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ABSTRACT: In this paper, we develop a knowledge graph-based framework
for the automated calibration of combustion reaction mechanisms and
demonstrate its effectiveness on a case study of poly(oxymethylene)dimethyl
ether (PODEn, where n = 3) oxidation. We develop an ontological
representation for combustion experiments, OntoChemExp, that allows for
the semantic enrichment of experiments within the J-Park simulator (JPS,
theworldavatar.com), an existing cross-domain knowledge graph. OntoChe-
mExp is fully capable of supporting experimental results in the Process
Informatics Model (PrIMe) database. Following this, a set of software agents
are developed to perform experimental result retrieval, sensitivity analysis, and
calibration tasks. The sensitivity analysis agent is used for both generic
sensitivity analyses and reaction selection for subsequent calibration. The
calibration process is performed as a sampling task, followed by an optimization
task. The agents are designed for use with generic models but are demonstrated
with ignition delay time and laminar flame speed simulations. We find that calibration times are reduced, while accuracy is increased
compared to manual calibration, achieving a 79% decrease in the objective function value, as defined in this study. Further, we
demonstrate how this workflow is implemented as an extension of the JPS.

■ INTRODUCTION

The contribution of human activity to climate change and the
potential for ecological devastation this presents has become a
widely accepted fact within the scientific community.1 One of
the key contributors to this effect is the release of greenhouse
gases from combustion processes. Improvements in the design
of the energy conversion system has already resulted in
significant reductions in their contribution to greenhouse gas
emissions and presents one of the potential paths toward even
lower emissions in the future. Another approach involves the
use of alternative fuels, particularly synthetic fuels, offering
potential for reductions to pollution and greenhouse gas
emissions.
Modern workflows for the design and optimization of

combustion equipment and devices now routinely employ
computational modeling techniques. These are most often
used to screen designs and offer invaluable insights into
processes occurring within ref 2. Thus, to achieve the desired
reduction in climate change potential from combustion
equipment, provision of accurate combustion chemistry
mechanisms is becoming essential.
In practice, the development of these combustion chemical

mechanisms consists of two parts: mechanism generation and
mechanism calibration. The first step constructs a tentative
mechanism that maps the reaction pathways via elementary

reaction generation and selection, and the second step adjusts
the rate parameters, attempting to faithfully reproduce
experimental observations.
Much of the construction of combustion mechanisms

involves the selection and combination of reaction families,
elementary reactions, and submechanisms from various
existing mechanisms. This is facilitated by the CHEMKIN3

mechanism format, acting as a de facto standard for
mechanism sharing within the combustion community.
Aspects not formally captured by this format include
semantics and provenance. This allows errors to propagate
through combustion models due to the inability to ensure the
quality of individual reactions and the difficulty of tracking
their origin.
Moreover, accuracy and consistency of combustion

mechanisms is not guaranteed across applications, even with
well-calibrated submechanisms.4 These problems are further
exacerbated when the scale of the mechanisms is considered;
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potentially, hundreds of species and thousands of reactions
may be involved. This leads to the manual curation and
provenance determination of all the components of these
mechanisms being a near-impossible task for researchers. Even
if attempts were to be made, these are likely to fall foul to
human error, and so a very real need for an automated
approach to this mechanism development task is present.
Reaction mechanism generator (RMG)5 is one of the

available tools for the automation of the first stage of
mechanism development. The technique is based on the use
of a set of chemical rules to predict chemical pathways along
with a database of chemical properties. Values of unknown
chemical properties are estimated on-the-fly. One of the
methods used for this purpose is that of Li et al.,6 employing a
graph neural network (GNN) on molecular graphs to make
formation enthalpy predictions. The GNN was trained on a
data set generated at the B3LYP/6-31G(2df,p) level of density
functional theory (DFT). The framework further incorporated
quantum chemistry calculations for additional model training
in case of uncertain predictions, improving accuracy and
generalizability.
Progress has also been made in automating transition-state

theory calculations,7 an important step toward generating
accurate reaction rates. However, generating a chemical
mechanism with purely quantum calculated rate parameters
remains infeasible, given that even the most detailed model
would not include all possible pathways.1 This necessitates the
use of automated calibration processes for these coefficients to
reproduce experimental results.
The mechanism development and curation process may be

improved in two ways: (1) semantically focused and machine-
interpretable formats for mechanism representation with clear
provenance should be used and (2) automated updating and
verification of existing mechanisms throughout their lifetimes
should be implemented. Task 1 has received attention within
the community, with various efforts to create standardized
databases of combustion data with unique identifiers and
easily processable formatting. One of the key efforts in this
direction is that of the Process Informatics Model (PrIMe)8

database, containing combustion data in a standardized
eXtensible Markup Language (XML) format. Varga et al.9

further developed the ReSpecTh kinetics data (RKD) format,
which is an extended version of the PrIMe XML format with
new elements for unique identification of the experimental
setup and data. Computational packages, for example, Optima
++,10 are also provided alongside RKD for carrying out
simulations and interpreting experimental results.
ChemKED11 and its related Python-based package is another
effort in providing a standard format for experimental data in
the combustion community.
Although projects such as PrIMe have started the process,

further strides toward a fully provenanced and machine-
interpretable standard for the combustion community must
continue. The relatively granular structure of databases and
the lack of semantics prevents them from reaching the true
potential of modern technologies within artificial intelligence
and knowledge discovery. One of the potential technologies to
aid with these processes are knowledge graphs. A knowledge
graph is a dynamic knowledge ecosystem interconnecting
individual pieces of information and software. This is
implemented using ontologies, commonly written in the
Web ontology language (OWL), to define the abstract
concepts and relations that are shared within the knowledge

graph. Such a design offers both clear semantics to its entries
and a highly linked structure, thus enabling item location, easy
provenance determination, and reasoning over entries with
software agents.
In the context of combustion chemistry, we have developed

OntoKin12 as an ontology for representing chemical kinetic
reaction models. We have also developed OntoCompChem,13

based on chemical markup language,14 to store quantum
chemistry calculations. We further introduced OntoSpecies15

for unique chemical species identification, generating a more
comprehensive description of combustion chemistry with the
three ontologies seamlessly linked together to enable
consistency checking across multiple mechanisms.16 This
framework was further enhanced by the development of a
set of autonomous agents for quantum chemistry and enthalpy
of formation calculations, employing error-canceling balanced
reactions for the enthalpy of formation calculations.17

