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Purpose. In the present study, we aimed to investigate whether the radiomic features of baseline 18F-FDG PET can predict the
prognosis of Hodgkin lymphoma (HL). Methods. A total 65 HL patients (training cohort: n� 49; validation cohort: n� 16) were
retrospectively enrolled in the present study. A total of 47 radiomic features were extracted from pretreatment PET images. *e
least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the
training cohort. *e distance between the two lesions that were the furthest apart (Dmax) was recorded. *e receiver operating
characteristic (ROC) curve, Kaplan–Meier method, and Cox proportional hazards model were used to assess the prognostic
factors. Results. Long-zone high gray-level emphasis extracted from a gray-level zone-length matrix (LZHGEGLZLM) (HR� 9.007;
p � 0.044) and Dmax (HR� 3.641; p � 0.048) were independently correlated with 2-year progression-free survival (PFS). A
prognostic stratificationmodel was established based on both risk predictors, which could distinguish three risk categories for PFS
(p � 0.0002). *e 2-year PFS was 100.0%, 64.7%, and 33.3%, respectively. Conclusions. LZHGEGLZLM and Dmax were inde-
pendent prognostic factors for survival outcomes. Besides, we proposed a prognostic stratification model that could further
improve the risk stratification of HL patients.

1. Introduction

Hodgkin lymphoma (HL) is a hematological malignancy,
with an excellent prognosis for most patients [1]. However, a
small number of patients still suffer from relapsed or re-
fractory disease, and their prognosis is poor [2, 3]. *e
currently available prognostic indicators fail to identify
high-risk patients [4, 5].*erefore, it is urgently necessary to
identify patients with a low or high risk of recurrence [6].

A combination of functional-metabolic and morpho-
logical imaging and 18F-fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG
PET/CT) has become a standard imaging modality for HL
patients [7–9]. Recently, a simple imaging feature measured
on baseline 18F-FDG PET/CT can be useful in reflecting

lesion dissemination of patients with lymphoma [10]. A high
Dmax is associated with a poor prognosis [11].

Radiomics is an emerging field that converts digital
imaging data into a high-dimensional mineable feature
space using high-throughput computing [12, 13]. By
extracting a large number of quantitative features from
tomographic images, radiomics has the potential to allow the
assessment of tumor heterogeneity, which maybe correlated
with clinical outcomes (Figure 1) [14–16]. Recent studies
have reported the feasibility of radiomics in the prognosis of
patients with various malignancies [15–18]. However, re-
search using radiomics nomograms based on 18F-FDG PET
for HL is relatively limited.

We, therefore, aimed to evaluate whether radiomic
features derived from pretreatment 18F-FDG PET imaging
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could predict progression-free survival (PFS), alone or in
combination with other parameters.

2. Materials and Methods

2.1. Patients. *is retrospective study was approved by the
institutional review board of the First Affiliated Hospital of
SoochowUniversity, and informed consent was waived.*is
study was carried out following the Declaration of Helsinki
with a trial registration number of ChiCTR2100045957. All
HL patients diagnosed from March 2013 to December 2020
were included in the present study. *e inclusion criteria
were set as follows: (1) histologically confirmed HL and (2)
no chemo- or radiotherapy treatment before 18F-FDG PET/
CTexamination. Patients with other types of cancers or with
incomplete clinical and imaging datasets were excluded.

A total of 65 patients (45males and 20 females, mean age:
29 years, age range: 8–72 years) were randomly divided into
the training (n� 49) and validation (n� 16) cohorts fol-
lowing a ratio of 7 : 3 [12, 19]. Clinicopathological data for
each HL patient, including gender, age, B symptoms, level,
Ann Arbor stage, bone marrow (BM) biopsy, bulky disease
(>10 cm), Dmax, and PET/CT imaging data were acquired.

2.2. PET/CT Acquisition. All patients were asked not to eat
for at least 6 h before the administration of 18F-FDG
(4.07–5.55 MBq/kg). Blood glucose levels were less than
11mmol/L. A whole-body scan was acquired at 60± 10min
after intravenous injection of 18F-FDG using an integrated
PET/CT scanner (Discovery STE; General Electric Medical
Systems, Milwaukee WI, USA). First, low-dose CT images
were performed, with parameters as follows: 140 kV,
120mA, a transaxial FOV of 70 cm, a pitch of 1.75, a rotation
time of 0.8 s, and a slice thickness of 3.75mm, followed by
PET images, with 2-3min per bed position and 7-8 bed
position per patient.

