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Digitalization of healthcare delivery is rapidly fostering development of precision

medicine. Multiple digital technologies, known as telehealth or eHealth tools, are guiding

individualized diagnosis and treatment for patients, and can contribute significantly

to the objectives of precision medicine. From a basis of “one-size-fits-all” healthcare,

precision medicine provides a paradigm shift to deliver a more nuanced and personalized

approach. Genomic medicine utilizing new technologies can provide precision analysis

of causative mutations, with personalized understanding of mechanisms and effective

therapy. Education is fundamental to the telehealth process, with artificial intelligence (AI)

enhancing learning for healthcare professionals and empowering patients to contribute to

their care. The Gulf Cooperation Council (GCC) region is rapidly implementing telehealth

strategies at all levels and a workshop was convened to discuss aspirations of precision

medicine in the context of pediatric endocrinology, including diabetes and growth

disorders, with this paper based on those discussions. GCC regional investment in AI,

bioinformatics and genomic medicine, is rapidly providing healthcare benefits. However,

embracing precisionmedicine is presenting somemajor new design, installation and skills

challenges. Genomic medicine is enabling precision and personalization of diagnosis and

therapy of endocrine conditions. Digital education and communication tools in the field of

endocrinology include chatbots, interactive robots and augmented reality. Obesity and

diabetes are a major challenge in the GCC region and eHealth tools are increasingly

being used for management of care. With regard to growth failure, digital technologies

for growth hormone (GH) administration are being shown to enhance adherence and

response outcomes. While technical innovations becomemore affordable with increasing
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adoption, we should be aware of sustainability, design and implementation costs, training

of HCPs and prediction of overall healthcare benefits, which are essential for precision

medicine to develop and for its objectives to be achieved.

Keywords: digital health, eHealth, artificial intelligence, internet of things, genetics, diabetes mellitus, growth

disorders, growth hormone therapy

INTRODUCTION

Precision medicine is not a new principle, but has emerged
as a major priority in healthcare delivery, and can be defined
as a pathway that employs numerous technologies to guide
individually tailored diagnostic methods and treatments for
patients (1). The fundamental principle is to personalize medical
care to optimize diagnostic efficiency and/or therapeutic benefit
by targeting the needs of individual patients on the basis of
genetic, biomarker, phenotypic or psychological characteristics
(2, 3). Precision medicine incorporates digital health, otherwise
known as telehealth or eHealth, which refers to information and
communication technologies that are being deployed remotely
on a global level. Use of the internet, mobile phones, social
media, and computers can bring sophisticated technology to
benefit patient care and public health strategies and initiatives.
The almost universal use of smart mobile phones allows powerful
communication, linked to video technology through dedicated
applications (app), directly to the patient or, in the case of
pediatrics, to the parent or carer.

The GCC region is rapidly transforming society by the
implementation of digitalization strategies at all levels, including
the creation of ministries of artificial intelligence (AI) (4–6).
In the context of the rapid incorporation of digital health
in the GCC region, a workshop was created, with clinical
experts from both inside and outside of the region, to discuss
how digitalization can foster adoption of precision medicine
in healthcare delivery. The discussions primarily considered
precision medicine in the context of endocrinology, such
as growth disorders, diabetes, and endocrine genetics. The
present article was based on the workshop presentations and
examines the utilization and aspirations of precision medicine,
the challenges for its effective development and implementation,
and status in the GCC region.

PRECISION MEDICINE AND THE ROLE OF
DIGITALIZATION

Precision medicine is enabling a paradigm shift in the delivery of
healthcare from the standardized “one-size-fits-all” strategy to a
more nuanced approach. Digital techniques can provide multi-
level stratification of patients according to disease sub-types,
risk profiles, demographic and socio-economic characteristics,
enabling interventions to be delivered on an individual patient
level. Factors such as genomics, lifestyle, previous medical
history, responsiveness to therapy, and compliance can also be
integrated. The aim of precision medicine is to deliver the right
intervention to the right patient at the right time.

