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The influence of statistical 
properties of Fourier coefficients on 
random Gaussian surfaces
C. P. de Castro1,2, M. Luković2, R. F. S. Andrade1 & H. J. Herrmann2,3

Many examples of natural systems can be described by random Gaussian surfaces. Much can be 
learned by analyzing the Fourier expansion of the surfaces, from which it is possible to determine 
the corresponding Hurst exponent and consequently establish the presence of scale invariance. We 
show that this symmetry is not affected by the distribution of the modulus of the Fourier coefficients. 
Furthermore, we investigate the role of the Fourier phases of random surfaces. In particular, we show 
how the surface is affected by a non-uniform distribution of phases.

Two-dimensional random surfaces can be considered as a generalization of one-dimensional stochastic processes. 
Often, properties of natural systems, such as sea surface temperatures, rough graphene surfaces and 2D turbu-
lence can be mapped onto random surfaces1–6. Their scaling properties can be characterized by a single parameter 
known as the Hurst exponent, H. This exponent is related to the degree of spatial correlation between two points 
on the surface. For all H > −1 the surfaces are long-range correlated, rough and self-affine6–8. Uncorrelated sur-
faces correspond to an H-value of −1.

Much can be learned about the properties of random surfaces by studying the paths of constant height (lines) 
extracted from them7, 9–13. Empirical and numerical studies of these paths suggest that, at the height correspond-
ing to the percolation threshold, they are scale invariant and their fractal dimension depends on the Hurst expo-
nent H10, 14, 15. In some cases they also have an additional symmetry reflected by the conformal invariance of these 
paths4, 6. This means that the statistics of such curves is covariant with respect to local scale transformations16.

There exist several methods to generate random surfaces17. In this work, we consider the Fourier Filtering 
Method (FFM), where one first creates a random surface in the reciprocal space and then Fourier transforms 
it into real space. Our results are based on high performance calculations, large system sizes as well as tens of 
thousands of samples.

In the context of random surfaces, it is taken for granted that critical exponents, such as the fractal dimension 
of the percolation cluster and its perimeters, or those related to the correlation length and the susceptibility, 
depend only on H18, 19. In the case of conformal invariance, the current view is not as straightforward. Although 
conformal theory is not the main topic of this paper, it serves as motivation for our investigations20–24. In particu-
lar, it is worth noting that random curves with well defined Hurst exponents do not necessarily exhibit conformal 
invariance. For example, Bernard et al. observed conformal invariance in the iso-height lines of vorticity fields of 
2D turbulence4. They also showed, however, that this property is violated for iso-height lines extracted from sur-
faces with the same Hurst exponent but with randomly distributed phases of the surface heights in Fourier space. 
Therefore, it seems that it is not only the Hurst exponent that plays a determinant role in conformal invariance. 
Furthermore, outside the context of conformal invariance, Kalda, J. shows that gradient-limited surfaces are not 
characterized only by H19.

The possible dependence of conformal invariance on phase correlations4 and the existence of scale-invariant 
curves with scale-dependent critical exponents19, has therefore motivated us to investigate whether the scale 
invariance of iso-height lines of random Gaussian surfaces is also affected in a similar way.

Given that each point of the random surface in reciprocal space is determined by the phase, as well as the 
magnitude of a complex number, for the sake of completeness we also study the effects of the latter on the scale 
invariance of the iso-height lines. Therefore, we investigate how the critical exponents, some of them defined by 
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Kodev, J. and Henley, C. L.15, are influenced by Fourier phases, especially their correlations, as well as the distri-
bution of the magnitudes of the Fourier components.

We show that a non-uniform distribution of Fourier phases introduces symmetries in random surfaces and 
that a change in the phase correlation length in Fourier space causes a translation of the surface in real space. 
Furthermore, our results show that changes in the shape of the distribution of Fourier magnitudes, without alter-
ing their correlations, have the sole effect of modifying the height magnitudes of the random surfaces. None of 
the variations described above change significantly the H-dependence of the critical exponents as conjectured by 
Schrenk K. J. et al. in ref. 10.