The purpose of this work is to propose a knowledge graph-
based framework for automated combustion mechanism
calibration. This forms a clear path for achieving the second
of the highlighted tasks. We aim to achieve this by
constructing an ontology to link combustion experiment
measurements to chemical reaction mechanisms and devel-
oping a set of software agents that automatically perform
mechanism calibration against ignition delay time and laminar
flame speed experimental data. A demonstration of this is
performed on a reduced poly(oxymethylene)dimethyl ether 3
(PODEn, where n = 3) mechanism.18 This alternative fuel,
with a molecular formula of CH3O(CH2O)3CH3, is
deliberately chosen for its current interest as a fuel additive
to help with the push for cleaner and more efficient vehicles.
The additive has been demonstrated to lower soot emissions
and improve combustion efficiency in engines.19 To match the
current interest and to further PODE3’s commercialization, a
reduced yet robust mechanism is required, making it an ideal
candidate for a demonstration of our framework.
The presentation of this paper is structured as follows. The

next section situates this work by introducing the wider
knowledge graph-based project. Subsequently, we detail the
components that together form the framework. We then
present the demonstration case of PODE3 with significant
improvements in model performance and finally conclude the
work.

■ THE WORLD AVATAR
“The World Avatar” (theworldavatar.com) begins the process
of creating a fully interconnected virtual representation of the
world through semantic web technologies. The term
originated from the idea of the “Digital Twin” in Industry
4.0 but extended the “Digital Twin’s” representation of
factories to conceptualizing and representing everything that
physically exists. With this vision, “The World Avatar” aims to
standardize the language used across knowledge domains to
enable cross-domain communications, offering extensive
opportunities for solving more complex and interesting
problems.20

The J-Park simulator (JPS)21 is an instantiation of “The
World Avatar” at the intersection of chemical and electrical
engineering. The initial scope of the JPS is to create a digital
replica of the ecoindustrial park on Jurong Island, Singapore.22

The effectiveness of JPS has been demonstrated through its
ability to solve many energy related problems. The JPS has
been applied to the utilization of waste energy,23 network
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optimization of the ecoindustrial park,24 and simulations of a
carbon tax for scenario analysis in policy making.25

The versatility of the JPS is a result of two key components:
modular and reusable ontologies and interoperable agents. As
illustrated in Figure 1, these components form the core of the
JPSa distributed knowledge graph. By design, the JPS
employs both in-house ontologies developed by domain
experts (e.g., OntoEIP,26 OntoCityGML,21 OntoPowSys,27

etc.) and existing ontologies developed by external researchers
(e.g., DBpedia,28 OntoCAPE,29 etc.). These ontologies are
connected and merged within the JPS to ensure the depth and
breadth of the concepts and relations in the knowledge graph.
Data entries from different sources are described in the
languages of these ontologies and stored in decentralized
locations. The data are indexed with their own internation-
alized resource identifiers (IRIs) that can be addressed
without ambiguity.
Besides domain ontologies, the JPS employs an agent

ontology (OntoAgent30) to govern the concepts related to
agents interacting within the knowledge graph. Each agent is
an individual building block, defined for specific tasks. As the
agents share the same architecture and follow a similar design
pattern, once activated, they are able to communicate with
each other. The agents may further operate cooperatively in
tasks ranging from manipulating the data within the
knowledge graph to coordinating between the JPS and the
outside world. To ensure secure agent operations, block chain
technology was implemented to support automated agent
selection with a tamper-proof agent marketplace.31 Once
granted access privileges, these tasks are envisaged to be
completed without human interventions.
The current design and implementation of the JPS has two

significant advantages, namely, reusability and extensibility. In
that sense, the JPS sets the standard and provides the basic

toolbox, facilitating individual researchers and developers to
build a customized knowledge graph. As its ecosystem
expands, the JPS has access to high volumes of real-time
data from the real world, enabling simulation of dynamic
physical processes in the cyber space. By connecting the real
world and its virtual representation, the JPS adds a new
dimension of intelligent operation in the engineering sector.
The work described in this paper connects the measure-

ments made during combustion experiments to relevant
reaction mechanisms via the unique identification of chemical
species. A distinguishing feature of the ontology and the
agents we have developed is their seamless addition to an
existing knowledge graph, in which all entities are relevantly
linked. This presents a next step towards connecting
macroscopic, observable data collected in real world experi-
ments with quantum chemistry calculations. Relating exper-
imental data to reaction mechanisms, and subsequently to
individual reactions, presents a valuable step toward enhancing
mechanism development with accurate chemical kinetics. This
step further pushes in the direction of combining data from a
wide variety of domains, scales, and sources to support cross-
domain communication and scenario planning, the relevance
of which is demonstrated in atmospheric pollutant dispersion
simulation.17,21

■ METHODOLOGY

Mechanism Calibration. PODE Demonstration Case
and Simulation Procedure. This case serves as a demon-
stration for the developed framework. The particular case of
PODE3 has received recent interest and a range of previous
efforts for modeling its combustion processes accurately when
used as part of a fuel blend. Some of the prior works in this
area are listed in Table 1, with many of the mechanisms
intended for primary reference fuel (PRF) blends.

Figure 1. Structure of the JPS as an implementation of The World Avatar. Interoperable agents are part of the distributed knowledge graph and
operate on it once they are activated.
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The first mechanism for pure PODE3 combustion under
high-temperature conditions was developed by Sun et al.32

This was an example of a detailed combustion mechanism,
whereby an attempt is made to model all elementary reactions
believed to be present. In contrast, reduced combustion
mechanisms are constructed to replicate results of key
combustion metrics with a reduced set of reactions.
Following from the Sun et al.32 mechanism, low- and

intermediate-temperature conditions were covered by He et
al.33 This model was further expanded by He et al.,34 which is
the first-ever mechanism to describe the combustion of a
PODE3/PRF blend. Given the complexity of engine
simulations, the size of these mechanisms makes simulation
largely intractable, requiring the development of a reduced
mechanism. Two simplified mechanisms were proposed by
Ren et al.35 and Lin et al.18 Both employed the model of He
et al.33 as a basis, using different methodologies for selecting
key species and reactions of PODE3. Additional reactions were
added by both for modeling the combustion of a PRF carrier
fuel.
A notable alternative attempt was made in the work of Cai

et al.36 In this, an automated mechanism development process
is used to select the reactions for the detailed combustion
mechanism of PODEn (n = 2, 3, 4). The work employed the
class-based automatic reaction alternator and calibrated the
selected reactions against experimental data for the ignition
delay of PODEn/air mixtures.
As a demonstration of the proposed knowledge graph-based

