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A B S T R A C T   

The present study investigated the mechanical characteristics, hydrophobicity, antioxidant and antibacterial 
properties, FTIR, SEM and XRD of films fabricated with corn starch and pullulan (CS/PUL) by adding different 
concentrations of Gallic acid (GA) (0%, 0.5%, 1.0%, 1.5% w/v). The mechanical strength and opacity of CS/PUL 
films were enhanced by the addition of 1.0% GA. The water vapor permeability (WVP) of CS/PUL films was 
significantly lower in films with GA compared to those without (P < 0.05). The addition of GA, especially at 
concentrations of 1.0% and 1.5%, resulted in considerably better free radical scavenging activities on DPPH than 
films without GA (P < 0.05). Interestingly, the highest water contact angle (WCA) value was observed in films 
with 0.5% GA, indicating stronger hydrophobicity. Furthermore, the antibacterial capabilities of the films, 
particularly against E. coli and P. aeruginosa, improved with an increase in GA concentration. The results of FTIR, 
SEM and XRD analyses showed that GA was well distributed in the CS/PUL matrix.   

1. Introduction 

It is challenging to degrade plastic packaging in nature, which has 
led to increased customer attention towards environmental protection. 
In recent years, active packaging has gained widespread scholarly in-
terest due to its edible, safe, efficient, and low-cost advantages (Fdg, Fc, 
Ca, Vg, & Et, 2022). Active packaging typically employs natural polymer 
compounds as a film-forming matrix with plasticizers or cross-linking 
agents to cover the interior or surface of the food through spraying, 
impregnating, coating, or wrapping, thereby preventing the penetration 
of moisture, oxygen, and other substances (Porta, Mariniello, Pierro, 
Sorrentino, & Giosafatto, 2011). 

Currently, common natural polymer packaging materials include 
lipids, polysaccharides, and proteins. Among them, starch-based mate-
rials have become a research hotspot due to their low cost, good gas 
barrier, high solubility, and good degradability compared to other nat-
ural polymer materials. However, films composed of a single starch 
component have poor mechanical properties and are brittle. Therefore, 
the addition of plasticizers and crosslinkers is necessary to improve film 
performance. Glycerol is a widely used plasticizer in natural polymer 

packaging. Hazrati, Sapuan, Zuhri, and Jumaidin (2021) discovered that 
the addition of glycerol to potato starch films improved their flexibility 
and thermal stability. Additionally, pullulan (PUL), a water-soluble 
substance, can create colorless, odorless, transparent, flexible, highly 
oil-resistant, and heat-sealable films with excellent oxygen barrier 
properties. The films prepared from these materials exhibit good resis-
tance to oil and oxygen, but their mechanical properties are relatively 
poor. Therefore, it is common practice to enhance their properties by 
incorporating and blending other substances. Kaewprachu et al. (2017) 
discovered that the combination of PUL and tapioca starch resulted in 
the formation of numerous intermolecular hydrogen bonds, leading to 
an increase in the mechanical strength and hydrophobicity of the com-
posite film. Similarly, Zhao et al. improved the water resistance, me-
chanical properties, and thermodynamic properties of a film made with 
rice starch and pullulan. 

Plant polyphenols are often used as natural modifiers for preparing 
polysaccharide protein films. Due to their outstanding antioxidant and 
antibacterial properties, natural phenolic compounds are considered 
ideal candidates for active packaging (Sanches-Silva et al., 2014). Some 
studies have reported that phenols have been added to active packaging 
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films to extend the shelf life of food. Gallic acid (GA) (3,4,5- trihydroxy 
benzoic) is a naturally occurring polyphenolic substance primarily 
derived from plants (Rajan & Muraleedharan, 2017). Cassava starch/ 
chitosan/GA has special biochemical characteristics and is used in food 
and medicine due to its antibacterial and antioxidant properties. The 
bioactive film developed from this combination can effectively enhance 
the hydrophobic and mechanical properties of the film (Yujia Zhao, 
Huerta, & Saldaña, 2019). Aydogdu, Yildiz, Aydogdu, Sumnu, Sahin, 
and Ayhan (2019) discovered that using active packaging material made 
from lentil powder loaded with GA improved the oxidation stability of 
walnuts and extended their shelf life. 