The Exposome and Personalization of
Healthcare
One of the most challenging elements in precision medicine is
the quantification of environmental and lifestyle factors, which
is related to the concept of the exposome and affects disease
management and therapy outcomes (7, 8). Digital tools can
enable capture of data concerning the exposome, based on the
interaction of specific external factors, such as individual physical
activity and diet, with general factors that influence the internal
environment of transcriptomics and proteomics, such as climate,
urban vs. rural living and social conditions. The exposome will
affect the health risk and have an impact on assessment and
management of the individual subject (8–11). The integration of
many such individual factors in healthcare delivery presents new
challenges.Whereas, care was traditionally calculated on the basis
of a cross-sectional snapshot, precision medicine now requires
the approach of a longitudinal continuum, because many factors
included in the new personalized approachwill change during the
lifespan of the individual patient.

Precision medicine offers an opportunity for individuals
to participate in population research through access to
and use of their own genetic data and personal health
characteristics, combined with websites such as the
23andme.com app (12–14). Bioinformatic data on growth
disorders can take advantage of large cohorts and registries
with genetic, biochemical and clinical information, and can
use machine-learning to provide predictions of future risks
(15–17). Clinical management pathways can be constructed
based on tailored diagnosis and treatment algorithms,
linking with lifestyle variables, electronic monitoring of
responses to therapies and prediction and analysis of health
outcomes. Patient feedback can be analyzed, using AI tools,
to identify where patient support is needed to change
treatment behavior.

Consequently, precision or personalization of healthcare
using digital tools is not simply technology, but is a new
approach to the practice of medicine. A number of questions
exist related to its effective delivery, namely, characterizing
variables that need to be personalized, determining effectiveness
of precision care compared with standard care, identifying
aspects of healthcare most applicable to precision medicine, and
ways to best determine the “data points” for personalization.

Digital Solutions for Medical Education and
Outcome Assessment
Medical education may be considered the quickest way to
influence healthcare and is multi-factorial, involving health
professionals of all levels, healthcare students, and patients
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and their families. As new digital health devices are made
available, patient education becomes highly relevant for increased
empowerment of patients to manage their own conditions (18).
Education has recently started using AI to enhance learning and
support behavioral changes in healthcare management (19).

Multiple digital tools may be used for collecting data, but it
is important to consider what data are of value and decide what
can be done with the data to have an impact. This leads to a kind
of hidden map where constant niche innovations become aligned
over time, while healthcare systems becomemore complex due to
socio-economic factors, aging populations and decreased budgets
(20). New ways of working are required, with interactions
between niche innovations and socio-economic regimes, creating
a new dynamic to local practices and positively influencing the
healthcare landscape, as shown in Figure 1. Such changes should,
over time, improve the physician-patient relationship.

However, the basic traditions of clinical history-taking and
physical examination need to be preserved and cannot be entirely
replaced by AI (21). During consultations, it is important that the
percentage of time that the clinician is physically engaging with
the patient and family is not decreased by pre-occupation with
the interpretation of computerized data. While eHealth advances
should be welcomed and ideally designed jointly with clinicians
and technology experts, there is a risk that the basic principal of
quality healthcare, embodied in the doctor-patient relationship,
becomes increasingly eroded by new digital advances (22).

DIGITAL HEALTH TRENDS IN THE GCC
REGION

The Impact of Healthcare Innovations in
the GCC Region
AI and the internet of things (IoT) can provide the world with an
abundance of benefits if used optimally, but such developments
are presenting new work and skills challenges. Healthcare has
developed from descriptive analysis, through diagnostic and
predictive analysis, to prescriptive analysis where machine-
learning moves to clinical action aimed at providing precision
medicine. Within endocrinology, AI models have been designed
for diagnosis, prognosis and data analysis, thereby helping to
reduce expenses and cope with increasing demands (23); AI has
also been used for analyses of genetic data and to indicate gene
defects from facial features (23, 24). The challenge is to apply
AI and big data to provide beneficial clinical insights from the
heterogeneous information (23, 25).

The IoT is being used formultiple healthcare purposes, such as
glucose monitoring and diagnosis of cardiovascular disease (26,
27). In Saudi Arabia, the IoT and big data are being developed to
detect and assess patients with chronic conditions, to minimize
disease risks (28). In the next 10 years, the potential impact of
AI in the Middle East is anticipated to be US$320 billion, 11%
of the overall GDP (29). AI is expected to provide 12.4% of the
gross domestic product (GDP) of the Saudi Arabia economy and
almost 14% of the GDP of the UAE (6); in the Middle East about
19% of GDP will come from the health and education sector (29).