approach, the starting mechanism of Lin et al.18 is selected
due to its relatively small size. This is the mechanism
generated by selecting reactions from the wider He et al.33

mechanism prior to any further calibration to experimental
results. The focus of this paper remains the calibration of the
PODE3 combustion mechanism, and so only PODE3
combustion experiments are chosen for calibration.
The calibration was carried out against rapid compression

machine ignition delay time33 and laminar flame speed32

experiments. The ignition delay times of PODE3/O2/N2
mixtures were measured at pressures of 10 bar and 15 bar,
over a temperature range of 641−865 K, with equivalence
ratios of 0.5 (O2/N2 = 1:8), 1.0 (O2/N2 = 1:15), and 1.5
(O2/N2 = 1:20). The laminar flame speeds of PODE3/air
mixtures were measured at atmospheric pressure and an initial
temperature of 408 K, with equivalence ratios ranging from
0.7 to 1.6. For the simulation stage, the ignition delay time is

defined as the time interval between the starting point and the
maximum rate of pressure rise due to the ignition. The
laminar flame speeds were calculated with a mixture-averaged
transport model. The simulations were performed using
kinetics (version 2020.1.1)37 for ignition delay times and
Cantera (version 2.4.0)38 for laminar flame speeds. For the
laminar flame speed simulations, Soret effects were not
considered and the solution gradient and curvature were both
fixed at 0.05. The grid was set to be refined with a pruning
coefficient of 0.01.
A core strength of a knowledge graph approach is its ability

to combine data and software from different sources in a
standardized way, achieving interoperability and extensibility.
In the present application, this means the ability of a generic
tool for calibration of any gray- or black-box model to deal
with a variety of computational software. As a first step toward
this goal, different modeling software for ignition delay times
and laminar flame speeds are employed to demonstrate the
competence of the framework in handling models in a generic
manner.

Sensitivity Analysis. Sensitivity analysis acts as a screening
process to identify reactions that have measurable effects on
the model responses.39 This is conducted by computing the
normalized sensitivity coefficient of the chosen response with
respect to the Arrhenius pre-exponential factors of the starting
mechanism.
At the nth point in the process condition space ξ(n), the

normalized sensitivity coefficient of the ith response ηi(ξ
(n),θ)

with respect to the jth model parameter θj is defined as40
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Table 1. Summary of Existing PODEn (n = 2, 3, 4)
Combustion Mechanisms with Their Statistics Counted in
the OntoKin Formata

mechanism type
no.

species
no.

reactions fuel
fuel

carrier

Sun et al.32 detailed 274 1674 PODE3 no
He et al.33 detailed 225 1178 PODE3 no
He et al.34 detailed 354 1392 PODE3 yes, PRF
Ren et al.35 reduced 145 668 PODE3 yes, PRF
Lin et al.18 reduced 61 215 PODE3 yes, PRF
Cai et al.36 detailed 322 1611 PODE2−4 no
aReduced mechanism developed in Lin et al.,18 before optimization, is
chosen as the starting mechanism for the demonstration case of the
knowledge graph-based automated mechanism calibration approach
proposed in this work. It should be noted that the number of
reactions of the OntoKin representation is different from that of the
CHEMKIN format.
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It should be noted that this analysis is local in the sense of
model parameters while global in the process condition space
such that sensitivities at every collected point in the
experiment are taken into account.
As chemical mechanisms can either be assembled from

reaction classes or individual elementary reactions, it is natural
to either optimize reactions on a class basis or just based on
the individual reaction’s contributions. Cai and Pitsch41

demonstrated a comparable performance between both
bases, claiming that a significant distinction would only
appear when reactions in the same class show low sensitivity
individually but high sensitivity collectively.
In the case of a combustion mechanism constructed for a

group of similar species, optimization based on reaction rules
often provides a consistent improvement of model perform-
ance. This was found to be the case with the mechanism
developed by Cai et al.,36 describing PODE2−4 combustion.
The comparable performance is seen as justification for
implementing only one of the bases at present. The selected
basis is that of individual reaction contributions, chosen
because many of the envisaged use cases will involve only one
or few key staring species. Further options for calibration on a
class basis will be implemented in future work.
Global Search and Local Optimization. In order to find

an optimal balance between the two considered responses, a

weighted least-squares objective function was implemented for
the experiment responses

∑

∑

θ η ξ θ η ξ

α η ξ θ η ξ
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(6)

where α refers to the weighting of laminar flame speed in the
calibration process.
Following selection of the target reactions through

sensitivity analysis, an optimization routine is followed to
calibrate the mechanism with the objective function defined
above. The process initially employs low-discrepancy quasir-
andom global sampling through a Sobol sequence generator.42

This provides initial points for a Hooke−Jeeves optimization
algorithm,43 selected for its gradient-free nature to better
handle the stiff system.
In each evaluation, experiment and model responses are

scaled with respect to the upper ηub and lower ηlb bounds of
the experimental observations, as defined by the experimental
uncertainty. For ignition delay times, a ±20% uncertainty was
assigned to the measurements. This was selected to align with
common practices within the community.36,44,45

Figure 2. Core concepts and relations of OntoChemExp ontology. This ontology is constructed to represent measurements from combustion
experiments. The complete ontology consists of 36 concepts and 60 relations.
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As ignition delay times can vary by orders of magnitude, a
logarithmic scaling was applied to balance the contribution of
each data point toward the objective function

η′ =

η
η η

η
η

( )
( )

log

log

2

ub lb

ub

lb (7)

For laminar flame speed data, the error used was that
reported by the source.32 A linear scaling was applied

η
η η η

η η
′ =

− +
−

2 ( )ub lb

ub lb (8)

Uncertainty bounds may be obtained from uncertainty
factors for Arrhenius rate equation parameters,46 derived from
the uncertainties in quantum chemistry calculations. There are
also alternative optimization principles for the reactions
involved in combustion chemistry that optimize both
activation energies and pre-exponential rate parameters in a
coupled manner,47 as well as techniques that include the
temperature-dependence exponent.
At present, the optimization of just pre-exponential factors

has been performed. This was chosen to simplify the process
for a proof-of-concept framework demonstration and as the
main focus of this work is to demonstrate a knowledge graph-
based approach. There is an existing precedent for works
adjusting the pre-exponential factors alone,18 with large
hypercubes of potential values. This approach is further
justified when reduced mechanisms are optimized as some
reaction pathways and species are already not present within
the mechanism. It should be noted that other optimization
techniques can be easily made available in future work.
Ontological Representation. The OntoChemExp ontol-

ogy is developed to describe combustion experiments,
detailing both the overall experimental setup and the
individual, independent variable values for each data point.
The overall experimental description of the ontology
incorporates the apparatus used and the various common
properties shared among data points. Independents are used

to form data groups that share the same set of independent
variables, with individual data points forming subsets of these
data groups.
The current structure of OntoChemExp is developed

following discussions with domain experts and takes
inspiration from existing databases, including the experimental
data stored in the PrIMe database. The complete ontology
contains 36 concepts and 60 relations. OntoChemExp is
published at: http://www.theworldavatar.com/ontology/
ontochemexp/OntoChemExp.owl.
Figure 2 illustrates the core concepts and relations defined

in OntoChemExp. The conceptual structure is divided into
four modules following a heuristic approach:

•Experiment: an experiment refers to the process of
observing and measuring characteristics of interest from
an energy release chemical process of a mixture of fuel
and air. Dependent upon the original source, a set of
metadata may be employed to provide more details and
more precise identification of an experiment. This
metadata includes copyright, bibliography link, and
additional data items.
•Setup: the setup outlines the global conditions of an
experiment, including the apparatus in which the
experiment was conducted and the shared process
conditions, forming common properties. The concepts
defined in this section are normally left unchanged
throughout an experiment.
•Results: experimental results are grouped within data
groups that share the same set of independent variables.
Within the data groups, individual data points describe
each experimental measurement, including independent
and dependent variable values that are detailed within
X.
•Specification: the specification is a shared data
structure, supporting both the setup and results
modules with an abstract concept property. Property
is used to group a wide range of properties. The most
straightforward usage is detailing the size of equipment
with values. Property is also used to provide
information about chemical components with the

Figure 3. Selected concepts, properties, and relations that demonstrate the links between OntoChemExp, OntoSpecies, and OntoKin ontologies.
The main purpose of these links is to enable unique identification of species.
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species described by a species link and an amount, for
example, initial composition of the fuel/air mixture. A
further use of property is describing derived properties,
that include features such as indicators and observables.

As an example, consider the laminar flame speed experiment
conducted by Sun et al.32 The experiment module contains
the metadata related to this experiment, including a
bibliography link that points to the publication and an
additional data item specifying the description of the nature of
the experiment. The setup module documents the apparatus
employed, that is, an electrically heated constant-volume
cylindrical combustion vessel, as well as the common
properties that outline the boundary conditions used in the
experiment for all data points, that is, a mixture of PODE3/air
at atmospheric pressure and an initial temperature of 408 K.
This information was classified following the schema in Figure
2 and detailed in the specification module, for example, the
mixture of PODE3/air is represented by an initial composition
property grouping component of individual chemical species
with a species link, providing unique species identification and
amount indicating concentrations. The results module records
the data points collected from the laminar flame speed
measurements at equivalence ratios ϕ ranging from 0.7 to 1.6
in the format of data groups. This is also supported by the
specification module such that both laminar flame speed
measurement and its corresponding equivalence ratio were
treated as individual properties that map the human-readable
notations (e.g., commonly used mathematical symbol, units,
description of this property, etc.) and the numerical values
(i.e., X as adopted in data points).
Figure 3 depicts how combustion experiment measurements

and chemical mechanisms may be connected. The task of
linking species with reactions has already been achieved in
previous work,16 linking OntoKin with OntoSpecies. This
allows the linking of OntoChemExp to both species and
reactions via provision of unique species identifiers within
OntoSpecies.
Two connections are made between OntoChemExp and the

prior ontologies: (1) data property “hasPreferredKey”,
equivalent to “skos:altLabel”, that refers to the common
name of a species within the community and (2) data
property “hasUniqueSpeciesIRI” that directly links to the exact
OntoSpecies instance. This design can help resolve incon-
sistencies between data from different sources through the
unique identification of chemical species in OntoSpecies. The
importance of the use of this approach is shown by the
PODE3 demonstration case, whereby poly(oxymethylene)
dimethyl ether 3 is denoted differently as PODE3 by He et
al.,33 POMDME3 by Sun et al.,32 DMM3 by Lin et al.,18 and
OME3 by Cai et al.36 These ambiguities may be handled by
human operators but present a significant challenge to
machine interpretability. This challenge is exemplified if
PODE3 is used as the notation for the initial concentration
of ignition delay measurements and POMDME3 for the
laminar flame speed experiment, whereas DMM3 is used in
the mechanism. Instead, the linkage is created between
ontologies via unique species identification such that one and
the same species can be referenced throughout the various
stages of calibration, irrespective of the different string labels
that may be attached to it (which can be retrieved via
SPARQL query) in different contexts. The ontological
approach adopted thus facilitates dealing with naming

ambiguities of chemical species, allowing for greater
interoperability between agents, more comprehensive query-
ing, and many opportunities for semantically driven tasks.
Populating the knowledge graph is managed by a tailor-

made tool set developed in this work for generating
OntoChemExp-conformant OWL files. The tool set is based
on that developed by Farazi et al.12 for converting chemical
mechanisms to the format of OntoKin. Experimental data
related to PODE3 were manually constructed in the OWL
format of OntoChemExp and then uploaded to the knowledge
graph. The knowledge graph was subsequently deployed on an
RDF4J (https://rdf4j.org/) triple store, queriable by the
SPARQL Protocol and RDF Query Language (SPARQL).

Agent Integration. The framework detailed and devel-
oped in this work is intended to act as an agent within the JPS
ecosystem. It is structured as an instantiation of the agent
template proposed by Mosbach et al.17 A unified modeling
language (UML) activity diagram of the agent is provided in
Figure 4, with the agent template surrounding the model
development suite (MoDS)48 software package. MoDS is an