Method
Random gaussian surfaces. A set of random real numbers may be interpreted as a surface, where each 
number corresponds to the height h(x) = h(x1, x2) at coordinate x1 and x2

10, 12, 13, 17, 25. In order to create correlated 
random surfaces, we used the Fourier Filtering Method (FFM)26–31, which consists in defining a complex function 
η(q) in Fourier space and then taking the inverse transform to obtain h(x). The complex Fourier coefficients η(q) 
can be written in the form

η πφ=q q q( ) c( )exp(2 ( )), (1)

where q = (q1, q2) is the frequency in Fourier space, qc( ) the magnitude and φ(q) the phase. In order to obtain a 
random surface with the desired properties, we chose the power spectrum S(q) of the surface in the form of a 
power law such that

∼ = +β
β

−
−( )S q qq q( ) (2)1

2
2
2c

c

where βc = 2(H + 1)17 defines the Hurst exponent. Then, we apply the power-law filter to a real random variable 
u(q) obtaining for the magnitude

= .S uq q qc( ) [ ( )] ( ) (3)1/2

In general, u(q) is Gaussian distributed with finite variance, φ ∈q( ) [0, 1] is uniformly distributed noise and qc( ) 
must satisfy the conjugate symmetry condition, − =q qc( ) c( )17. Without loss of generality, we will consider the 
case where u(q) has unit variance.

The choice of the power spectrum as a filter is justified by the Wiener-Khintchine theorem17, 32, which states 
that the autocorrelation function, C(r), of a time series is the Fourier transform of its power spectrum. Therefore, 
from the inverse discrete Fourier transform of η(q) we obtain h(x1, x2)
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with the desired power-law correlation function7, 10, 17

∼ .C r r( ) (5)H2

According to the definition above, if H = −1 and therefore βc = 0, the power spectrum in eq. 2 becomes inde-
pendent of the frequency, giving rise to uncorrelated surfaces. As H increases from −1, height-height correlations 
are introduced into the surface.

For any random surface defined on a lattice with H ≥ −1, the percolation threshold pc can be determined 
using the well established rank method. Moreover, a conjecture was recently put forward for the H-dependence of 
the fractal dimension and critical exponents at the corresponding critical point pc

10. It should also be noted that 
as a consequence of the extended Harris criterion11, 18, 33–36, there are going to be some critical exponents of 2D 
systems that are not influenced by correlation effects related to ∈ − −H [ 1, 3/4], implying that for those Hurst 
values, the exponents are expected to be the same as for the uncorrelated system10.

In the case of self-affine surfaces, for which H > 0, the percolation threshold is not well defined, since there is 
no unique value of the surface height at which the system percolates. Nevertheless, in this case also, it is possible 
to extend some concepts of percolation theory and relate them to H7, 8.

Clusters and perimeters. After generating the discrete random Gaussian surfaces, we use the rank 
method37 to reach the percolation threshold in the following way. One first ranks all sites in the landscapes 
according to their height, from the smallest to the largest value. Then, a ranked surface is constructed where each 
site has a number corresponding to its position in the rank, so that the following percolation model can then be 
defined. Initially, all sites of the ranked surface are unoccupied. Then the sites are occupied one by one, according 
to the ranking. At each step, the fraction of occupied sites p increases by the inverse of the total number of sites on 
the surface, thereby changing the configuration of occupied sites. By continuing this procedure a critical height 
hc is reached at which the occupied neighboring sites create a spanning cluster (percolation cluster) that connects 
two opposite borders of the surface (Fig. 1). At the critical height, the fraction of occupied sites reaches the per-
colation threshold pc. From the percolation cluster we extracted the fractal iso-height lines that correspond to the 
complete perimeter and accessible perimeters7, 10, 38, 39. The complete perimeter consists of all bonds between the 
percolating cluster and unoccupied sites. This is illustrated in Fig. 1, where light-gray represents the percolating 
cluster and the black line follows the complete perimeter.
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The accessible perimeter is obtained by eliminating from the complete perimeter all line segments within 
fjords with a bottleneck equal to the length r of the current stick. This procedure stems from the yardstick method 
used to measure the perimeter’s fractal dimension. Here, for each value of r, the length of any curve is defined by 
the number of straight yardsticks Nr required to go from one extreme to the other by jumping from one point on 
the curve to the next at a distance r. Then, the fractal dimension dfp is defined by