In the GCC region, life expectancy has increased and infant
mortality has decreased, resulting in an increasing population
(4, 30). The population of the GCC countries is about 55 million
and more than half are under the age of 40 years (31). In 2018,
about 92% used the internet and about 45 million used social
media, with mobile phone use higher than the global average
(31). However, there is a major challenge of obesity and diabetes
mellitus in the region (32), with concerns raised with political
leaders, and there have been various initiatives in individual
countries; there is an expectation that technology will make the
region’s health services more effective (28, 30, 33).

Precision Medicine in the GCC Region
Current models for healthcare delivery are an amalgam from
various countries and cultures, such as the US, Europe, Africa,
Southeast Asia and Middle East. The GCC region resembles
Southeast Asia to some extent, with some European and North
American influences, but clinics need to create their ownmodels.
The GCC countries have acknowledged that digitalization is
important to improve patient care, but lack of digitalized data
and training of health care professionals (HCP) are barriers to
current use of precision medicine (6, 34). GCC countries are
increasingly investing in bioinformatics and genomic medicine,
enabled by next generation sequencing, the IoT and big data. In
the context of growth disorders, genomic information provides
accuracy of causative mutations, personalized understanding of
disease mechanisms, and effective therapies. However, challenges
remain in the integration of such data into clinical practice.

There is a need for collaboration between technology experts,
physicians and citizens (25), which is especially challenging in
a region with a significant reliance on a foreign healthcare
workforce and the related training issues (4, 6). The existence
of electronic health records is generally seen as a positive
development to aid adoption of precision medicine, with barriers
informing changes in strategy (35). Telemedicine, involving
remote delivery of care, is becoming more common in the GCC
region, with new initiatives such as the Saudi Telemedicine
Unit of Excellence now established (36, 37). The accuracy and
safety of collected data and ethical approval for its use are
additional factors. Also, while increasing implementation of
technical innovations generally makes them more affordable,
there remain significant implementation and sustainability costs
of digitalization and precision medicine for national medical
care systems (4).

Health tourism has become a recent issue in the region. Some
countries focus on clinical quality and others on promotion of
health tourism, and there needs to be a balance of these values.
A new system has been designed in the United Arab Emirates
(UAE) to view summaries of clinical information analyzed from
individual healthcare files, allowing HCPs to choose appropriate
management plans for each patient (4, 38). The summary
contains full patient details, including electronic growth charts,
and is used to assess diagnosis and progress, with abnormal
results highlighted for attention. Patients have access to their data
and can create reminders and organize communication with the
HCPs. A mobile app in the system integrates with other devices,
such as glucometers, blood pressure monitors, and weighing
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FIGURE 1 | Multi-level perspectives on transitions of the socio-economic regime with increasing structuration of activities in local practices. Small niche innovations in

healthcare techniques (shown by short red and green arrows) become organized over time through learning and group support; this feeds into the longer-term

socio-economic regime with science, medical practice and healthcare policy forming discrete patterns of technological development (pale blue arrows); the overall

socio-economic healthcare landscape changes only very slowly over time (wave-pattern black arrows) and both influences and is influenced by the technological

developments of the healthcare socio-economic regime. Adapted with permission from Geels and Schot (20).

scales. Thus, GCC countries have made good progress at both
government and private levels, with benefits for many diseases
including pediatric endocrine diseases.

GENOMICS IN PRECISION MEDICINE

Integrating Genetics as a Precision Tool
Into Clinical Practice and Clinical Support
Systems
The rapidly advancing field of genomic medicine is providing
new knowledge related to precision, personalization, prevention,
and participation for diagnosis and therapy. It enables physicians
to be certain of the diagnosis, aiming to know and understand
the pathogenesis of a disorder to enable consideration of the
best therapy, and technologies, including genotyping, functional
studies and gene-altered animal models, can directly contribute
to the aims of precision medicine. Following DNA sequencing,
variants can be classified as pathogenic, likely pathogenic, of
uncertain significance, benign or likely benign; interpretation of
these results depends on supporting evidence from clinical and
biochemical data (17, 39). The field of pharmacogenomics, which
involves the effects of genetic variants on drug metabolism and,
therefore, the responsiveness of individuals to specific therapies,
is also directly relevant to precision medicine (40–43).