The purpose of this study was to prepare and characterize a CS/PUL 
film incorporated with GA, and to investigate the impact of GA on the 
mechanical and structural properties of the polysaccharide-based films. 
The study assessed the tensile strength (TS), elongation at break (EAB), 
water vapor permeability (WVP), scanning electron microscope (SEM), 
Fourier transforms infrared (FTIR), and hydrophobic properties. Addi-
tionally, the study evaluated whether GA improved the antioxidant and 
antibacterial properties of the polysaccharide films. The results of this 
study are not only useful for improving the utilization rate and appli-
cation range of polysaccharide-based films, but also for developing a 
new film that can be used in food packaging. 

2. Materials and methods 

2.1. Materials 

Corn starch (CAS: 9005–25-8) was purchased from McLean 
Biochemical Co., Ltd (Shanghai, China). Pullulan (CAS: 9057–02-7), 
gallic acid (CAS: 149–91-7) and glycerol (CAS: 56–81-5) were purchased 
from Aladdin Reagent Co., Ltd (Shanghai, China). E. coli, S. aureus and 
P. aeruginosa were obtained from China Strain Conservation Centre. LB 
broth and LB agar were obtained McLean Biotechnology Co., Ltd 
(Shanghai, China) for microbial detection. 

2.2. Preparation of the film 

First, 3.5 g CS and 1.0 g PUL were mixed in 100 mL of sterile distilled 
water, heated and stirred at 85。C about 20 min. Then mixed GA (0.0 %, 
0.5 %, 1.0 %, 1.5 %, w/v) and stirred for 10 min. 40% glycerol based on 
CS (as a plasticizer) was added to the prepared mixture and stirred for 
10 min. Afterwards, 40 mL of the CS/PUL/GA mixture was poured onto 
a round plastic plate and dried at room temperature for 72 h. 

2.3. Characterization of film 

2.3.1. GA cumulative release properties 
The Folin-Ciocalteau method was selected to determine the GA 

content (Kwaw et al., 2018). In release experiments, 95% ethanol is 
commonly used as the food simulant. To conduct the experiment, 
200 mg of film was placed in a conical flask containing 20 mL of 95% 
ethanol at room temperature. Every 3 h, 1 mL of simulant was taken 
from the conical flask and supplemented with 1 mL of 95% ethanol. The 
absorbance was measured using a spectrophotometer PE-Lambda 35 (PE 
Instrument Co., Ltd) at 760 nm. 

2.3.2. Film thickness 
The film thickness was measured using the Model ID-5202–25 µm 

(Zhejiang Electronics Co., Ltd., China). To calculate the average thick-
ness, five different locations were selected on each film. 

2.3.3. Mechanical properties 
Mechanical performance was evaluated using an XLW intelligent 

electric traction tester (Jinan Languang, China). The tensile strength 
(TS) and elongation at break (EAB) were determined following the 
method described by Xi et al. (2021). 

2.3.4. Water vapor permeability 
Water vapor permeability was determined by Marangoni Júnior, 

Silva, Vieira, and Alves (2021). Place the film in a 50 mL centrifuge tube 
with saturated sodium chloride solution (25 。C, 75.5% RH1) in a dry 
silica gel (0% RH2). Then weighed 8 times in 24 h. Water vapour transfer 
rate (WVTR) is defined as gradient (g/s). The CS/PUL/GA film’s WVP 
was calculated by Eq. (1): 

WVP =
WVTR × T

P(RH1 − RH2)
(1) 

P was the saturated vapor pressure at 25 。C and T was the thickness 
of CS/PUL/GA film. 

