integrated the DL model and morphological characteristics of
non-contrast CT images and then validated its performance
at two medical centers. The results showed that the deep-
integrated model was comparable to or slightly outperformed the
human expert interpretation of radiologists with intermediate

to high amounts of experience. This deep-integrated model
could potentially support the early detection of AD based
on non-contrast CT images and help to optimize the
clinical workflow.

Computed tomography angiography is the best imaging
modality to diagnose AD (2, 3, 18, 19), while CTA is commonly
restricted in some emergency departments, especially in rural
or underserved areas that lack technical and staff support (4).
Making the best use of non-contrast CT scans to assist the early
warning of AD in clinical practice is of great significance and
has the potential to greatly improve patient outcomes. However,
the poor sensitivity and high false-negative (FN) detection
value reported in previous studies (9) are major concerns. The
underlying causes might be related to the threshold of detecting
subtle differences in grayscale images by the naked eye (8). This
is supported by the observation that AD intimal rupture with
relatively normal outline morphology is difficult to identify by
radiologists. In addition, it is also difficult for human experts to
distinguish between ruptured aortic aneurysms and unruptured
aortic aneurysms on non-contrast CT images.

The DL technology has been increasingly applied to medical
data analysis and CT-assisted diagnosis and has demonstrated
great abilities in several issues. Studies have reported that
the DL technology contributes greatly to expanding the
amount of information accessible in CT images beyond human
recognizability limitations. Recently, Hata et al. (12) designed
the 2D DL algorithm for the detection of AD on non-contrast
CT and reached an AUC of 0.940 on the internal testing set.
The results of the 2D model showed comparable diagnostic
performance to radiologists, which was consistent with the
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FIGURE 4 | The µ and σ parameters of the deep-integrated model. The σparameter was used as an error bar. In general, patients with AD tend to have the higher DL

scores and higher ascending aorta (AC) and descending aorta (DC). However, most of the general morphological features were lower in AD cases, except sphericity.

observation made in this study. However, their 2D algorithm did
not utilize 3D spacing information and the thresholds used to
generate study-based AD detection results from the 2D results
could vary among different datasets. This issue might limit its
application in clinical systems. The performance of the previously
reported 2D model was inferior to our integrated 3D model
(AUC: 0.948 on the internal testing cohort and 0.969 on the
external testing cohort). In addition, the imaging data of the
previous study were collected from a single center, which might
lead to potential issues with reliability and reproducibility of
the results.

In this study, we proposed a deep-integrated model, a
Gaussian NB algorithm-based model, for the early detection of
AD using non-contrast CT scans and integrated both the DL
model and morphological characteristics. This model has been
validated by datasets from two independent clinical centers. The
aorta volume was retrieved by an aorta segmentation model
and only the aorta pixel value was kept in the aorta volume.
This approach reduces unrelated context noise and enables
AD detection to focus on aorta detection and reduces the
input size of the DL model such that the input can maintain
a higher resolution. The higher resolution input increases
the sensitivity of AD detection. Morphological characteristics

were extracted from the aorta mask. After the DL model
was built, a Gaussian NB algorithm-based model (deep-
integrated model) was built on the combination of the DL
score and morphological characteristics, demonstrating that the
combination of morphological characteristics can strengthen the
model performance. The DL model was used to capture the
texture information, while the morphological features were used
to capture the shape-based information. Thus, the DL score and
morphological features provided complementary information.

The average sensitivity and specificity values of human
expert interpretation in predicting AD on non-enhanced CT
in this study were consistent with the results from previous
studies and the sensitivity on the internal testing cohort was
increased to 70–80% compared to a previous study result of
59–61% (9), except for radiologist 2. More predictive markers
might partially contribute to the sensitivity improvement. In
addition, all the participating radiologists in this study are from
large academic medical centers and have experience specific
to cardiovascular imaging, which may have contributed to
their superior performance. It is, therefore, conceivable that
general radiologists working in the community would have lower
performance in the detection of AD on non-contrast CT scans.
Compared to the radiologists, our model integrated the score of
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the DL model, which can detect the subtle textures that correlate
with AD status. While the proposed AD detection model showed
a significant advantage in detection sensitivity, it may be helpful
for overcoming the weaknesses of human expert interpretation.