∼ .−N r (6)r
dfp

Figure 2a shows an arbitrary curve where the black dot, in the center of the green circle, indicates the current 
stick position. During this specific search for the next point on the curve, three possible positions indicated by 
red, green and blue X’s are found. If the option to always take the closest position along the curve (red X) is made, 
the complete perimeter is obtained. On the other hand, if one always takes the most distant point along the curve 
(blue dot), which does not avoid the external border, the accessible perimeter is obtained. Indeed, this rule skips 
points inside fjords and accesses only the external boundary of the coast, independently of the chosen direc-
tion (in the case of Fig. 2 either bottom-up or top-down), because there is no preferential correlation direction. 
Figure 2b shows the difference between the considered paths for one particular stick size.

Figure 1. Schematic picture of the percolating cluster (light gray) connecting the top of the square with the 
bottom. The white region corresponds to sites that do not belong to the percolating cluster (unoccupied sites 
and other clusters) and the black line is the external (complete) perimeter. This map was generated by OriginPro 
2016 (64-bit) Sr1 b9.3.1.273 (http://www.originlab.com/).

Figure 2. (a) Illustration of the rules used to compute the fractal dimension of the complete and accessible 
perimeters with the yardstick method. Suppose the sticks start to follow the coast from the bottom. The green 
circle shows the region of coast accessible to a particular stick. The X’s represent the next possible starting points 
of that particular stick. If the closest point along the coast (red X) is always chosen as the next starting point, we 
obtain the complete perimeter. If, on the other hand, the most distant point (blue X) is chosen, then we obtain 
the accessible perimeter. Here, points such as the green X, which are neither the closest nor the most distant 
from the center of the circle, are disregarded. (b) Paths made by sticks of equal sizes of the complete (blue sticks) 
and accessible (red sticks) perimeters. These maps were generated by OriginPro 2016 (64-bit) Sr1 b9.3.1.273 
(http://www.originlab.com/).

http://www.originlab.com/
http://www.originlab.com/
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Results and Discussion
Having described the method for generating random surfaces using two sets of random variables, u(q) and φ(q), 
we now discuss how a surface is affected by changing the form of their respective distributions.

Although common17, it is not always the case that u(q) follows a Gaussian distribution and φ(q) a uniform 
one. For example, Giordanelli et al.6 found that for graphene sheets u(q) is well fitted by ∝ −f u c u( ) exp c u

1
2

2
, 

where c1, c2 parameters of the fit. They also found that the Fourier phase distribution φ(q) is bi-modal rather them 
uniform6, as ilustrated in Fig. 3. On the other hand, for the vorticity field of 2D turbulence, we found through 
independent analysis that u(q) follows a Gaussian distribution and that φ(q) is nearly uniformly distributed used. 
Both u(q) and φ(q) are obtained by creating a histogram of the random terms of the Fourier transform of the 
surface being studied.

By an adequate choice of the u(q) and φ(q) distributions, we were able to generate FFM surfaces that are sta-
tistically similar to those in graphene and the vorticity fields in 2D turbulence. This allowed us to investigate how 
different distributions influence the resulting random surfaces.