2.3.5. Color, light transmission and opacity 
The L*, a* and b* value of the CS/PUL/GA films were calculated with 

a CR-400 colorimeter (Konica Minolta, Japan) by Zhou et al. (2021). 
Standard white board calibration (L*0 = 92.91, a*0 = -0.51, b*0 = 5.52). 
The ΔE of CS/PUL/GA films was by Eq. (2): 

ΔE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L* − L*
0)

2
+ (a* − a*

0)
2
+ (b* − b*

0)
2

√

(2) 

The light transmission was described by Jiang et al. (2023). In 
briefly, a 40 mm × 10 mm film was inserted into the PE-Lambda 35 
spectrophotometer (PE Instrument Co., Ltd), and scanned in the wave-
length range of 300–800 nm. Calibrate the instrument with an empty 
test tube, the opacity of the CS/PUL/GA films was calculated using Eq. 
(3): 

Opacity =
A600

T
(3) 

The T was the thickness of the film. 

2.3.6. Fourier transform infrared (FTIR) spectroscopy and X-ray 
diffraction (XRD) 

The NicoletTMiSTM 50 FTIR Spectrometer (Thermo Scientific, USA) 
was used to scan the deep structure of the CS/PUL/GA films with a 
reduced total reflectance (ATR) accessory, and the spectrum was ob-
tained in the range of 400 to 4000 cm− 1 wavenumbers (Parveen, 
Chaudhury, Dasmahapatra, & Dasgupta, 2019). 

The X-ray diffraction performance of films were assessed by X-ray 
diffractometer (Brooke D8 advance). The test diffraction angle 2 θ of the 
film ranged from 10◦ to 80◦, the test rate was 5◦/min, and the sample 
needed to be equilibrated in an RH 50% desiccator for 48 h before 
testing. 

2.3.7. Scanning electron microscope and water contact angle 
SEM (Hitachi S-4800, Japan) was used to observe the morphology of 

the film at 3 kV accelerating voltage. The WCA of the film was measured 
by a contact Angle tester (Theta Flex, Biolin Scientific). 

2.3.8. The free radical scavenging activity of DPPH (1, 1, 1, 2 - 
Picrylhydrazine) 

According to Raspo, Gomez, and Andreatta (2018), the film con-
taining 200 mg was mixed with 25 mL of distilled water and oscillated 
for 24 h at room temperature using a ZD-85 oscillator (Changzhou 
Guoyu Instrument Manufacturing Co., Ltd). After centrifugation (Alle-
gra 64 R, Beckmann, Inc) at 5000 g for 10 min, 2 mL of the supernatant 
was collected and mixed with 2 mL of 0.1 mM DPPH solution (dissolved 
in anhydrous ethanol). The reaction mixture was then incubated in the 
dark at ambient temperature for 60 min, and the absorbance was 
measured at 517 nm. The DPPH-radical scavenging activity was calcu-
lated as Eq. (4): 

Scavenging activity% =
ODB − ODS

ODB
× 100% (4) 

ODB and ODS represented the absorbance of the blank and the sample 
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tubes. 

2.3.9. Antibacterial activity of films 
The antibacterial activity of the CS/PUL/GA films was studied 

against S. aureus, E. coli, and P. aeruginosa using the inhibition circle 
method. The films were cut into 10 mm diameter discs and subjected to 
UV sterilization for 15–20 min. A bacterial suspension of 106 CFU/mL 
was prepared and incubated on LB plates. After 24 h of incubation at 
37。C, the diameter of the inhibition ring was measured using a vernier 
caliper with a precision of 0.02 mm (Song, Liu, Huang, Zhou, Hong, & 
Deng, 2022). 

2.4. Statistical analysis 

All measurements were made in triplicate and the statistical signif-
icance was analyzed with the SPSS Statistical Package Program (Win-
dows SPSS 26.0). Variance Analysis (ANOVA) was performed, and the 
Duncan Multiple Range Test was performed for mean comparison. 