Notably, the specificity of the deep-integrated model was
improved to 92.3% in the internal testing cohort, which was
slightly lower than that of the radiologists and apparently higher
than the corresponding results from a prior study of 85.5%
(12). However, in the external testing cohort, the specificity
performance decreased to 55.4%. After the exclusion of the thick
scans, the specificity of the deep-integrated model increased to
68.7%. Thus, the decreasing specificity might be related to the
differences in the image data and scanning parameters between
the different medical centers. On one hand, higher-resolution

TABLE 3 | The list of selected features and the corresponding µ and σ

coefficients of the trained deep-integrated model.

AD Non-AD

Selected features µ σ µ σ

DL score 0.860 0.023 0.268 0.029

Least axis length −0.300 0.827 0.444 0.927

Major axis length −0.332 0.862 0.493 0.798

Maximum 2D diameter column −0.268 0.838 0.397 0.977

Maximum 2D diameter row −0.318 0.863 0.472 0.830

Maximum 2D diameter slice −0.314 0.918 0.465 0.759

Maximum 3D diameter −0.329 0.853 0.488 0.819

Mesh volume −0.363 0.626 0.538 1.069

Minor axis length −0.344 0.925 0.509 0.677

Sphericity 0.195 0.750 −0.289 1.230

Surface area −0.330 0.446 0.489 1.421

Voxel volume −0.363 0.626 0.538 1.069

AC > 4mm 0.822 0.146 0.591 0.242

DC > 4mm 0.822 0.146 0.591 0.242

AC > 5mm 0.822 0.146 0.591 0.242

DC > 5mm 0.822 0.146 0.591 0.242

CT can provide more diagnostic information (20, 21). Thus,
thicker images may exclude some information for the detection
of AD. On the other hand, there was a difference between
the training cohort and external testing cohort in terms of
layer thickness, which may have cause some degradation of the
model performance.

The anatomic classification of ADmainly reflects the extent of
the dissections and the location of the intimal tear and evaluates
the degree and prognosis of lesions to guide the selection of
clinical personalized treatment and operation. As indicated in
this study, the detection efficiency of the deep-integrated model
for AD of the Stanford type A was superior to that of the
Stanford type B. This outcome could mainly be explained by
the wider dissection range involved and the probability of more
information and characteristics related to ADof the Stanford type
A than that of the Stanford type B.

Although the CTA scan for diagnosing aortic dissection
cannot be replaced by non-contrast CT in the near future
and this study might not be the optimal or only approach
for every patient, it is expected that the deep-integrated model
could potentially be applied in the clinical setting to support
clinical decision-making and improve the early detection of
suspected AD in some cases. We supposed that it might help
in conditions when CTA is not that convenient or timely. The
significance of this technique is related to the early detection
of asymptomatic patients. Furthermore, a specific group of
atypical or asymptomatic patients with AD would particularly
benefit from this assessment model, as it is highly likely that the
diagnosis of their condition would otherwise have been missed.
Themodel might bemore helpful to community radiologists who
lack specific experience or training in cardiovascular imaging
and less experienced radiologists. Another possible solution is
to generate synthetic CTA from non-contrast CT images (22,
23). However, this approach is hampered by the lack of a
comprehensive dataset, which may lead to bias in the generated
CTA and might be potentially harmful for the robustness of
the model.

The main limitations of this study are as follows. First,
the sample size of this study was small and relatively low

TABLE 4 | Accuracy comparison in the detection of AD with the Stanford type A and the Stanford type B in the two centers.