Fourier phases. We start by showing the results obtained for three different φ(q) distributions (Gaussian, 
uniform, and the one found by Giordanelli et al. in graphene), while always keeping the same Gaussian distrib-
uted u(q). Applying the method described in the previous section, we obtained the dependence of the fractal 
dimension of the complete (df H

com
, ) and accessible (df H

acc
, ) perimeters on H, as illustrated in Fig. 4. Since exact values 

for the fractal dimension of those perimeters are known only for H = −1 and H = 0, all other proposed analytical 
dependencies on H are conjectures supported by numerical results10, 40–42. In the case of uncorrelated surfaces, 

==−d 7/4f H
com

, 1  and ==−d 13/10f H
acc

, 1 . When H increases from −1, the fractal dimension of complete and accessi-
ble perimeters start to converge. Once the surfaces are described by a discrete Gaussian Free Field43 for H = 0, the 

Figure 3. Probability density function of |u(q)| (left) and φ(q) (right) in the case of the graphene sheet (red 
squares) and the vorticity field (black circles). The red and black curves in left panel are best fits for 

∝ −f u c u( ) exp c u
1

2
2
 and the Gaussian function, respectively.

Figure 4. Fractal dimension of the complete and accessible perimeters as a function of H, for (a) H < 0 and (b) 
H > 0, and different φ(q) distributions. In (a), the black lines are conjectures proposed by Schrenk K. J. et al.10. 
All values are averages over at least 104 samples and error bars are defined by the variance of the distribution.
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results consistently indicates = == =df df 3/2H
com

H
acc

0 0 . Our results therefore point towards the absence of any 
dependence of dfH

com and dfH
acc on the shape of the distribution of φ(q). As shown in Fig. 4, the H-dependence of 

dfH
com and dfH

acc agrees with the conjectures by Schrenk K. J.10 for both, long-range correlated (Fig. 4a) and rough 
surfaces (Fig. 4b).

At first glance, the influence of the Fourier phases on the random surface might not be obvious. However, we 
notice that the phase distribution mainly influences inversion symmetries with respect to the center of the sur-
face, as shown in Fig. 5. In order to introduce this effect, φ(q) is given by a Gaussian distribution with a very small 
variance, i.e. a peaked distribution. In Fig. 5 it is possible to identify the same morphological structures when the 
figure is rotated by an angle π. This occurs because, as the variance goes to zero, the distribution values of the 
Fourier phases converge to a constant (the mean value) accentuating the symmetry effect44. In the limiting case 
of zero variance the distribution collapses onto a constant value, producing a perfect inversion symmetry in real 
space. Therefore, in order to avoid this symmetry effect a uniform distribution is used.

Correlated phases. It turns out that the Fourier phases from the vorticity fields and graphene sheets that 
we analyzed are uncorrelated6. Nevertheless, in order to understand how correlations affect random surfaces, we 
generated some samples with artificially correlated Fourier phases. For this purpose, we introduced correlations 
in the Fourier phases by applying the FFM twice. First we used the FFM to create a surface of correlated random 
phases in q-space with Hurst exponent Hϕ, according to the eq. 1. Applying the FFM again, we generate Gaussian 
surfaces with Hurst exponent H and with the desired coefficients and correlated Fourier phases. Using always the 
same distributions of φ(q) and u(q) and keeping fixed the value of H and the seed of the random number gen-
erator, we studied the changes in the surface caused by a change in Hϕ. We found that the correlation of Fourier 
phases causes a linear translation of the random surfaces (Fig. 6). A change in Hϕ modifies the slope of the power 
spectrum (eq. 2), causing all sites of φ(q) to shift proportionally, which means that a constant value is added to the 
Fourier phases, causing a translation on the random surface (in real space)44.