Figure 4. UML activity diagram of a template agent that enables
MoDS jobs to be executed asynchronously on an HPC platform
upon HTTP requests. The same design is followed by all MoDS
wrapper agents, distinguished by different activate nodes for job file
creation. The yellow shaded action indicates the data retrieving
operation of agents over the knowledge graph, whereas magenta
refers to the knowledge graph populating operation.
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integration of multiple tools developed for various generic
model development tasks, such as parameter estimation,49

surrogate model creation,50,51 and experimental design.52

Detailed documentation of the agent template is provided
by Mosbach et al.,17 so only the changes from the template
design will be detailed. One such change is the addition of a
validation step for received job requests. This is added in
order to improve the robustness of the agent. The validation
step ensures that the job request to the sensitivity analysis
agent contains the IRIs that point to the chemical model and
the experiment data against which the sensitivity analysis is
conducted. In addition, the job request to the mechanism
calibration agent must contain the IRIs provided by either the
user or the sensitivity analysis agent pointing to the active
parameters to be optimized. The second change has been
made to merge the process of querying executable-specific
information from the knowledge graph with the process of
creating job files. This was implemented to accommodate
different types of jobs being requested due to the integration
of MoDS with multiple tools and its capability as a generic
model development tool.49,52,53 This results in an agent
capable of automatically generating specific job files
corresponding to supplied job requests. Once passed the

request validation, the agent will query model parameters and
experiment process conditions in the case of sensitivity
analysis. By contrast, for mechanism calibration, additional
queries are made for the list of active parameters and
experimental responses.
The MoDS agent is designed to accept a target mechanism

and experimental results under a range of process conditions
and to perform parameter estimation for the target
mechanism. To achieve this, the agent performs simulations
with the experimental conditions and adjusts parameters
within the target mechanism to replicate the experimental
responses. The responses cover different simulation tasks
which are performed in two different software packages,
necessitating the generation of individual executable models.
The software packages were kinetics37 for ignition delay time
simulation and Cantera38 for laminar flame speed simulation.
Figure 5 illustrates the automated process of generating

MoDS job files. This process is structured in three layers: the
file management center communicates the input and output, a
marshaler collects all information required by the MoDS
executable, and finally, the layer that manages the individual
executable models. In the file management center, the process
starts by querying the knowledge graph for information

Figure 5. Workflow of the process of creating requested job files. The whole process corresponds to the activity node in Figure 4.

Figure 6. UML sequence diagram of the automated mechanism calibration process that captures the interaction between the different agents and
the knowledge graph. Actions where the agent retrieves data from the knowledge graph are shaded in yellow and those where the agent populates
the knowledge graph in magenta.
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related to each experiment response. This information is then

passed to the marshaler to allocate executable models for

simulating each response. The simulation files and execution

script required for the selected models are then generated in
the executable model layer and sent back to the marshaler.
At the same time, the type of job requested is parsed in the

file management center and passed to the marshaler to

Figure 7. Sensitivity analysis of the ignition delay times with respect to Arrhenius pre-exponential factors in the starting mechanism. The list of
reactions is selected based on the maximum value of its sensitivities across all considered points in an experimental condition space with a relative
perturbation of 2 × 10−5. (a) Selected 10 most sensitive reactions using a relative perturbation of 2 × 10−5, the labeled condition for each reaction
corresponds to that at which the peak value in (b) was obtained. (b) Sensitivities as a function of temperature. (c) Sensitivities as a function of
relative perturbation. (d) Same as (c) but for a smaller range of sensitivities, as indicated by the horizontal lines.
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initialize a MoDS execution script with predefined global
settings. This script is connected to the selected models
generated by the executable model layer. All generated files
are then assembled in the file management center and
transferred to an HPC platform.
The first two stages in the automated mechanism

calibration are performed by two MoDS template agents:
MoDSSensAnaAgent for sensitivity analysis and MoDSMech-
CalibAgent for mechanism calibration. Three parameters are
currently available for the sensitivity analysis: magnitude of
the relative perturbation, the type of overall sensitivity
(maximum absolute value or average absolute value), and
the number of reactions to be optimized.
For the mechanism calibration, the parameters are made

available in two folds: the global settings for the algorithms
used in the MoDS job and the calibration objective
parameters. For the algorithms, the total number of Sobol
points to be generated and the termination tolerance of the
Hooke−Jeeves algorithm can be specified by the user. For the
calibration objective parameters, two parameters are available:
the weighting in the objective function and the response
scaling type (logarithmic or linear). Provision is also made for

users to supply their own list of reactions to guarantee their
inclusion in the calibration process.
A coordination agent manages the interactions between the

MoDSSensAnaAgent and MoDSMechCalibAgent with the
knowledge graph. These three agents form the overall
automated mechanism calibration agent, AutoMechCalib-
Agent.
Figure 6 illustrates the UML sequence diagram of the

AutoMechCalibAgent as a five-step process. Initially, the
coordination agent validates the job request and invokes the
MoDSSensAnaAgent for a sensitivity analysis via IRIs. Second,
the MoDSSensAnaAgent communicates with the knowledge
graph via IRIs to obtain the chemical model to be calibrated
and the process conditions over which the sensitivity analysis
is to be conducted. After the sensitivity analysis, the
MoDSSensAnaAgent returns the list of IRIs of the identified
reactions to the coordination agent. Third, the coordination
agent requests MoDSMechCalibAgent for a mechanism
calibration job with the reactions identified. Fourth, the
MoDSMechCalibAgent carries out the calibration. Global
search and local optimization are used with experimental data
retrieved from the knowledge graph. As the final step, the

Figure 8. Sensitivity analysis of the laminar flame speed with respect to Arrhenius pre-exponential factors in the starting mechanism. The list of
reactions is selected based on the maximum value of its sensitivities across all considered points in the experimental condition space with a
relative perturbation of 2 × 10−5. (a) Selected 10 most sensitive reactions using a relative perturbation of 2 × 10−5. (b) Sensitivities as a function
of the equivalence ratio. (c) Sensitivities as a function of the relative perturbation.
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MoDSMechCalibAgent populates the knowledge graph with
the calibrated mechanism and returns its IRI to the
coordination agent.
The process relied upon linked ontologies. These provided

the connection between combustion experiments (OntoChe-
mExp) and kinetic mechanisms (OntoKin) via unique
identification of chemical species (OntoSpecies).