Internal validation cohort External validation cohort

Data number True positive

number

Accuracy p Data number True positive

number

Accuracy p

Stanford type A 13 12 0.923 0.751 21 21 1 1.000

Stanford type B 16 13 0.813 25 24 0.96

TABLE 5 | Performance comparison in the detection of AD on different slice thickness scans in the external testing cohort.

AUC Accuracy Sensitivity Specificity

Slice thickness <8mm (n = 48) 0.955 0.771 0.937 0.687

Slice thickness ≥8mm (n = 63) 0.982 0.698 1.000 0.424

p-value 1.000 0.525 0.747 0.060
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TABLE 6 | Performance comparison of the model and radiologists in the detection of AD.

Accuracy Sensitivity Specificity PPV NPV

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Internal validation cohort

Deep-integrated model 0.897

(0.793–0.954)

0.862

(0.674–0.955)

0.923

(0.78–0.98)

0.893

(0.706–0.972)

0.9

(0.754–0.967)

Radiologist 1 0.897

(0.793–0.954)

0.828

(0.635–0.935)

0.949

(0.814–0.991)

0.923

(0.734–0.987)

0.881

(0.736–0.955)

Radiologist 2 0.824

(0.708–0.902)

0.586*

(0.391–0.759)

1

(0.888–1)

1

(0.771–1)

0.765

(0.622–0.868)

Radiologist 3 0.897

(0.793–0.954)

0.759

(0.561–0.89)

1

(0.888–1)

1

(0.815–1)

0.848

(0.705–0.932)

External validation cohort

Deep-integrated model 0.73

(0.636–0.808)

0.978

(0.87–0.999)

0.554

(0.426–0.675)

0.608

(0.487–0.717)

0.973

(0.842–0.999)

Radiologist 1 0.73

(0.636–0.808)

0.457***

(0.312–0.608)

0.923***

(0.822–0.971)

0.808

(0.6–0.927)

0.706**

(0.596–0.797)

Radiologist 2 0.712

(0.617–0.792)

0.304***

(0.182–0.459)

1***

(0.93–1)

1*

(0.732–1)

0.67***

(0.566–0.76)

Radiologist 3 0.721

(0.626–0.8)

0.457***

(0.312–0.608)

0.908***

(0.803–0.962)

0.778 (0.573–0.906) 0.702**

(0.591–0.795)

The p-value was calculated by the Pearson’s chi-squared test with the Yates’ continuity correction.

*p < 0.05.

**p < 0.01.

***p < 0.001.

FIGURE 5 | Clinical comparison. The diagnostic performance of the deep-integrated model and the three observers are shown. (A) The internal testing cohort. (B)

The external testing cohort.

accuracy results were obtained in the external testing cohort;
therefore, a detailed analysis based on the subtypes of AD was
not possible. The increase in specificity indicated that the slice

thickness may partly explain the decline in specificity. However,
the specificity was still not satisfactory, indicating that other
reasons (image quality, manufacturer, etc.) contributed to the
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FIGURE 6 | AD cases with CT images. (A) Successfully detected by all the radiologists and the model. (B) Successfully detected by our model, but neglected by one

of the radiologists. (C) Neglected by both our model and all the radiologists.

decline in specificity, but these factors were not analyzed. In
addition, this was a retrospective study and detailed information
about initial symptoms and the purpose for CT examination of
the enrolled patients were incomplete. However, the prevalence
of asymptomatic and unsuspected patients with AD might be
significant for the clinical use of this model. Furthermore,
potential challenges (e.g., inconsistency in image quality, contrast
and imaging protocols from different centers) might be necessary
for translating this method into a clinical tool. To validate
the clinical potential of the model, multicenter prospective
trials with a range of CT examination types will be needed

to further investigate the reliability and reproducibility of
our results.

CONCLUSION

The deep-integrated model, an integrated matching learning
model, was comparable to or slightly outperformed
the human expert interpretation of radiologists with
intermediate to high amounts of experience in detecting
AD on non-contrast CT images. This model might
contribute to the improvement in early disease detection
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and downstream clinical decision optimization for patients at
risk for AD.
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