2.3. Feature Extraction and Selection. *e radiomic features
were extracted from PETimages using LIFEx freeware (v6.30
https://www.lifexsoft.org/) [20]. PET and CT images of the
DICOM format were transferred to LIFEx freeware and
automatically fused by the freeware. Areas with increased
uptake of 18F-FDG on PET and abnormal density on CT
were defined as lesions. *e volume of interest (VOI) of the
lymphoma lesion was manually delineated slice by slice
using three-dimensional drawing tools by two experienced
nuclear medicine physicians. Moreover, 41% of the maxi-
mum standardized uptake value (SUVmax) was applied as a
threshold to optimize the VOI [21]. Spatial resampling was
2× 2× 2mm voxel size. Intensity discretization for PETdata
was processed with the number of gray levels of 64 bins and
absolute scale bounds between 0 and 20 [22, 23]. After
preprocessing, a total of 47 radiomic features were extracted
from PET images, including conventional imaging param-
eters, histogram (HISTO), shape, gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM),
neighborhood gray-level different matrix (NGLDM), and
gray-level zone-length matrix (GLZLM) (Table 1).

A total of 15 patients were randomly selected to calculate
the interobserver agreement of the feature extraction. *e
intraclass correlation coefficient (ICC) was used to deter-
mine the repeatability/reproducibility of features in our
research, and ICC >0.75 was selected [24–26]. Subsequently,
the least absolute shrinkage and selection operator (LASSO)
COX regression model was used to select the most useful
prognostic features with 10-fold cross validation for
selecting the parameter Lambda in the training cohort
[27, 28].

2.4. Treatment and Follow-Up. Patients were treated
according to the institution’s standard protocol. A total of 19
patients with early-stage disease (stage I and II without risk
factors) were generally treated with an ABVD regimen

CT

PET

Image segmentation Feature extraction and selection Analysis

100

100

80

80

60

60

40

40

20

20
0

100 – specificity

Dmax (AUC=0.751)
Model (AUC=0.860)
LZHGE (AUC=0.756)
MTV (AUC=0.717)
SUVkurtosis (AUC=0.705)

0

Se
ns

iti
vi

ty

Number at risk
Group: I

Group: II

Group: III

26 19 12 8 7 0

0

0

0

0

2

0

5

2

10

3

17

6

10080604020

pr
og

re
ss

io
n-

fre
e s

ur
vi

va
l (

%
)

Time (months)
0

40

50

60

70

80

90

30

100

Figure 1: Workflow of the radiomics analysis. A 22-year-old man underwent 18F-FDG PET/CTfor staging work-up of Hodgkin lymphoma
(nodular sclerosis) with a maximum SUV of 10.95. *e volume of interest (VOI) of the lymphoma lesion was manually delineated. 41% of
SUVmax was applied as a threshold to optimize the VOI. *e patient did not show progression and survived at the end of the 17-month
follow-up period.
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(adriamycin, bleomycin, vinblastine, and dacarbazine).
Moreover, 18 intermediate-stage patients generally received
4 to 6 cycles of ABVD, followed by involved-field radio-
therapy. In addition, 31 advanced-stage patients (stage III
and IV) were generally treated with 6 to 8 cycles of ABVD
alone or a combination of chemotherapy and radiotherapy.
Four patients received autologous stem cell transplantation
after relapse. Patients were followed up by routine imaging
methods (MRI, CT, or 18F-FDG PET/CT) every 3 months
during the first 2 years and every 6 months thereafter. To
allow earlier individual treatment, the PFS was set as the
main endpoint [29].

2.5. Statistical Analysis. Statistical analyses were performed
using SPSS software version 26.0 (SPSS Inc., Chicago, IL,
USA) and python 3.0 (https://www.python.org). *e dif-
ferences in patients’ characteristics between the training and
validation cohorts were compared using the Chi-square test.
*e cutoff value of the radiomic features was defined by the
receiver operating characteristic (ROC) curve according to
Youden’s index. *e Kaplan–Meier method and log-rank
test were used to estimate PFS. Multivariate analyses were
performed using the Cox proportional hazards model. A
p< 0.05 was considered statistically significant. *e dis-
tances between all pairs of lesions (including both nodal and
extranodal lesions) were calculated using the LIFEx software
[20].

