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Abstract: Despite several decades of research, the physics underlying translation—protein synthesis
at the ribosome—remains poorly studied. For instance, the mechanism coordinating various events
occurring in distant parts of the ribosome is unknown. Very recently, we suggested that this allosteric
mechanism could be based on the transport of electric charges (electron holes) along RNA molecules
and localization of these charges in the functionally important areas; this assumption was justified
using tRNA as an example. In this study, we turn to the ribosome and show computationally that
holes can also efficiently migrate within the whole ribosomal small subunit (SSU). The potential
sites of charge localization in SSU are revealed, and it is shown that most of them are located in
the functionally important areas of the ribosome—intersubunit bridges, Fe4S4 cluster, and the pivot
linking the SSU head to its body. As a result, we suppose that hole localization within the SSU can
affect intersubunit rotation (ratcheting) and SSU head swiveling, in agreement with the scenario
of electronic coordination of ribosome operation. We anticipate that our findings will improve the
understanding of the translation process and advance molecular biology and medicine.
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1. Introduction

Translation—protein synthesis at the ribosome—is necessary for life of all organisms
and proceeds in similar way in all domains of life. Accordingly, understanding of this
process is of great importance from both the fundamental and practical points of view. How-
ever, although the ribosome structure has been recently resolved in detail [1], the physical
mechanisms underlying ribosome operation are far from being well understood. Specifi-
cally, it is not clear how the motions of the participants of the translation process—ribosome,
transfer RNA (tRNA), and matrix RNA (mRNA) molecules—are precisely coordinated.
In short, at each act of translation (elongation step), tRNA motion through the ribosome—
translocation—is correlated with the motion of mRNA [2,3], large-scale conformational
changes of tRNA [4] and ribosome [5–9], as well as chemical reactions—GTP hydrolysis
in the translation factors [4] and amino acid addition to the growing polypeptide [10].
Synchronized action of distant parts of the ribosome and tRNAs implies the existence of
some mechanism orchestrating them [11–13]. However, this allosteric mechanism remains
unknown, despite several decades of intensive studies of ribosome operation. Several
hypotheses about the nature of this mechanism were suggested, most of them being of
mechanistic character [11–13]. In contrast, we recently suggested that this mechanism is of
electronic character and involves charge (electron hole) transport along and between the
RNA molecules, charge localization at certain sites (areas), and subsequent conformational
changes of the latter [14].

Electronic (as opposed to ionic) conductivity of nucleic acid molecules (DNA and RNA)
is enabled by the π-stacking of their nucleobases, which can provide significant overlapping
of the π-conjugated electron systems of the latter. Such π-stacking is often observed in
DNA and helices (stems) of non-coding RNAs, e.g., tRNA and ribosomal RNA (rRNA) [15].
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Nevertheless, the topology of the non-coding RNA molecules is much more complicated
than that of DNA, possessing three-way junctions, pseudoknots, etc., which can provide
an entangled pattern of charge transport pathways. Moreover, RNA molecules often have
single-stranded regions that can prevent charge transport. Accordingly, charge transport
in RNA can significantly differ from that in DNA and is worth thorough investigation.
However, while multiple theoretical and experimental studies addressed charge transport
in DNA [16–19], such studies for RNA [14,20,21] are rare. Very recently, it was shown
that charge transport along the DNA molecule plays an important role in regulation of
the replication process [18] and DNA repair [19], and disruption of DNA conductivity
may cause severe diseases [22]. Electron hole transport within the tRNA was modeled
in Ref. [14]: it was shown that most nucleobases are strongly electronically coupled (i.e.,
have large charge transfer integrals, J) to their neighbors so that an extended π-conjugated
system is formed. It was also shown that hole localizes at certain sites of tRNA, inducing
conformational changes of the latter. However, charge transport and localization within
the very ribosome were not addressed.