Next generation sequencing is making an enormous difference
in clinical diagnosis compared to conventional techniques of

Sanger or candidate gene sequencing (44, 45). New techniques
in genetic studies can be applied to single genes, multiple gene
panels, whole exome and genome sequencing, and analysis of
possible transcriptome and epigenetic abnormalities. Current
challenges facing geneticists include decisions on type of DNA
sequencing appropriate for each clinical situation, and best
choice of laboratory and facilities for data interpretation. Patient
concerns of confidentiality and control over genomic data must
also be investigated and addressed for integration into healthcare
(46, 47). Examples of genetic analysis linked to precision
medicine are seen in the investigation of the multiple causes
of short stature, including epigenetic defects, syndromic growth
failure and the search for causative genetic variants of obesity of
endocrine—either pro-opiomelanocortin (POMC) deficiency or
leptin receptor (LEPR) deficiency obesity—or syndromic origin
(17, 41, 45, 48–52).

Precision of Single Gene Defects in Clinical
Disorders of Linear Growth
Laron syndrome, caused by autosomal recessive inheritance of
a homozygous or compound heterozygous mutation of the GH
receptor gene (GHR), is a severe form of GH resistance and
presents a classical paradigm of congenital insulin-like growth
factor (IGF)-1 deficiency (53, 54). The mutation translates into
a functionally inactive GHR protein, which disturbs IGF-1
production, severely interfering with post-natal linear growth.
Mutation variants have been reported in exons coding for the

Frontiers in Pediatrics | www.frontiersin.org 4 July 2021 | Volume 9 | Article 715705

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Fernandez-Luque et al. Telehealth in Pediatric Endocrine Disorders

extracellular, transmembrane and intracellular domains of the
protein, leading to subtle differences in the phenotype and degree
of short stature (55, 56). Further study of populations of adult
patients with Laron syndrome has revealed that living with
severe and chronic IGF-1 deficiency carries protection against
diabetes mellitus, cardiovascular and malignant diseases, and an
advantage in terms of longevity (57, 58).

Another example of precision genetic investigation is the
discovery of autosomal recessive homozygous loss-of-function
mutations in the gene for pregnancy-associated plasma protein
A2 (PAPPA2, pappalysin2), identified from whole exome
sequencing (59). The PAPP-A2 protein is an enzyme that
cleaves IGF binding protein (IGFBP)-3 and IGFBP-5 within the
circulating ternary complex, thereby releasing free IGF-1 for its
physiological effects (59, 60). Patients with mutations of this
enzyme have very low levels of bioactive free IGF-1, associated
with poor growth (39, 61). PAPPA2 mutations represent a
good example of how genetic investigation has been able to
pinpoint a new physiological process that, if disturbed, translates
into an abnormal clinical phenotype associated with diagnostic
biochemical features (17, 62). Understanding of this abnormality
points to therapeutic intervention using recombinant human
IGF-1, which has been shown to be effective in stimulating
growth in affected subjects (63). Consequently, the precision
medicine goals of accuracy of pathogenesis, personalization of the
mutation, and indication of a targeted therapeutic intervention
are all achieved by the PAPP-A2 deficiency syndrome.

Clinical disorders of growth have highly complex
pathogenetic origins, with broad phenotypic variability
shown by proportionate or disproportionate and mild to
severe short stature. The origin may be pre-natal or post-natal
and the primary defect may involve endocrine function or
growth plate physiology (17). Genetic investigations embrace
both pragmatic and research-based activities and new genetic
associations are being identified as new technologies become
more sensitive, cheaper, and widely applied. Novel genes and
genetic pathways are being identified that affect pituitary
function and are associated with post-natal growth failure, such
as bone morphogenic protein (BMP) gene mutations (64), and
the multiple genes involved in RASopathies, including some,
such as LZTR1 mutations, that correlate with the Noonan
syndrome phenotype (65, 66). Many of these short stature
genetic variants respond to GH therapy, although not all
(17, 64, 67). Hence, clinicians should be continuously up-dated
of new developments and actively encouraged to build working
relationships with genetic laboratories to discuss the indications
and potential treatment options (17).