3. Results and discussion 

3.1. GA cumulative release 

A UV–Vis spectrophotometer was utilized to measure the GA content 
of CS/PUL/GA films in a 95% ethanol solution. The concentration and 
cumulative release of GA versus immersion time are presented in Fig. 1. 
The cumulative release of GA in the films exhibited a slow increase 
during the initial 25 h, which might be attributed to the rapid release of 
GA from the shallow matrix of the films. The rapid release of GA be-
tween 25 and 31 h might be attributed to the migration of GA from the 
deep matrix to the surface. Gradual stabilization of GA release after 
144 h. The results indicated a correlation between the release of GA from 
CS/PUL/GA films and GA concentration, with a higher GA content 
resulting in a greater percentage of GA released. Luzi et al. (2019) 
observed a comparable phenomenon in electrospun fibers that con-
tained GA. 

3.2. The thickness of the film 

Table 1 presented the thickness of CS/PUL/GA films with 0.5%, 
1.0%, and 1.5% GA additions, which were significantly greater than the 
thickness of CS/PUL films (P < 0.05). The increase in film thickness 
might be attributed to the higher solids content of GA in the CS/PUL 
film. However, the thickness of CS/PUL/GA films did not significantly 

differ between 0.5% and 1.0% GA addition (P > 0.05), but showed a 
slight increasing trend. This could be explained by the suitable GA 
addition interacting with glycerol and CS/PUL, contributing to the film 
thickness. Additionally, the thickness of CS/PUL/1.5% GA films was 
significantly greater than that of the CS/PUL/0.5% GA and 1.0% GA 
films (P < 0.05). Similar results were found by Y. Wang et al. (2019) in 
chitosan films containing GA and caffeic acid. 

3.3. Mechanical properties 

In general, edible films must possess sufficient mechanical strength 
to maintain their integrity and withstand external damage in food 
packaging. Table 1 presented the tensile strength (TS) and elongation at 
break (EAB) of CS/PUL/GA films. Compared to the control treatment 
without GA, the TS of CS/PUL/GA films with 0.5%, 1.0%, and 1.5% GA 
decreased significantly from 18.63 ± 1.50 MPa to 7.84 ± 0.76 MPa, 
15.17 ± 1.05 MPa, and 5.86 ± 0.09 MPa, respectively (P < 0.05), while 
the EAB increased significantly from 13.29 ± 3.17% to 65.75 ± 2.19%, 
64.04 ± 1.48%, and 58.24 ± 1.23%, respectively (P < 0.05). Among the 
GA addition treatments, the TS of CS/PUL/GA films initially increased 
and then decreased, while the EAB gradually decreased with increasing 
GA addition. The changes in TS might be attributed to the fact that in the 
early stages of GA addition, more GA was hydrogen-bonded to the CS/ 
PUL molecules, which increased the overall polymer bonding and the 
pressure-bearing capacity of the film, thereby increasing the TS of the 
films (Leceta, Urdanpilleta, Zugasti, Guerrero, & de la Caba, 2018). 
However, excessive hydrogen bonding between GA molecules in the 
later stages could alter the structure of CS/PUL/GA polymer, resulting in 
a reduction in the TS of CS/PUL/GA films. The changes in EAB were 
attributed to the excessive hydrogen bonding of GA in the later stages, 
which caused the film structure to weaken and reduced the EAB of the 
films. Qu et al. (2016) also observed that the TS of GA-modified ultra-
sound film initially increased with the addition of GA and then 
decreased (P < 0.05), while the EAB remained unchanged initially and 
then decreased with the increase of GA (P < 0.05). 

3.4. Water vapor permeability 

Table 1 displayed the WVP values of different GA concentrations for 
the film set. The addition of GA resulted in lower WVP values compared 
to films without GA (P < 0.05). This reduction in WVP indicated that the 
water barrier ability of CS/PUL films was improved by the addition of 
GA. This improvement could be attributed to the increased cross-linking 
of hydrogen bonds between GA and CS/PUL, which might have reduced 
the number of free hydroxyl groups interacting with water molecules, 
thereby lowering the WVP of the films. This effect is similar to the Fig. 1. GA cumulative release properties.  