■ RESULTS AND DISCUSSION

Sensitivity Study. Prior to the automated calibration task,
a sensitivity study was performed to assess the effect of the
relative perturbation size used during the reaction selection
sensitivity analysis in the automated calibration process. This
sensitivity study was performed using the MoDSSensAna-
Agent developed. The study involved 21 relative perturbation
sizes for the finite difference approximations (r in eq 3) of the
derivatives required for the sensitivity coefficients (1 × 10−n, 2
× 10−n, and 5 × 10−n; n = 1, ..., 7) and assess the sensitivities
for both ignition delay times and laminar flame speeds to the
Arrhenius pre-exponential factor for all 215 reactions. For
every reaction, a normalized sensitivity coefficient was
computed for all 73 experimental conditions used for the
calibration process. The maximum absolute value form of the
sensitivity coefficient was used, and the reactions ranked based
on this value to determine their relative importance. We
present the 10 reactions with the greatest absolute sensitivity
coefficients.
Figure 7 presents the ignition delay time results of the

sensitivity study. The values of the sensitivity coefficients at
their maximum absolute value are shown in Figure 7a along
with the conditions for each case. The effect of temperature
on the sensitivities at a fixed equivalence ratio and pressure is
shown in Figure 7b. As demonstrated by the variability in
normalized sensitivity coefficients to changing conditions,
different sets of active parameters can be identified. This
includes in particular, different active parameters for low-
versus high-temperature regions. It is thus necessary to assess
reaction importance through a global perspective. Figure 7c
shows the stability of the sensitivity coefficients over the range
of relative perturbation sizes investigated. The horizontal
dashed lines bound the region that clearly illustrates the
variation for all reactions, as magnified and presented in
Figure 7d. It can be seen that the model, like most
combustion models, is highly nonlinear. The selection of
suitable relative perturbation sizes is thus in favor of small
values, where the model behaves in a relatively linear fashion
for most of the reactions. The peaks in Figure 7b correspond
to the sensitivity coefficients used for ranking the reactions,
matching the values at the vertical dotted line in Figure 7d
and those presented in Figure 7a.
This study identified two reactions from the PODE3

submechanism, reactions 35 and 38. Reaction 35 belongs to
the first O2 addition reaction class. This class is suggested by
Ren et al.35 as a good choice for calibration as ignition delay
times are usually sensitive to this class of reactions at low
initial temperatures. Reaction 38 involves H-abstraction by
HO2 radicals, shown to increase the fuel reactivity, thus
important to PODE3 combustion.36

Figure 8 presents the sensitivity analysis results for laminar
flame speeds. The structure remains similar to that of Figure 7
but with Figure 8b showing the effect of the equivalence ratio
rather than temperature.

Reaction 122 was found to have the greatest influence on
the laminar flame speed. This is a chain-branching step O2 +
H ↔ OH + O and is expected to have a significant effect on
the laminar flame speed54 chap. 8. Other reactions identified
mostly involve small species and radicals, which govern a large
part of the heat release (e.g., CO + OH ↔ CO2 + H).55

The reactions identified for both laminar flame speed and
ignition delay times fall in line with those selected while Lin et
al.18 constructing the reduced mechanism. The mechanism
was developed using a decoupling methodology, separating
the mechanism detail into three levels: detailed for H2/CO/
C1, reduced for C2−C3, and skeletal for C4−CN. As appearing
in the list of reactions found to be sensitive for laminar flame
speed, most of them are in the detailed H2/CO/C1
submechanism, representing a high-temperature combustion
process. While for ignition delay times, the most sensitive
reaction is from a skeletal structure for C4−CN, representing a
low-temperature combustion process.
Following this analysis, a relative perturbation size of 2 ×

10−5 was chosen for the calibration process. This value is
selected to act as a trade-off between numerical errors and the
onset of nonlinearities, given that larger sizes present
systematic changes in sensitivity as a function of perturbation,
specifically for ignition delay times, whereas smaller values
increase the likelihood of problems due to rounding errors.

Mechanism Calibration. In parameter estimation tasks,
deciding the number of parameters to include within the
estimation task requires consideration of the trade-offs
between precision and tractability. For this calibration case,
the reactions to optimize have been set as the top 10 reactions
identified for ignition delay times and laminar flame speeds by
the MoDSSensAnaAgent. This resulted in a total of 18
reactions to optimize due to reactions appearing in both
sensitivity analyses.
Another trade-off requiring consideration is that of the

weighting between ignition delay times and laminar flame
speeds. In many cases, differing quantities of experimental
data are available and there may exist differences in users’
preference in weightings. The weighting of the two is handled
by the value of α in the objective function of the calibration
process (i.e., eq 6). In this case, there are 63 ignition delay
time experimental data points and 10 laminar flame speeds.
Correcting this imbalance in the number of experimental
results forms a natural starting point for selecting a value for
α, and so values of α in the range of 6.3−1 were investigated.
This range is intended to cover values that offer a good
balance between the two responses and prevent the
domination of ignition delay times for the calibration.
The calibration routine seeks to optimize the values of the

pre-exponential factors for the target reactions. The range
selected for the task was 10−2 to 102 times the original value.
This is a relatively large range in relation to physical
uncertainties; however, this is a reduced mechanism and
individual reactions must not be misinterpreted as elementary,
physical reactions. The process began with Sobol sampling
within the selected range of values; 104 logarithmic, evenly
distributed points were used to determine three starting points
for the optimization routine that displayed the lowest values of
the objective function.
Following from the sampling stage, a Hooke−Jeeves

optimization routine is performed. The routine was performed
with 400 iterations and a termination step size of 0.001, with
an initial step size of 0.2 and step size reduction factor of 0.5.
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The results of the sampling and optimization stages are
presented in Table 2.

Prior to the sampling stage, the scaled sum-of-squares-error
value was found to be 14554 for ignition delay times and 774
for laminar flame speeds, resulting in objective function values
of 19430 and 15328 for α values of 6.3 and 1, respectively.
This indicates the value of performing the initial Sobol
sampling stage, with a significant improvement in the
objective function being achieved prior to any optimization.
This is particularly valuable as the Hooke−Jeeves algorithm
performs local search, significantly benefiting from a good
initial point.
The optimization stage is further seen to be providing an

improvement in the objective function, significantly reducing
its value from the sampling stage. The results of the
optimization stage are comparable, in the sense of having
the same order of magnitude, with those of Lin et al.,18 which
achieved an objective function value of 140 with an α value of
1.
Although variation is seen in the objective function values

after the sampling stage in response to changing α values, the
same change is not observed after the optimization stage. This
is a result of the contributions to the objective function from
the laminar flame speeds becoming very small after
optimization. The laminar flame speed is largely governed
by small-molecule oxidation which remains a detailed
submechanism within the decoupling methodology adopted
in the Lin et al.18 mechanism. This suggests that a better fit
would be expected for both the initial mechanism and
calibrated mechanism for laminar flame speeds than ignition
delay times.
During the initial sensitivity analysis, the mechanism is

unable to accurately reproduce the combustion characteristics.
This suggests that reaction selection at this stage may be
premature and may not select all reactions that are of the
most importance locally to the optimum fitting. Additional
reactions may also only become important after the rates of
the initially identified reactions are closer to their optimum
values. For these reasons, a further iteration of the calibration
algorithm is necessary, which is consistent with the
recommendation by Frenklach.39