3. Results

3.1. Patient Characteristics. Table 2 summarizes the clinical
and PET characteristics of patients in the training and
validation cohorts. A total of 65 patients were enrolled in this
study. Of these patients, 31 patients presented with nodular
sclerosis, 14 patients presented with mixed cellularity, four
patients presented as lymphocyte rich, two patients pre-
sented with lymphocyte depletion, and 14 patients presented
with nodular lymphocyte-predominant subtypes. *e re-
lapse or progression of disease occurred in 14 patients
(21.5%) with a median time of 11 months (range of 2–57
months). *e median PFS was 40 months (range of 2–92

months). No significant differences were found between the
two cohorts (p � 0.389–0.703).

3.2. Feature Selection in the Training Cohort. A total of 47
radiomic features were extracted in the training dataset.
Based on the LASSO results, metabolic tumor volume
(MTV), SUV kurtosis, and long-zone high gray-level em-
phasis extracted from the gray-level zone-length matrix
(LZHGEGLZLM) were selected as potential prognostic factors
for PFS. From ROC curves, the cutoff value of MTV was
135 cm3, SUV kurtosis was 5.6, and LZHGEGLZLM was 3,200
(Figure 2). *e ICC of the three radiomic features was 0.94,
0.80, and 0.84, respectively.

3.3. Univariate andMultivariate Analyses. Table 3 shows the
results of univariate and multivariate analyses of the clinical
parameters and PETvariables that can discriminate different
survival endpoints. *e optimal cutoff value for Dmax was
57.4 with an AUC of 0.751. In the univariate analysis, the BM
biopsy, Dmax, MTV, SUV kurtosis, and LZHGEGLZLM of
radiomic features were associated with PFS. *ese variables
were input into the multivariate Cox analysis. After mul-
tivariate analysis, LZHGEGLZLM (HR� 9.007; p � 0.044) and
Dmax (HR� 3.641; p � 0.048) remained prognostic factors
for PFS.

High Dmax (>57.4 cm) and LZHGEGLZLM (>3,200) were
significantly associated with a shorter PFS (Figure 3). Pa-
tients with high Dmax had a 2-year PFS of 42.9%, whereas
patients with low Dmax had a 2-year PFS of 90.5%
(p � 0.0002). Moreover, patients with high LZHGEGLZLM
had a 2-year PFS of 63.6%, whereas patients with low
LZHGEGLZLM had a 2-year PFS of 100.0% (p � 0.0013).

3.4. Combination of Radiomic and Dissemination Features.
A prognostic stratification model was established based on
the independent risk factors (Dmax andLZHGEGLZLM)
presented in the multivariate analysis for PFS. *erefore,
three risk categories could be significantly distinguished
(p � 0.0002) (Figure 4), including group I with no risk
factors (n� 26); group II with one risk factor only (n� 17);
and group III with two risk factors (n� 6), and the PFS of the

Table 1: Radiomic parameters.

Index Matrix Parameter
Conventional SUVmin, SUVmean, SUVmax, SUVpeak, and SUVStd
Advanced indices MTV and TLG
Histogram-derived parameters Skewness, kurtosis, entropy, and energy
Shape-derived parameters Sphericity and compacity

Texture features

GLCM Homogeneity, energy, contrast, correlation, entropy, and dissimilarity
GLRLM SRE/LRE, LGRE/HGRE, SRLGE/SRHGE, LRLGE/LRHGE, GLNU/RLNU, and RP
NGLDM Coarseness, contrast, and busyness
GLZLM SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE, LZHGE, GLNU, ZLNU, and ZP

MTV: metabolic tumor volume; TLG: total lesion glycolysis; GLCM: gray-level co-occurrence matrix; GLRLM: gray-level run-length matrix; SRE/LRE: short/
long-run emphasis; LGRE/HGRE: low/high gray-level run emphasis; SRLGE/SRHGE: short-run low/high gray-level emphasis; LRLGE/LRHGE: long-run
low/high gray-level emphasis; GLNU/RLNU: gray-level nonuniformity/run-length nonuniformity; RP: run percentage; NGLDM: neighborhood gray-level
difference matrix; GLZLM: gray-level zone-length matrix; SZE/LZE: short/long-zone emphasis; LGZE/HGZE: low/high gray-level zone emphasis; SZLGE/
SZHGE: short-zone low/high gray-level emphasis; LZLGE/LZHGE: long-zone low/high gray-level emphasis; GLNU/ZLNU: gray-level nonuniformity or
zone-length nonuniformity; ZP; zone percentage.
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abovementioned three groups was 100.0%, 64.7%, and 33.3%
(p � 0.0002), respectively. Comparison between group I and
group II or between group I and group III revealed sig-
nificantly different PFS (p � 0.001, p< 0.0001, respectively),

whereas comparison between group II and group III did not
reach statistical significance (p � 0.205).