Table 1 
Effects of GA concentration on thickness, tensile strength (TS), elongation at 
break (EAB) and water vapor permeability (WVP) of CS/PUL/GA films.  

Film Thickness/mm TS/Mpa EAB/% WVP/10-7gm-1h- 

1pa-1 

CS/PUL 0.154 ± 0.007c 18.63 ± 1.50a 13.29 ± 3.17c 9.934 ± 0.531a 

CS/ 
PUL/ 
0.5 
GA 

0.164 ± 0.003b 7.84 ± 0.76c 65.75 ± 2.19a 3.032 ± 0.247d 

CS/ 
PUL/ 
1.0 
GA 

0.168 ± 0.001b 15.17 ± 1.05b 64.04 ± 1.48a 4.726 ± 0.170c 

CS/ 
PUL/ 
1.5 
GA 

0.178 ± 0.002a 5.86 ± 0.09d 58.24 ± 1.23b 7.676 ± 0.430b 

The data were show as mean ± standard deviation and superscript letter (a-d) 
indicate significant difference (P < 0.05) within the same column. 
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observed effects of ferulic acid and GA on gelatinous films of horse 
mackerel scales. According to Yujia Zhao, Teixeira, Gänzle, and Saldaña 
(2018), the addition of GA to cassava starch and chitosan films resulted 
in a significant reduction in WVP. This was attributed to the high degree 
of cross-linking, which led to the formation of ester and electrostatic 
bonds between cassava starch, GA, and chitosan. However, as the con-
centration of GA increased from 3.032 × 10–7 to 7.676 × 10-7gm-1 h- 
1pa-1 (P < 0.05), the WVP of the films also increased significantly. This 
could be due to the fact that the higher concentration of GA altered the 
structure of the CS/PUL polymer, causing a disruption of the intermo-
lecular interactions and resulting in an increase in WVP values. Khan, 
Volpe, Salucci, Sadiq, and Torrieri (2022) observed an increase in water 
vapor permeability (WVP) in the GA/active caseinate/guar gum film 
when the concentration of GA was increased to 250 μg/mL. 

3.5. Color, opacity and light transmission 

The optical characteristics of a packing film are essential properties 
that relate to its function, particularly in terms of the greasiness on the 
film’s surface. Table 2 presented the color parameters and opacity values 
of the films based on CS/PUL/GA. As expected, the CS/PUL film was 
relatively whitish. However, the L* value of the films significantly 
decreased when the addition of GA was above 1.0%, compared to the 
film without GA (P < 0.05). This demonstrates that GA had a significant 
influence on the film’s brightness. Additionally, the a* and b* values of 
the CS/PUL/GA films significantly increased as the addition of GA 
increased (P < 0.05). This increase might be due to GA’s yellowish color, 
which intensified the yellow hue of the films. Yujia Zhao et al. (2019) 
discovered that increasing the GA content in cassava starch/chitosan/ 
GA nanocellulose films resulted in higher b* values. Manuhara, Pra-
septiangga, Muhammad, and Maimuni (2016) reported that plant-based 
antioxidants, such as phenolic compounds, absorb short-wavelength 
light, which could cause an increase in b* values. The increase in a* 
values might be due to the interaction between GA and the film-forming 
materials or to oxidation changes in GA during heating (Fabra, Ham-
bleton, Talens, Debeaufort, & Chiralt, 2011). 

The addition of GA to CS/PUL films resulted in a significant increase 
in opacity compared to CS/PUL films alone (P < 0.05). Notably, CS/ 
PUL/1.5% GA exhibited the highest opacity value (P < 0.05). However, 
no significant difference in opacity was observed between 0.5% and 
1.0% GA additions to CS/PUL films. The transparency of CS/PUL films 
was attributed to their polysaccharide structure, as indicated in Table 2. 
UV–VIS spectroscopy analysis of the films scanned at 300–800 nm 
(Fig. 2) revealed that the light transmittance of CS/PUL films was 15% 
and 45% in the ultraviolet and visible light regions, respectively. In 
contrast, the addition of GA to CS/PUL films resulted in a significant 
decrease in light transmittance (UV and visible light regions) compared 

to CS/PUL films alone (P < 0.05), with a decrease in transmittance 
observed with increasing GA concentration. The aromatic ring in GA 
contributed to its anti-UV properties in the UV region (280–320 nm) 
(Luo, Wu, Wang, & Yu, 2021). 