Second Iteration. A second calibration was performed on
the best-performing mechanism for each value of α. The
ontological structure of the framework aided in this process,

allowing for the task to be completed by the passing of the
IRIs for the experiments and calibrated mechanisms from the
last iteration to the AutoMechCalibAgent agent, with the rest
of the configuration identical to the first iteration.
After validating the job request, the coordination agent

requested the MoDSSensAnaAgent to perform a sensitivity
analysis to identify the key reactions. Since the sensitivities
depend not only on the conditions but also on the model
parameters, the active parameters identified are different. The
list of IRIs for the updated active parameters was then added
to the original job request by the coordination agent and
passed to the MoDSMechCalibAgent. A mechanism calibra-
tion was then performed to optimize the mechanism. All other
settings for the sensitivity analysis (i.e., relative perturbation
size, the type of overall sensitivity, and the number of
reactions to be optimized) and mechanism calibration (i.e.,
the global settings for the algorithms and the calibration
objective parameters) were left unchanged. The results after
both the sampling and calibration stages are summarized in
Table 3.

After the calibration stage, the best-performing mechanism
was found with an α value of 2.33. The objective value of the
calibrated mechanism (Φ = 38) is found to show a 79%
decrease compared to that of the Lin et al.18 mechanism (Φ =
181) when the same α values of 2.33 are used in the current
definition of the objective function (eq 6).
The performance of the mechanism of Lin et al.18 (manual

calibration) and the mechanism of this work (automated
calibration) is compared in Figures 9 and 10. The automati-
cally calibrated mechanism shows a good fit to the
experimental data in all cases. It should be noted that in the
original paper of Lin et al.,18 a temperature rise of the 400 K
criterion was used for calibrating and assessing their model
against ignition delay times, yielding an objective function
value of 121 according to eq 6. In this work, a maximum rate
of the pressure-increase criterion is used when comparing the
models’ performance in Figure 9, resulting in an objective
function value of 108 for the Lin et al.18 model. This change
of ignition criterion brings it in line with that used for the
experimental results, and we note that this represents an
improvement for the Lin et al.18 model.
The negative temperature coefficient (NTC) behavior of

the fuel is captured in both the mechanism of this work and
that of Lin et al.18 In Lin et al.,18 it is claimed that capturing
the NTC region is achieved through optimization of the
isomerization reaction DMM3BO2 ↔ DMM3OOH35.·In this
work, this reaction was not identified as important and so was

Table 2. Objective Function of Global Search and Local
Optimization Results of the Starting Mechanisma

ratio α best Sobol H−J 2nd Sobol H−J 3rd Sobol H−J
6.3 4446 659 5153 1375 5356 1263
4.98 4170 657 4697 1378 4788 895
3.65 3892 710 4216 712 4238 1398
2.33 3617 896 3648 714 3783 1373
1 3075 654 3165 653 3324 1370

aBest three Sobol points from global search, that is, the three Sobol
points with the smallest objective function values, were chosen for
further local optimization with a Hooke−Jeeves (H−J) algorithm.
Each of these Sobol points represents a combination of the active
parameters sampled within the selected range. Values in bold face
indicate the best-performing mechanism for each response ratio and
are chosen as the starting mechanism for the next iteration of
calibration.

Table 3. Objective Function Values after Sampling and
Optimization for the Best-Performing Mechanisms Selected
from the First Iteration of Mechanism Calibration for Each
α Valuea

ratio α best Sobol H−J 2nd Sobol H−J 3rd Sobol H−J

6.3 605 278 627 296 651 260
4.98 375 89 505 79 507 187
3.65 459 243 500 259 552 253
2.33 571 38 658 133 702 127
1 355 151 376 133 377 156

aAll mechanisms showed significant improvement in this iteration of
calibration, with the best-performing mechanism underlined.
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not calibrated, instead remaining at the same value as used by
He et al.,33 where no apparent NTC region was captured.
It is believed the capturing of the NTC behavior in this

work is a result of the sensitivity analysis identifying reactions
of importance in the intermediate-temperature regime
(around 770 K), corresponding to the NTC region. This
effect may be seen in Figure 7b, in which the majority of the
sensitivities show a peak in the intermediate-temperature
region.
Table 4 summarizes the changes made to the Arrhenius pre-

exponential factors during the calibration process. The range
of adjustment for the rate parameters during the calibration
process was 10−4 to 104. While this may be considered a wide
range, we note that other studies dealing with reduced
mechanisms report similar orders of adjustment, such as Lin
et al.18 and Chang et al.56 while calibrating mechanisms
constructed with decoupling methodologies. In contrast to Lin
et al.18 and Chang et al.,56 however, the reduced mechanism
in this work is optimized as a whole to fit the provided
experimental data. It is further noted that even more complete
PODE3 mechanisms, such as that of Ren et al.,35 modify the
pre-exponential factors by an order of magnitude during
calibration. This is to balance necessary levels of adjustment
against unnecessarily large search spaces.
Two additional H-abstraction reactions from the PODE3

submechanism and a total of eight reactions were identified by
the second calibration iteration that were not identified by the
first. The second iteration fully captures the governing

Figure 9. Comparison of the mechanisms from18 and the AutoMechCalibAgent agent (this work) at simulating ignition delay times (maximum
rate of pressure increase ignition criterion) of PODE3/O2/N2 mixtures at three equivalence ratios.33 The model performance is displayed as the
ignition delay time contribution to the objective function. As per the experimental results, the oxidizer used in this study has different
compositions: (1) ϕ = 0.5, O2/N2 = 1:8; (2) ϕ = 1.0, O2/N2 = 1:15; (3) ϕ = 1.5, O2/N2 = 1:20.