A ribosome is composed of two subunits, namely large (LSU) and small (SSU) ones.
SSU is built of RNA molecule (16S in prokaryotes), which is its structural and functional
basis, and several proteins. The secondary structure of 16S RNA contains many regular
double helices connected by irregular single-stranded loops. However, many of these
formally single-stranded loop regions are in fact only slightly irregular double-stranded
extensions of neighboring regular helices [23]. Thus, most of 16S RNA may be described
as helical or approximately helical, and one can consider the RNA structure as a three-
dimensional arrangement of helical elements [23]. Stacking and packing of the helical
elements of 16S RNA generates three compact domains (5′ domain, central domain, and 3′

major domain) and one extended domain (3′ minor domain) [23], as sketched in Figure 1;
the latter figure also presents another commonly used division of SSU on the body, platform,
and head. SSU contains a decoding center and unique Fe4S4 cluster, the function of which
is still unknown [24]; we have hypothesized in Ref. [14] that it can serve as a “battery”
providing charge carriers for electronic coordination of the ribosome operation. During
translation, SSU rotates with respect to LSU; this intersubunit rotation is often described
as a “ratcheting” and accompanies translation in both bacteria and eukaryotes [3]. The
integrity of the ribosome is maintained by several intersubunit bridges between SSU and
LSU. Intersubunit rotation is synchronized with rotation of the SSU head with respect to
the body and the platform—“head swiveling”.
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In this study, we investigate computationally the probable hole transport pathways
and localization sites within the SSU of the ribosome. We show that most of the nucleotides
in the SSU have large hole transfer integrals with their neighbors, resulting in considerable
transfer rates between them. We then simulate motion of the electron hole within the
SSU and determine the sites of hole localization; these sites can collect holes from up to
11 nucleobases. Most of these sites are located in the functionally important areas of the
ribosome—near the intersubunit bridges, Fe4S4 cluster, and the pivot joining the head and
the body of SSU. Our findings corroborate the hypothesis of the key role of charge transport
in coordinating the operation of the ribosome during translation and are anticipated to
facilitate further studies of this issue.

2. Methods

Initial geometry of the RNA studied was extracted from PDB database (16S RNA from
Thermus thermophilus ribosome at elongation stage, PDB entry 6qnq [24]). Charge migration
was simulated using the hopping model, according to which charge carriers (electrons or
electron holes) incoherently hop between the sites—nucleotides. The hopping model is
expected to provide reasonable description of the charge transport in the studied systems
at room temperature [25]. The hopping rate was described with the widely used Marcus
equation [26]:

k =
2π

} J2
(

1
4πλkBT

)1/2
exp

(
− (∆E− λ)2

4λkBT

)
(1)

where h̄ is the reduced Planck constant, kB is the Boltzmann constant, T is the absolute
temperature, J is the charge transfer integral, λ is the reorganization energy of the sites
(the sum of the relaxation energies for discharging of one site and charging of the other),
and ∆E = E2 − E1 is the difference in the energies of charge carrier between the initial
and final sites. These parameters were obtained using density functional theory (DFT)
calculations in GAMESS package [27,28] with CAM-B3LYP (for reorganization energies)
or B3LYP (otherwise) density functionals and 6–31g(d) basis set. Ribose moieties and
phosphate chains are not involved in the π-conjugated system and hence are not occupied
by the charge carriers; accordingly, they were not considered in the charge migration
simulations so that the nucleotides were substituted by nucleobases with methyl groups
instead of the ribose moiety. Substitution of ribose with methyl group was applied because
it only slightly alters the relative HOMO energies (see Figure S1a; note that Equation (1)
does not require absolute HOMO energies but requires relative ones) and charge transfer
integrals (since geometries of the bases are taken from the structural data) but considerably
reduces the computational time. B3LYP functional was shown to reproduce reasonably the
relative HOMO energies for various molecules [29], especially for those with π-conjugated
systems [30,31]. Moreover, we have checked that various DFT functionals show the same
trends in the HOMO energies, as shown in Supplementary Information (SI, Figure S1b),
implying that ∆E required for Equation (1) only slightly depends on the functional. Reorga-
nization energies were approximated by their internal (intramolecular) parts and calculated
according to the standard adiabatic potentials (four-point) scheme [32,33]. Transfer in-
tegrals were calculated using home-written code based on the dimer projection method
(DIPRO) [34–36]. Several sites with poorly determined atomic coordinates were excluded
from charge transport simulation.