3.6. Analysis of Fourier transforms infrared 

The FTIR spectra of CS/PUL/GA film samples were showed in Fig. 3. 
The absorption peak observed at 3350 cm− 1 in the spectrum of CS/PUL/ 
GA films was attributed to the tensile vibration of –OH. This absorption 
peak exhibited a decrease in intensity and a slight shift towards a lower 
wavenumber when compared to the CS/PUL film. This shift might be 
attributed to the reduction of –OH groups resulting from hydrogen 
bonding between GA and CS/PUL (Lu, Nie, Belton, Tang, & Zhao, 2006). 
The absorption peak observed in the spectrum of CS/PUL/GA films at 
1685–1612 cm-1 was mainly due to the structure of the GA aromatic 
ring. The absorption peak increased with the addition of GA, indicating 
that the interaction between GA and CS/PUL steadily increased with 
increasing GA concentration. These findings confirm the strong affinity 
between GA and CS/PUL (X. Wang et al., 2018). The steep peaks at 
1538 cm-1, 1452 cm-1 and 1340 cm-1 were mainly the stretching and 
bending of –COOH. Tapia-Hernandez et al. (2019) identified charac-
teristic peaks in electrospray films of zein and gallic acid. The absorption 
peaks at 1180–957 cm-1 were attributed to C–C and C–O stretching, as 

Table 2 
Effects of GA concentration on color characteristics, opacity and appearance of CS/PUL/GA films.  

Film L* a* b* Δ E Opacity Appearance 

CS/PUL 88.82 ± 0.20a 0.50 ± 0.01c 6.30 ± 0.01c 4.19 ± 0.20c 2.89 ± 0.32c 

CS/PUL/0.5GA 88.40 ± 0.23ab 0.62 ± 0.01b 7.42 ± 0.16b 4.58 ± 0.13bc 4.90 ± 0.28b 

CS/PUL/1.0GA 87.89 ± 0.49bc 0.64 ± 0.03ab 7.60 ± 0.11b 5.12 ± 0.49b 5.50 ± 0.46b 

CS/PUL/1.5GA 87.68 ± 0.32c 0.67 ± 0.02a 8.38 ± 0.19a 5.96 ± 0.36a 7.44 ± 0.30a 

The data were show as mean ± standard deviation and superscript letter (a-d) indicate significant difference (P < 0.05) within the same column. 

Fig. 2. Uv-vis spectra of CS/PUL/GA films.  
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well as C–H bond bending in the polysaccharide structure. In the CS/ 
PUL/GA film, the absorption peak was observed between 707 and 
773 cm-1, which was mainly due to the flexural vibration outside the 
phenol O–H plane. The presence of phenol –OH was found to be crucial 
for the DPPH radical scavenging efficiency. Similar characteristic peaks 
were observed in the CS/PUL and CSPUL/GA films, indicating that no 
new chemical bonds were formed in the CS/PUL and CSPUL/GA 
network structures. The above findings suggest that the electrospray 
films of zein and gallic acid have potential applications in the food in-
dustry due to their antioxidant properties. 