4. Discussion

*e present study demonstrated that 18F-FDG PETradiomic
signature was useful for predicting survival outcomes in HL
patients, and LZHGEGLZLM and Dmax were independent
prognostic factors for PFS. Moreover, we established a
prognostic stratification model based on two radiomic
features, and HL patients were divided into three risk
groups. *e results indicated that PET radiomics might be
helpful for prognostic evaluation of HL patients.

Intratumor heterogeneity is a recognized feature of
malignancy, reflecting areas of high cell density, hypoxia,
angiogenesis, and necrosis [30, 31]. It is a pivotal dimension
associated with tumor aggressiveness and patient outcomes
[32, 33]. Radiomics analysis of noninvasive imaging is a
widely used approach to quantify intratumor heterogeneity
[34]. Previous studies have shown that textural features can
effectively predict treatment response and patient survival
for various types of cancer [30, 35, 36]. Our results indicated
that SUV kurtosis and LZHGEGLZLM might improve the risk
stratification in HL patients. Specifically, LZHGEGLZLM was
significantly related to PFS after multivariate analysis. Both
radiomic features implied the measurement of intratumor
heterogeneity. Kurtosis reflects the peak or flatness of an
SUV intensity-volume histogram, and it is increased with
higher heterogeneity [37]. LZHGEGLZLM represents the
distribution of the long homogeneous zones with high gray
levels. A higher LZHGEGLZLM is associated with a poor PFS.

Table 2: Characteristics of the training and validation cohorts.

Total (n� 65) Training (n� 49) Validation (n� 16) p

Sex
0.596Male 45 (69.2%) 34 (69.4%) 11 (68.8%)

Female 20 (30.8%) 15 (30.6%) 5 (31.3%)
Age, median (range) 29.0 (8–72) 29 (8–72) 30 (16–54) 0.703
Ann Arbor stage

0.585I-II 36 (55.4%) 27 (55.1%) 9 (56.3%)
III-IV 29 (44.6%) 22 (44.9%) 7 (43.8%)

Bulky disease
0.678>10 cm 9 (13.8%) 6 (12.2%) 3 (18.8%)

<10 cm 56 (86.2%) 43 (87.8%) 13 (81.3%)
BM

0.612Yes 9 (13.8%) 7 (14.3%) 2 (12.5%)
No 56 (86.2%) 42 (85.7%) 14 (87.5%)

Extranodal sites
0.495Yes 25 (38.5%) 20 (40.8%) 5 (31.3%)

No 40 (61.5%) 29 (59.2%) 11 (68.8%)
B symptoms

0.389Yes 22 (33.8%) 18 (36.7%) 4 (25.0%)
No 43 (66.2%) 31 (63.3%) 12 (75.0%)

Chemotherapy with IFRT
0.565Yes 4 (6.2%) 4 (8.2%) 0 (0.0%)

No 61 (93.8%) 45 (91.8%) 16 (100.0%)
LDH, lactate dehydrogenase, BM, bone marrow; IFRT, involved-field radiation therapy.
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Figure 2: ROC curves and area under the curve (AUC) values of
the radiomic features.
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At present, few studies have investigated the role of PET
radiomics in predicting treatment outcomes in HL. Lue et al.
[14] have found that SUV kurtosis is significantly related to
PFS, and INUGLRM is significantly associated with PFS and
overall survival (OS). Another study has reported that
wavelet HIR_GLRMPET and RLNU_GLRMCT are inde-
pendent predictive factors for treatment response. *e
INU_GLRMPET and wavelet SRE_GLRMCT are associated
with PFS, whereas ZSNU_GLSZMPET is a prognostic factor

for OS [38]. Our findings were consistent with the above-
mentioned studies, indicating that PET radiomic features
were useful for prognostic evaluation of HL patients.

Traditional PET metabolic parameters, such as MTV,
have been proved to be significant prognostic indicators for
the prognosis of HL patients [39, 40]. Parvez et al. have
reported that the MTV can predict the response after
therapy in 82 patients with aggressive B-cell lymphoma,
while textural features cannot predict the treatment

Table 3: Univariate and multivariate analyses for prognostic factors of PFS.