APPLYING DIGITAL TECHNOLOGIES TO
ADVANCE LONG-TERM CARE OF
ENDOCRINE AND METABOLIC
DISORDERS

Digital tools such as video games, have been used for education
in children with diabetes mellitus for more than 20 years (68–70),
and patients with conditions including irritable bowel disease,

cystic fibrosis, and type 1 diabetes have shown improvements
with online support during transition from pediatric to adult
care (71). New channels for education and communication
are being developed, such as chat-bots, interactive robots, and
augmented reality for patients with diabetes (72–74). Chatbots
are AI-based semi-automatic conversational agents that have
grown in importance for behavioral change interventions (72,
75). Personalized robots for diabetes education and daily
management have become increasingly affordable and accepted
(76). Also, the increased power of mobile phones is allowing
the creation of apps that use the camera to allow children
to “augment” the reality by adding additional information,
such as identifying the carbohydrate content of foods (74) and
demonstration of correct injection techniques (77). Wearable
devices with cameras are being developed that can be used to
assess dietary intake (78), and can interact with deep-learning
computer techniques for sleep quality evaluation (79–81). In
patients with diabetes, digital devices and machine-learning have
been used to assess management (82), and predict risk of heart
failure (83) or nephropathy (84). However, care must be taken
to assess specific challenges. Studies of devices to influence
lifestyle of obese children found that data collection was affected
by gender aspects of patients and parents (85), and physical
activity patterns differ between countries (86). Therefore, global
benchmarking is needed for AI tools in medicine (87).

In growth disorders, continuous monitoring, and support
programs are needed to enable good long-term adherence.
These are required to overcome factors such as patients’ lack of
information, limited knowledge of the condition and treatment
effects, socio-economic aspects, and health system variabilities.
Thus, adherence strategies need to be focused and personalized,
with behavioral aspects linked with clinical outcomes (88).
Questions remain regarding what digital health tools are needed
by clinicians and patients; they should be part of integrated care,
with all stakeholders involved in design (89). This is important
to ensure the utility and usability of the systems, and also to
ensure the safety and confidentiality of digital health information
and electronic health records. There are concerns about the
quality of mobile health apps that might contain misleading
information (90), and privacy risks have been widely reported
in apps in diverse therapeutic areas (91–93). With security
risks continuously evolving, a key aspect to consider is the
constant need for updating the training of clinicians, caregivers,
and patients to maximize their digital health literacy skills for
technologies to be used safely (94, 95).

Digital Technologies in the Care of Patients
With Diabetes Mellitus
Pediatric obesity and diabetes is becoming an increasing problem
in Saudi Arabia (32, 96). The majority of children with type
1 diabetes have suboptimal glycemic control, increasing their
risk of complications. Technology to support diabetes self-care
has advanced significantly, including insulin pump therapy,
continuous glucose monitoring, and sensor-augmented pump
therapy (97–99), which are stepping stones toward the “artificial
pancreas” using closed-loop technology. Local studies in Saudi
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children with diabetes showed that continuous subcutaneous
insulin infusion improved glycemic control, with decreased
hypoglycemic episodes and diabetic ketoacidosis events (100,
101). The widespread use of mobile phones offers opportunities
for continuous digital glucose monitoring, with message alerts
and sharing of data with healthcare providers (102), and the
feasibility of remote monitoring of insulin delivery should be
addressed among children with diabetes and their caregivers.

Digital apps can directly support patients and their carers
to improve diabetes care and self-management (103, 104).
Educational support using short messaging services or health
apps was associated with improved glycemic control in both type
1 and type 2 diabetes (105, 106). In a study of 200 children with
type 1 diabetes, 5–7 text messages per week, aimed at increasing
diabetes knowledge and education, were sent to patients and/or
parents for 6 months. Messages included video clips, such
as on injection technique and glucometer usage. Significant
improvements were seen for glycemic control, frequency of
monitoring, number of missed injections, and mean score in
parent’s knowledge test (105).

A similar study in patients with type 2 diabetes showed less
dramatic results, but there were still improvements in fasting
blood glucose, glycated hemoglobin, and patients’ knowledge
(106). Following on from these results, new mobile phone apps
are being developed in GCC countries, including diagnostic
testing and gamification (107, 108). However, there remain
problems of funding by individual healthcare authorities and
difficulties of acceptance of self-management by patients, and
cultural differences mean that interventions should be regionally
appropriate (18, 108).

Digital Technologies for Adherence to GH
Therapy
Chronic disorders that require continuous therapy over long
periods of time inevitably face problems of maintaining
adherence, and digital technologies are being used to assist with
this (109, 110). Electronic monitoring of GH injections has
been a major advance in improving adherence to pediatric GH
treatment regimens (111, 112). The easypodTM auto-injector uses
the web-based easypod connect platform that allows adherence
data to be transmitted electronically to healthcare clinicians, who
can then easily analyze GH treatment history, enhancing real-
world healthcare decisions. The easypod connect system may be
considered as an integrated electronic communication system
rather than simply an injection device. Because it is computer-
based, multiple information can be entered and stored, which can
include outcomes such as height and weight, enabling growth to
be assessed relative to other patients. Adherence can be viewed in
different formats according to physician preference, and features
such as comfort and dosage settings can be easily seen and
adjusted, and may help to avoid wastage.