Figure 10. Comparison between the model from18 and the
AutoMechCalibAgent agent (this work) on simulating laminar
flame speed of PODE3/air mixtures at atmospheric pressure and
an initial temperature of 408 K.32 The model performance is
displayed as the value of the laminar flame speed contribution to the
objective function with an α value of 2.33.
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reactions of the low-temperature combustion process, as
found to be important for modeling ignition delay times.18

Thus, the substantial improvement of model performance
found in the second iteration is not surprising.
Having been optimized in two stages against 73 data points,

using 18 and 19 active parameters, respectively, the model is
seen to be agree well with the available data points, capturing
major trends without incorporating noise present in the
experimental data. Although the model performance is not
assessed for process conditions outside the range used in this
study, one of the aims of the knowledge graph-based approach
is that the calibration can be easily repeated once new data are
made available.
The calibrated mechanism is available in CHEMKIN format

in the Supporting Information, also available at https://doi.
org/10.17863/CAM.59826. It should be noted that the
chemical model should only be used as a whole, and
individual rate parameters should not be used outside of
this model. This particularly applies to reactions whose rates
are well established in the literature, with relatively narrow
uncertainty bounds. For such reactions, the adjusted rates as
part of a reduced and calibrated mechanism such as the one in
this work may well be unphysical in the sense that they have
been adjusted well beyond their established uncertainty
bounds. One approach to alleviate this problem, as taken by
Lin et al.,18 is to calibrate only those reactions whose rates are
not well known (here, the PODE3 submechanism), while
leaving the ones with well-known rates unchanged (e.g., the
core C1−C3 chemistry). A more general approach is to

calibrate the chosen reactions within their respective ranges of
uncertainty (see, e.g., Sheen and Wang46). As the focus of the
present work is to take the first steps in the development of
the knowledge graph and agent infrastructure, we have
omitted such treatments for simplicity at this stage. Taking
uncertainties into account is, however, a natural next step, and
this is in fact work already in progress.

■ CONCLUSIONS

In this work, a knowledge graph-based automatic mechanism
calibration framework is developed. This acts as an extension
to the world avatar (theworldavatar.com), a dynamic knowl-
edge graph ecosystem. All components developed in this work
are standardized and modularized to allow them to easily
integrate with the wider knowledge graph infrastructure.
For the development process, an ontology, OntoChemExp,

was created. OntoChemExp provides an ontological descrip-
tion of combustion experiments and allows for linking these to
existing ontologies for reaction mechanisms and chemical
species, semantically enriching the description of experiments
and drawing links between mechanisms for combustion
processes and their experimental validation.
Another contribution of this work is a set of agents for

coupled sensitivity analysis and mechanism calibration. These
are based on a standardized JPS agent template and are
designed to employ generic model development software.
As a demonstration of these technologies, a case study was

used of a reduced PODE3 combustion mechanism. It was
found that two iterations of the coupled agent process were

Table 4. Summary of the Calibrated Arrhenius Pre-Exponential Factorsa

reaction equation original A factor First iteration Second iteration

35 DMM3 + O2 ↔ HO2 + DMM3B 6.66 × 106 6.66 × 108† 1.37 × 1010†

36 DMM3 + OH ↔ H2O + DMM3B 3.79 × 10−2 4.22 × 10−4†

37 DMM3 + H → H2 + DMM3B 7.40 × 106 5.05 × 105†

38 DMM3 + HO2 ↔ H2O2 + DMM3B 4.00 × 107 2.25 × 109† 1.24 × 109†

55 C3H7 ↔ H + C3H6 1.25 × 1014 1.08 × 1013†

71 OH + C2H4 ↔ CH2O + CH3 1.00 × 108 3.23 × 106†

122 O2 + H ↔ OH + O 1.04 × 108 1.04 × 1010‡ 1.72 × 1011‡

124 H2 + O ↔ OH + H 8.79 × 108 1.35 × 108‡

126 OH ↔ H2O + O 3.34 × 10−2 4.19 × 10−3‡

152 CO + OH ↔ CO2 + H 2.23 × 10−1 6.22 × 10−1‡ 1.16 × 101‡

153 HCO + M ↔ CO + H + M 5.75 × 105 2.13 × 105‡ 8.30 × 105‡

154 O2 + HCO ↔ CO + HO2 7.58 × 106 2.02 × 106‡

155 H + HCO ↔ CO + H2 7.23 × 107 4.63 × 109‡ 1.04 × 108‡

160 HCO + CH3 ↔ CO + CH4 1.20 × 108 9.40 × 109‡ 3.80 × 1010†‡

166 O + CH2O ↔ OH + HCO 1.81 × 107 1.21 × 107†

167 OH + CH2O ↔ H2O + HCO 3.43 × 103 6.79 × 103†

170 CH2O + CH3 ↔ CH4 + HCO 3.64 × 10−12 5.78 × 10−11† 5.38 × 10−9†

172 O + CH3 ↔ H + CH2O 8.43 × 107 8.43 × 105†‡

173 O2 + CH3 ↔ O + CH3O 1.99 × 1012 1.99 × 1014† 7.25 × 1014†

174 O2 + CH3 ↔ OH + CH2O 3.74 × 105 6.56 × 106† 9.33 × 104†

175 HO2 + CH3 ↔ OH + CH3O 1.00 × 106 1.00 × 108†‡

177 H + CH3 (+M) ↔ CH4 (+M) 1.27 × 1010 1.03 × 109‡

180 OH + CH4 ↔ H2O + CH3 5.72 × 100 5.03 × 102‡

183 H + CH2OH ↔ OH + CH3 9.64 × 107 3.30 × 109‡ 3.78 × 109‡

186 O2 + CH2OH ↔ HO2 + CH2O 2.41 × 108 2.41 × 1010‡

193 CH3O + M ↔ H + CH2O + M 8.30 × 1011 2.26 × 1012†

aOmitted values imply that a reaction rate is unchanged. The unit of the pre-exponential factors is m3 mol−1 s−1 or s−1 for two and one reactant,
respectively. The indexes of reactions follow the labels generated while converting the mechanism from the CHEMKIN to OntoKin format.
Reactions identified as sensitive for different response are denoted as † for ignition delay time and ‡ for laminar flame speed. Note that PODE3 is
denoted as DMM3.
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required to sufficiently optimize this mechanism due to its
initially poor fitting. The initial iteration brought the
calibration objective to a value of a similar order to that of
the manual calibration of Lin et al.,18 while the second
iteration reduced its value to 21% of the manual calibration
value. This represents the development of a model which fits
the data significantly more accurately, as measured by the
stated objective function in a short time span. Should multiple
iterations be performed, users need simply provide the IRIs of
experimental data and the mechanism from the previous
iteration.
This work has demonstrated how knowledge graph

technology can be used to improve the data provenance and
mechanism calibration. The creation of the OntoChemExp
ontology represents a step toward greater provenance
determination for combustion mechanisms as mechanisms
may be related to the experimental results used in their
calibration. The development of an automated mechanism
calibration framework addresses another necessary develop-
ment for the community of developing tools toward coupled
and automated sensitivity analysis and calibration of existing
combustion mechanisms. At present, the framework is
intended to act as a tool for facilitating and enriching the
process of mechanism calibration, but the design is intended
to allow for future development and refinement to open up
new applications made possible by the linked nature and
interoperability of knowledge graph representation.
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