3.7. Scanning electron microscope and water contact angle 

Fig. 4 displayed the surface and cross-sectional views of the CS/PUL/ 
GA films. The surface of the CS/PUL film appeared smooth and homo-
geneous, without any visible cracks. However, after the addition of GA, 
the roughness of the CS/PUL/GA films slightly increased, indicating the 
formation of hydrogen bonds among hydrophilic compounds (Zar-
andona, Puertas, Dueñas, Guerrero, & de la Caba, 2020). Furthermore, 
as reported by Parveen et al. (2019), the roughness increase might be 
attributed to surface agglomeration resulting from covalent and non- 

covalent interactions between GA and CS/PUL. The CS/PUL/1.5% GA 
film exhibited a significant degree of heterogeneity, primarily because 
the high concentration of GA restricted the movement of the polymer 
chain within the polymer matrix (Limpisophon & Schleining, 2017). 
Additionally, the cross-section of CS/PUL/GA films corresponded to 
changes in the film surface, which became rough with an increase in GA 
concentration. This finding was consistent with XRD and FTIR analyses, 
indicating that GA was successfully embedded in the CS/PUL matrix. 

The water contact angle (WCA) was utilized to assess the material’s 
affinity for water. A WCA of θ < 90◦ indicates a hydrophilic nature, 
while θ > 90◦ indicates a hydrophobic nature of the film. The CS/PUL 
film exhibited a WCA of 72.51 ± 2.11◦. However, the addition of 0.5% 
GA resulted in a significant increase in the WCA (P < 0.05) (Fig. 4). This 
increase might be attributed to the absence of free –OH groups available 
to interact with water molecules (Yildiz, Emir, Sumnu, & Kahyaoglu, 
2022). However, as the concentration of GA increased in the CS/PUL/ 
GA films, the WCA decreased significantly (P < 0.05). This could be 
attributed to the abundance of hydroxyl groups in GA, which interacted 
with the –OH group in water and enhanced the film’s wettability (Ng 
et al., 2020). Previous studies have reported that the addition of GA 
improved the hydrophobicity of cassava starch film, but excessive 
amounts of GA decreased its hydrophobicity (Masamba, Li, Rizwan, 
Sharif, Ma, & Zhong, 2016). 

3.8. Analysis of X-ray diffractometer 

Crystallinity is an important criterion for characterizing composite 
film materials, as it is closely related to their properties and structures. 
X-ray diffraction analysis was used to observe how GA affected the 
structural behavior of CS/PUL systems. The diffraction pattern of CS/ 
PUL/GA films was showed in Fig. 5. The CS/PUL film exhibited 
diffraction peaks at 2θ = 17.1971◦ and 2θ = 20.3959◦, indicating a fairly 
high crystallinity. However, the addition of GA to the CS/PUL system 
resulted in a broad and low peak at 2θ = 20.3959◦ in the CS/PUL/GA 
films. This might be due to the strong hydrogen bonding between CS/ 
PUL and GA, which eliminated the original structure and resulted in a 
low crystallinity corresponding to its position when the crystalline and 
amorphous polymers emerged good compatibility without a very pro-
nounced strong diffraction peak (Goudar et al., 2020). The study of 
Yanzhen Zhao et al. (2022) demonstrated that the incorporation of GA 
into the modified chitosan/polyethylene (vinyl alcohol) composite film 

Fig. 3. FTIR analysis of CS/PUL/GA films.  

Fig. 4. SEM cross-section, surface and contact angle (WCA) of CS/PUL/GA films.  
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resulted in a broader amorphous peak. However, as the concentration of 
GA increased, the peak started to narrow and become sharper, and the 
diffraction angle gradually decreased. These findings suggested that GA 
promotes the crystal structure of CS/PUL/GA films to some extent 
(Almasi, Azizi, & Amjadi, 2020), indicating a strong interaction between 
GA, CS, and PUL. 