Magnitude of the Fourier coefficients. We generated sets of random surfaces, each having φ(q) uni-
formly distributed but with a different distribution of u(q): Gaussian, uniform and the distribution found by 
Giordanelli et al. in graphene. We then determined the average values of two critical exponents of percolation 
corresponding to each set of surfaces with a different u-distributions. We first considered the H-dependence of 
the correlation length critical exponent νH for −1 ≤ H ≤ 0. It is well established that the critical point 

.p 0 592746c
11, 13, 18, 35 is the infinite system size limit of the percolation threshold pc(H, L), which is H-dependent 

for finite system sizes, L. Furthermore, the expected scaling behavior10, 38, 39 is

− ∼ ν−p H L p L( , ) , (7)c c
1/ H

with νH = −1/H10, 45, 46. Our numerical results in Fig. 7 not only confirm that the scaling relation in eq. 7 is 
respected no matter which one of the three u-distributions we use but also that the value of pc remains unchanged.

A consequence of the scaling relation in eq. 7 is that in the asymptotic limit it is sufficient to compute the crit-
ical exponents at the percolation threshold, pc.

At this critical point, the percolation cluster is a fractal with fractal dimension df. The occupancy, Mmax, which 
is the number of sites that belong to the percolation cluster, scales with lattice size L as,

Figure 5. Surface map with inversion symmetry with respect to the center. This symmetry of the surface results 
from the use of a Gaussian distribution φ(q) with a small variance σ = 0.001.
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∼ .M L (8)max
df

Using eq. 8 we recovered numerically the value of the fractal dimension as a function of the Hurst exponent. In 
Fig. 8 our results show that the value of the fractal dimension of the percolation cluster remains the same for all 
three distributions of u(q).

We also checked the H-dependence of the susceptibility critical exponent γ by considering the scaling behav-
ior of m2, the second moment of the distribution of the cluster sizes at pc defined as18

∑= − .m M
N

M
N (9)k

k max
2

2 2

Here, the sum runs over all clusters, where Mk is the mass of cluster k, and we use the fact that the following scal-
ing behavior holds18:

∼ .γ νm L (10)2
/H H

For uncorrelated percolation (H  =  −1), γH=−1 =  43/18, νH=−1 =  4/3, so that df =  91/48 and 
γH=−1/νH=−1 = 43/2418. Figure 8 shows the dependence on ∈ −H [ 1, 0] of both critical exponents, the fractal 
dimension of the percolation cluster and the exponent ratio γ/ν, for different distributions of u(q).

In conclusion, our results suggest that both exponents, df and γ/ν, are independent of the distribution of u(q).

Figure 6. Maps of phase correlated surfaces. Panels (a–d) show examples of surfaces with H = 0.5 and 
Hphase = −0.9, −0.2, 0.1, and 0.4 respectively. The arrows serve as a guide to show the linear translation of the 
random surface due to correlations introduced between the Fourier phases.

Figure 7. Scale analysis of the convergence of the percolation threshold pc,H. For the square lattice, the site 
percolation threshold pc for uncorrelated surfaces is .p 0 592746c . The black lines serve as guides to the eye 
with slope H = −1/νH

10, 38, 39.
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Conclusions
We considered two concrete examples of random surfaces, namely, the vorticity field of turbulent systems in two 
dimensions and rough graphene sheets. We investigated how these random surfaces and in particular the critical 
exponents are influenced by the presence of phase correlations and by changes in the distribution of the Fourier 
coefficient magnitudes and Fourier phases. Our results show that the Fourier phases distribution of the vorticity 
field and graphene sheets, within error bars, lead to the same value for the fractal dimension of the complete and 
accessible perimeters. We also showed that long-range phase correlations in Fourier space lead to a translation of 
the random surfaces, and that they do not have any influence on their statistical properties. For different distribu-
tions of magnitude of Fourier coefficients our results suggest there is no H dependence of the fractal dimension of 
the percolation cluster and susceptibility exponent. In addition, we recovered for the critical exponents the same 
H-dependence as conjectured by Schrenk K. J.10. Although we have only considered three examples of Fourier 
coefficient distributions, we do not expect different results for any other distribution with finite variance.
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