3. Results

The main factors determining the hole transport within the hopping model are energies
of the highest occupied molecular orbitals (HOMOs) of the sites, charge transfer integrals
between the latter and reorganization energies of the sites (see previous section). HOMO
energies for various nucleobases are shown in SI, Figure S1; the highest HOMO energies
are observed for guanines, in line with previous results [14,37]. Moderate HOMO levels
provide an opportunity for efficient hole injection and transport in RNA molecules, while
high energies of the lowest unoccupied molecular orbitals (LUMOs) prevent trap-free
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transport of electrons [14]. Hole transport was indeed observed many times in experiments
with the “sister” macromolecule, DNA (see, e.g., Refs. [38,39]. Therefore, following our
previous study [14], we will focus on hole transport and not address electron transport.
Reorganization energies are shown in Figure S2; they are rather large and exceed 300 meV
for all the nucleobases, in line with the results of Refs. [14,37]. The difference in the site
energies (i.e., static disorder, see Figure S1) and large reorganization energies force hole
localization at single sites [40], and guanines should serve as the sites of this localization.

Figure 2a presents the charge (hole) transfer integrals, J, within the SSU; Figure S3
shows J for separated SSU domains. From these figures it follows that nearly all the
sites (nucleobases) have large transfer integrals with the neighboring ones, i.e., the hole
can efficiently hop between them. A few transfer integrals exceed 200 meV (to com-
pare, in organic semiconducting crystals with high charge mobility, J usually amount
~100 meV [40,41]). Large transfer integrals stem from the fact that most of the rRNA in SSU
is arranged in helices, where nucleobases form π-stacks [23]. In these stacks, HOMOs of
the adjacent nucleobases can considerably overlap [14]. As a result, we conclude that an
extended π-conjugated system is formed within the whole SSU, where a hole can migrate,
like in a hand-made organic semiconductor (see, e.g., Refs. [41,42]). This finding is in
accordance with our earlier results for tRNA [14] and helix h44 of 16S rRNA [37]. The
most pronounced electronic interaction between the nucleobases (i.e., continuous network
of large J) is observed in the dense and stiff areas of the SSU—helices h7–h9, h30, h41,
h44, as well as nearly entire 3′ major domain. On the contrary, transfer integrals in helix
h6 (spur), which is on the periphery of the SSU, are smaller and form a less-pronounced
π-conjugated system.

To simulate the hole migration and localization within the SSU, we applied kinetic
Monte-Karlo modeling. A hole was sequentially placed at various initial sites, and then
its motion was monitored. The map of the probabilities to find the hole, which started
migration from the given initial site, at the given final site (“probability map” hereafter), is
shown in SI, Figure S4. Figure 2b–d presents exemplary areas of this map in the vicinity of
the sites at which holes most probably localize (see below). These figures clearly reveal
that there are many sites, holes which are found at the other (sometimes distant) sites,
i.e., holes migrate efficiently within SSU. Indeed, if holes could not migrate, the non-zero
probabilities would be observed only at the diagonal of the map; however, this is not
the case. Vertical cyan-green or green-red lines indicate the sites of hole localization: the
corresponding final sites collect holes from many (up to 11) initial sites. Interestingly,
two types of basins of attraction (the manifolds of sites, hole from which are localized
at the given site) are observed in (Figure 2b–d): deep, i.e., with strong localization, and
shallow, i.e., with considerable “delocalization” of the hole between several sites (in terms
of probabilities, not to be confused with delocalization of wavefunction [40]): the hole can
go back and forth between them, occupying the localization site for longer time. The deep
basins reveal themselves in Figure 2b as red–green lines (i.e., probabilities to find the hole
at the localization site tend to unity), while the shallow ones correspond to cyan–green
lines, which have counterparts at other final sites for the same range of initial sites (i.e., the
hole has non-zero probability to be found at other sites, which are close in energy to the
site of localization).

Final sites’ populations—the probabilities to find a hole at a given site summarized
over various initial sites—are shown in Figure 2e. From this figure, it follows that holes
predominantly localize at three sites (“hole scavengers”): G690, G1316, and G1504. The
strongest hole scavenger is G690: it collects holes from ~11 residues (in the range 683–697,
see Figure 2b); the basin of attraction for this site is deep. G690 resides in the central
domain near the intersubunit bridge B7a—the close contact between h23 of SSU and H68
of LSU, which involves the only cross-subunit base stacking interaction (see Figure 3b) [1].
During translation, this site becomes close to the tRNA molecule at E-site and mRNA.
Noteworthily, the 690 loop is highly conserved [23], which highlights its importance. We
suppose that hole localization at G690 can affect intersubunit rotation (ratcheting)—hinder
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it at certain time moments and “lock” the ribosome. Moreover, the hole can transfer to LSU
from this site or vice versa. Thus, this transition could coordinate processes occurring in
SSU with those occurring in LSU (e.g., L1 stalk motion during tRNA release).
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swiveling) are labeled.