The multi-national easypod connect observational study
(ECOS) assessed adherence among pediatric patients using the
easypod connect system for GH therapy for up to 5 years.
Adherence was ≥80% for more than 3 years for results overall
and for several individual countries, and analyses showed

significant associations between poor adherence and impaired
clinical outcomes (112–117). Adherence rates for patients new
to GH therapy and those already receiving GH did not differ,
and there was no difference between diagnoses (112). Further
analyses using AI to identify types of patients with reduced
adherence have indicated worse adherence relating to factors
such as being male, puberty and starting to self-inject, and that
young children have better adherence with daily injections while
older patients, who have used easypod for more than 12 months,
have better adherence with a 6-day injection regimen.

Results from 56 patients in ECOS in the UAE showed
adherence within the first month was ≥85% for 78% of patients,
but fell to 47% for 15 patients with 12-month data. The initial
data were very similar to those seen in other countries, such as
in the Middle East and Asia, and further analysis is required to
understand why this adherence pattern occurs. For 53 patients
treated with the easypod device at Mafraq Hospital, UAE, 39
(74%)weremale and age range at start was 5–15 years, median 8.2
years. The indication for GH therapy was mainly GH deficiency
(53%), followed by small for gestational age (19%) and idiopathic
short stature (15%). A utilization and satisfaction questionnaire
completed by 32 of these patients indicated that a majority
considered the skin sensor, pre-dose features, and indicator of
battery charge as useful or very useful. However, many patients
and parents were not aware of tracking features in the device,
suggesting that improved training is required.

Such information from the easypod connect system provides
a database for auditing and research. Patient questionnaire
feedback can be helpful to improve injection technique and
optimize adherence, and advanced functions may help alleviate
complications faced by patients. The UAE data are being further
analyzed to examine factors influencing adherence, such as socio-
economic characteristics, which will enable reduced adherence
to be addressed through patient support programs and eHealth
tools to enhance behavioral changes.

Self-Reported Growth Information and
Patient Education
Self-reported outcomes of GH therapy represent a new electronic
challenge. While height is recorded on patient health records
<1% of clinics worldwide currently record height data in the
easypod connect platform. At present, there are no clinically-
validated consumer heightmeasurement tools available; however,
ways of capturing height data with the easypod are being
examined. A promising technique uses augmented reality for
measuring vertical surfaces, which is now available on many
mobile devices and has already been used in medicine for
visualizing human anatomy (118–121). To the best of our
knowledge, there has been no clinical validation of such methods
in routine clinical practice and patients’ homes. This is important
because validity of measurement can greatly depend on how the
digital technique is being applied. Studies have been not only
limited to measuring height, but also body fat composition using
medical images as gold standard for comparison (122).

The augmented reality application is also being investigated
for training of patients and caregivers in the use of the easypod
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device (123). The system aims to empower patients when starting
easypod use, and reduce the burden on physicians and nurses by
helping patients to understand device settings and choose which
options to use.

The growlink smartphone app, launched in 2019, provides
information to patients and caregivers to enable them to see
the GH treatment history, similar to the connect platform,
and provides injection reminders (124). However, growlink also
enables patients to self-report their height and weight data,
which is transmitted to HCPs to facilitate growth tracking.
The app also allows patients to see their growth records, and
access educational materials on GH requirements and use of the
easypod injection device. This helps patients become engaged
in their treatment and have more meaningful discussions with
their HCPs.

CONCLUSIONS

For precision medicine and technological innovations to be
integrated into routine clinical practice, input is required
from many sources. There are no simple solutions to this
process. Collaborations between technology designers and
clinical physicians are essential to assess the clinical needs and
to identify the questions that innovations can begin to answer.
Expert economic assessment of the investment required for such
technology needs to be balanced against the economic gains of
its installation, implementation, and use. Training of clinicians

is essential and must be factored into the overall costs. The
unmet clinical needs should be clearly identified, both in the fields
of public health and specialist care. Implementation research is
needed, with progress in digital health made in small steps rather
than large over-ambitious steps.
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