Features p value HR (95% CI)
Univariate analysis

Clinical parameters

Gender 0.1726 2.579 (0.6609–10.06)
Age (>30) 0.2104 0.4514 (0.1300–1.567)

Ann Arbor stage 0.0590 3.394 (0.9548–12.07)
Extranodal sites 0.1788 2.398 (0.6700–8.581)
B symptoms 0.2791 2.067 (0.5550–7.698)

BM 0.0213∗ 9.985 (1.363–46.78)
Bulky disease (>10 cm) 0.2886 3.078 (0.3859–24.55)

Dmax 0.0002∗ 34.78 (5.206–232.4)
Chemotherapy with IFRT 0.0908 8.589 (0.7105–103.8)

PET variables

SUVmax 0.0723 10.52 (0.8081–137.0)
MTV 0.0016∗ 9.811 (2.371–40.59)

SUV kurtosis 0.0316∗ 3.961 (1.129–13.90)
LZHGEGLZLM 0.0013∗ 8.036 (2.258–28.60)

Multivariable analysis
BM 0.086 —
Dmax 0.048∗ 3.641 (1.011–13.110)
MTV 0.618 —

SUV kurtosis 0.243 —
LZHGEGLZLM 0.044∗ 9.007 (1.066–76.116)

∗Statistically significant. HR, hazard ratio; CI, confidence interval; LDH, lactate dehydrogenase; BM, bonemarrow;Dmax, the distance between the two lesions
that were the furthest apart; MTV, metabolic tumor volume; LZHGE, long-zone high gray-level emphasis; GLZLM, gray-level zone-length matrix.
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Figure 3: Kaplan–Meier survival analysis of PFS according to Dmax (a) and LZHGEGLZLM (b). NR, not reached.
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response, although several features are related to residual
mass and outcomes [41]. However, several reports have
demonstrated that the intratumor heterogeneity for survival
prognostication is superior to traditional PET metabolic
parameters [38, 42, 43]. Lue et al. have revealed that the
pretreatment intensity nonuniformity of 18F-FDG PET is a
promising prognostic indicator in HL patients and may
outperform MTV [14]. In our present study, MTV was
associated with PFS in the univariate analysis, while MTV
did not retain the prognostic significance in the multivariate
analysis. Many sources may cause these differences, such as
small sample size, image segmentation, acquisition and
reconstruction parameters, and feature extraction software
[44]. Further investigations in a larger cohort population are
required to validate our conclusions.

To the best of our knowledge, we, for the first time,
predicted the survival outcomes of HL patients using the
Dmax feature. Dmax, which is the largest distance between all
pairs of lesions, captures the spread of the disease. Recently,
an analysis consisting of 95 patients with advanced-stage
diffuse large B-cell lymphoma has reported that Dmax is an
independent predictor of PFS and OS. A high Dmax was
associated with an adverse prognosis, suggesting that the
measurement of tumor dissemination was an essential
biomarker for patients with lymphoma. *e combination of
PETradiomic features andDmax makes it possible to identify

patients with a poor prognosis and guide clinicians to change
treatment regimens [10]. In our present study, Dmax was an
independent prognostic factor of PFS, and the 2-year PFS in
the high Dmax and low Dmax groups was 42.9% and 90.5%,
respectively. Additionally, we established a prognostic
stratification model based on Dmax and imaging features
(LZHGEGLZLM) that predicted survival outcomes of HL
patients. Indeed, patients with high Dmax (>57.4 cm) and
high LZHGEGLZLM (>3,200) had a much worse prognosis
compared with the other patients. *e new model suc-
cessfully improved patient risk stratification.

Repeatability and robustness are crucial in radiomics
analysis [45]. In the present study, all 18F-FDG PET/CT
images were realized in the same center using the same
acquisition and reconstruction protocols. To reduce the
impact of discretization values on robustness, a reliable
discretization using a fixed size of bins was adopted [46].
Furthermore, our investigation of interobserver variability
and LASSO logistic with 10-fold cross validation supported
the robustness and prognostic power of the identified im-
aging features. Further external analysis of our results in a
larger cohort is necessary and promotes the clinical appli-
cation of radiomic features.

*e present study has several limitations. First, this was a
single-center retrospective study, and potential selection bias
might exist. Second, the sample size was relatively small in
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the training cohort, particularly for the identification of
available features in texture analysis. Besides, the interob-
server variability could be affected by different image
readers. Consequently, large-scale multicenter studies of the
risk model are required to further verify its value.

5. Conclusions

Our results indicated the association between pretreatment
18F-FDG PET radiomic features and relapsed disease status
in HL patients. Besides, a prognostic scoring system con-
sisting of the Dmax and LZHGEGLZLM could be useful to
improve risk stratification, which might be beneficial for
personalized treatment.
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