Figure 2c presents the probability map near the second hole scavenger, G1316. This
site has a deep, but smaller basin of attraction—it is indicated by a green–red line, which is
shorter than that for G690. G1316 is located at the top of the SSU head (5′ major domain)
and is close to the intersubunit bridges B1a and B1b (see Figure 3c). Interestingly, there is a
large, but shallow basin of holes attraction for the site adjacent to G1316, namely, G1274;
this basin reveals itself in Figure 2c by a long cyan vertical line. Moreover, there is also
another localization area near G1316—nucleotides 1310–1312, which share holes collected
from multiple nucleotides (Figure 2c). Summing up, holes from about 20 nucleotides
localize in the compact area at the top of the head (see Figure 3c). Since this area is near
the intersubunit bridges B1a and B1b, hole localization therein can affect the intersubunit
rotation, as suggested above.

Finally, Figure 3d indicates that the last of the three abovementioned strongest hole
scavengers, G1504, has a large and shallow basin of attraction—hole is shared between this
site and G1505. G1504 is located in the 5′ minor domain (h45 helix) near the area (“pivot”)
that kicks during translation and enables head swiveling (Figure 3d). This kick is necessary
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for translocation—coordinated movement of the mRNA and tRNAs through the ribosome.
Since hole localization can induce conformational changes of RNA [14], we assume that
hole localization at G1504 can coordinate head swiveling with other processes occurring
during translation.

Beyond the three hole scavengers discussed above, there are several other potential
sites of hole localization, which are located in the functionally important areas of the SSU.
One of these sites is G424, which resides at the end of the h16 + h17 co-axial stack—the
left-hand border of the body (“shoulder”) [23]. This stack contains the Fe4S4 cluster (see
Figures 2a and 3a) [24], which can release or acquire charges and was previously suggested
to serve as a battery that provides holes for electronic coordination of translation [14].
Although charge transfer integrals within the stack form less dense conjugated system
as compared to the remainder of the body (Figure 2a), presumably because of relative
flexibility of the stack, they are sufficient for efficient charge transport. The map of transition
probabilities for the sites in the vicinity of G424 is presented in Figure S5. A vertical green–
cyan line at the latter site indicates that it collects holes from 415th to 429th nucleotides, i.e.,
from the top of h16. Interestingly, Figure S5 reveals “delocalization” of the hole between
G424 and G416, G425, G428: the latter sites show weak vertical lines in the same region
as G424. Importantly, G424′s basin of hole attraction includes A431—the nucleotide that
is in the vicinity of Fe4S4 cluster; accordingly, G424 can readily catch the hole released by
the “battery”. It is well-known that upon the codon–anticodon recognition, the shoulder
moves towards the intersubunit space, finally triggering GTP hydrolysis in EF–Tu [43];
we suggest that this movement can result from the hole localization in the shoulder. In
addition, G424 is located at the interface of the body with the head of the SSU. Thus, we
suppose that hole localization at G424 could also affect the head rotation with respect to
the body, which occurs during the translocation and thus contributes to the coordination
of translation.

The other two potentially important sites of localization are G1405 and G1416, which
reside in h44—the longest single helix in SSU that stretches from the bottom of the
head to the bottom of the body and forms several intersubunit bridges with LSU (see
Figure 3d) [23,44]. Figure 2d indicates that G1405 has large and shallow basin of attraction,
while G1416 has a small but deep basin. Importantly, G1405 and G1416 are located in the
vicinity of the intersubunit bridges B2a and B3, respectively [44]. As mentioned above, we
suppose that charge localization near these intersubunit bridges can hinder the ribosome
ratcheting at certain time moments [8,43] and synchronize it with the other events occurring
during translation.