3.9. The free radical scavenging activity of DPPH (1, 1, 1, 2 - 
Picrylhydrazine) 

Due to the susceptibility of food to oxidation during storage, it is 
imperative that the packaging film possesses a strong antioxidant ca-
pacity. Generally, the scavenging activity of DPPH is positively corre-
lated with the antioxidant capacity. Fig. 6 illustrates the scavenging 
activity of CS/PUL/GA films with varying concentrations of GA. The 
scavenging activity of the CS/PUL film was 12.62 ± 0.54%, while the 
scavenging activity of the CS/PUL/GA films was significantly higher at 
54.13 ± 0.54%, 57.85 ± 0.25%, and 58.16 ± 0.17%, respectively 
(P < 0.05). This increase in scavenging activity could be attributed to the 
strong ability of GA to provide hydrogen atoms or electrons to the DPPH 
radical (Jiang et al., 2023). The scavenging activity of films with varying 
concentrations of GA increased from 54.13 ± 0.54% to 58.16 ± 0.17%. 
However, there was no significant difference observed between the 
addition of 1.5% and 1.0% GA (P > 0.05). This could be attributed to the 
saturation of hydroxyl exposed to the polymer surface, which occurred 
later due to the stabilization of the polymer structure. As a result, the 
scavenging ability of the film for DPPH radicals did not improve any 
further (Song et al., 2022). Yadav, Mehrotra, and Dutta (2021) observed 
that the antioxidant capacity of potato starch-based ZnO nanoparticle- 
loaded GA films did not increase beyond a certain level of GA addi-
tion. The study results suggest that the addition of GA could enhance the 
antioxidant activity of the films, and it was recommended that 1.0% GA 
was the optimal concentration. The findings of this study have important 
implications for the development of biodegradable food packaging 
materials with improved antioxidant properties. 

3.10. Antibacterial activity of films 

The inhibition zone method was used to evaluate the antimicrobial 
activity of CS/PUL/GA films. Table 3 showed that no inhibitory zone 
was observed in the CS/PUL films. This finding is consistent with the 
study by Lun’kov, Shagdarova, Zhuikova, Il’ina, and Varlamov (2018), 
who reported no significant inhibition zone against E. coli and S. aureus 
in cassava starch-based films. The antibacterial effect of CS/PUL/GA 
films on E. coli, S. aureus, and P. aeruginosa was significantly promoted 

with increasing GA concentration (P < 0.05), as indicated in Table 3. 
This effect might be attributed to the antibacterial properties of GA, 
which disrupt the cell membrane system of bacteria, leading to the 
dissolution of the cell membrane and leakage of contents (Yoon, Kim, 
Kim, & Je, 2017). Yujia Zhao et al. (2018) also reported a high anti-
bacterial rate against E. coli, S. aureus, and P. aeruginosa in a composite 
coating of GA, cassava starch, and chitosan. 

4. Conclusion 

The incorporation of GA into CS/PUL films significantly enhanced 
their mechanical, anti-UV, and antibacterial properties, with increasing 
GA concentration leading to further improvements. FTIR, SEM, and XRD 
analyses confirmed successful embedding of GA in the CS/PUL matrix, 
and the roughness of the resulting films increased with GA concentra-
tion. The CS/PUL/1.0% GA film exhibited the highest antioxidant ac-
tivity (57.85 ± 0.25%) and mechanical properties, while the CS/PUL/ 
0.5% GA film showed the highest hydrophobicity (63.17 ± 2.46 ◦C) and 
water vapor barrier (3.032 ± 0.247). Overall, the addition of GA 
significantly improved the properties of CS/PUL-based films, and the 
resulting CS/PUL/GA films have potential for use in ensuring food 
quality and extending the shelf life of food. 
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Fig. 5. XRD analysis of CS/PUL/GA films.  Fig. 6. DPPH radical scavenging activity of CS/PUL/GA films.  

Table 3 
Antibacterial activity of CS/PUL/GA films.  

Inhibition zone（mm) E. coli S. aureus P. aeruginosa 

CS/PUL 0.00 0.00 0.00 
CS/PUL/0.5 GA 21.00 ± 0.25c 20.83 ± 0.28c 20.20 ± 0.28c 

CS/PUL/1.0 GA 22.67 ± 0.36b 22.33 ± 0.66b 21.30 ± 0.58b 

CS/PUL/1.5 GA 24.33 ± 1.02a 23.87 ± 0.79a 23.34 ± 1.26a 

The data were show as mean ± standard deviation and superscript letter (a-d) 
indicate significant difference (P < 0.05) within the same column. 
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