4. Discussion

Like our previous studies of charge transport in RNA molecules [14,24], this study
is aimed at justifying the relevance of our scenario of translation “orchestration” via hole
migration and localization, and does not pretend on a quantitatively accurate description
of the charge transport process. For this reason, we used a rather simple hopping model,
while charge transport in nucleic acids can be more complex and still remains a subject of
debates [45]. Accordingly, several factors that could considerably affect charge transfer rates
and slightly affect sites of localization were not accounted for. Among them, possible charge
delocalization between the sites could decrease the effective reorganization energies [33,46]
and hence increase charge transfer rates. Moreover, the site energies can depend on charge
delocalization [47] and on the neighboring nucleotides—for instance, the hole energy at
guanine is lower if it has other guanines nearby and is strongly electronically coupled
to them. Noteworthily, some of the localization sites in SSU revealed in this study (e.g.,
G424) are indeed located within the guanine sequences. We also neglected the impact
of the environment (e.g., anionic phosphate moieties or charged amino acids of adjacent
riboproteins) on the site energies and transfer integrals. This effect can be important and
could even enable fine regulation of the charge transport pathways, as suggested in Ref. [14]:
environment-gated RNA helices can serve as a kind of (nano)transistors and/or charge-
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coupled devices. Ionic conductivity, which we suppose to be slower and less controllable by
the RNA structure than the hole transport discussed herein, can be coupled to the latter [48]
and is thus also worth consideration. Finally, low-frequency vibrations of the ribosome and
tRNA could modulate transfer integrals and site energies [14]. Considering these factors
is not straightforward and is a subject of a separate study; specifically, accounting for the
impact of the environment on the site energies in is our nearest-future plans. Nevertheless,
we do believe that considering the abovementioned factors will not question the qualitative
side of our conclusions but will rather refine them—for instance, accounting for modulation
of charge transfer integrals was shown to weakly affect charge localization pattern [14].

Certainly, the suggested mechanism of electronic regulation of the ribosome oper-
ation is to be tested experimentally. For instance, photoluminescence quenching, EPR,
electrochemiluminescence, and electrochemical studies capable of monitoring the charge
carrier motion and localization, as well as mutational analysis, could be useful. A possible
experiment could feature a luminophore attached to the rRNA in the vicinity of the one of
the predicted hole localization sites (see Figure 3) and a moiety that donates a hole to the
rRNA upon photoexcitation (“hole donor”); the latter should be located within the “basin
of hole attraction” of this site (see Figure 2b–d). If our scenario of translation orchestration
is right, the fluorescence of the luminophore will be modulated (quenched) in correlation
with the photoexcitation of the hole donor. Another experiment could employ changing of
the redox state of the ribosomal Fe4S4 cluster using conventional electrochemical reactions
and monitoring the fluorescence of the luminophore attached near the localization site. We
expect that this fluorescence will be quenched when the cluster becomes reduced (i.e., hole
leaves it and reaches the localization site).

Interestingly, very recently, it was observed that in a rather different system—RNA-
dependent RNA polymerase of the SARS-CoV-2 coronavirus, the culprit of continuing
COVID-19 pandemic—two Fe4S4 clusters are incorporated [49]. The role of these clusters is
not clear, but it was shown that their degradation inhibits virus replication [49]. We suggest
that these clusters could provide/accept charge carriers and enable signaling between the
proteins involved into RNA replication like it was observed for DNA [18,22] and proposed
for ribosome [14]. The possibility of charge transport along RNA helices shown in this and
previous [14,20,21,37] studies corroborate this suggestion. As a result, we consider that
charge transport along RNA molecules could play an important role in various biochemical
processes and thus deserves particular attention. If this hypothesis is right, the knowledge
about the charge transport along RNA can be utilized for medical applications, e.g., for
formulation of novel approaches to treat bacterial and viral infections.

5. Conclusions

We have shown that electron holes can efficiently migrate within the ribosomal SSU
and localize at certain sites. Specifically, most of the nucleotides in the SSU have large hole
transfer integrals with their neighbors, resulting in considerable transfer rates between
them. Nonuniform energy landscape induces hole localization, and at least six of the
potential localization sites are situated in the vicinity of the functionally important areas
of the ribosome—several intersubunit bridges, the Fe4S4 cluster, and the pivot enabling
conformational changes of SSU. We suppose that holes localization at these sites can be
a part of the mechanism coordinating intersubunit rotation (ratcheting) and SSU head
swiveling with other events occurring during translation. We anticipate that our findings
will facilitate further studies of possible charge transport within the ribosome, improve the
understanding of the physics underlying translation and advance the molecular biology
and biophysics.

Supplementary Materials: The following are available online, Figure S1: HOMO and LUMO for
nucleobases and nucleotides calculated using various DFT functionals, Figure S2: Reorganization
energies for the nucleobases, Figure S3: Charge transfer integrals within domains of SSU, Figure S4:
Transition probabilities map for SSU, Figure S5: Transition probabilities map for the vicinity of G424.
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