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Abstract: The epithelial–mesenchymal transition (EMT) is a phenomenon that facilitates epithelial
cells to acquire invasive potential to induce the initiation the metastatic spread of tumor cells. Here,
we determined if brassinin (BSN) can affect the EMT process and deciphered its anti-cancer effects.
BSN attenuated the levels of EMT linked genes and suppressed transforming growth factor beta
(TGF-β)-mediated regulation of diverse mesenchymal markers. Additionally, BSN did increase the
expression of various epithelial marker proteins in lung cancer cells. TGF-β-induced morphological
changes and induction of invasive ability of tumor cells was also found to be abrogated by BSN
treatment. Finally, BSN not only suppressed constitutive, but also inducible phosphoinositide-3-kinase
(PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation in tumor cells.
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1. Introduction

Lung carcinoma is a malignant tumor often characterized by abnormal growth and metastasis [1].
The aberrant growth of tumor cells can extend outside the lungs by the process of metastasis and
invasion of neighboring tissues or distant organs within the body [2–6]. Primary lung tumors can
generally metastasize to the brain, bones, liver, and adrenal glands [7]. It has been found that metastasis
rather than primary tumor accounts for the majority of fatalities among cancer patients [8–11].

The epithelial-to-mesenchymal transition (EMT), although required for various physiological
processes, can also contribute pathologically to fibrosis and cancer progression [12–14]. Even though
EMT is usually tranquilized in adulthood, it can promote transformation of tumor cells to an invasive
and metastatic phenotype in lung cancer once stimulated by the growth factor signaling pathway [2].
Generally, during the EMT process, an augmentation of levels of mesenchymal markers, and down
modulation of epithelial markers, is frequently encountered [15–17].
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Various indole phytoalexins, identified from cruciferous (Brassica) vegetables, are important source
of anti-neoplastic agents because they can exert several biological activities, such as anti-proliferative
and anti-carcinogenic activities [18–20]. Among these phytoalexins, brassinin (BSN) was isolated from
Chinese cabbage [21] and was found to suppress TNFα-induced vascular inflammation via modulation
of reactive oxygen species (ROS) production in endothelial cells [22]. Its derivative, homobrassinin,
has also been reported to cause ROS-dependent apoptosis in colorectal cancer cells [23]. Our group has
also reported that BSN can inhibit STAT3 signaling cascades through multiple molecular mechanism(s)
and also attenuate tumor growth under in vivo settings [24]. Our previous report has also indicated
that BSN induced apoptosis by affecting Akt activation in prostate cancer cells [25]. The combination
of BSN and capsaicin can exhibit synergistic apoptotic and anti-metastatic activities in prostate cancer
cells [26]. However, there are no major studies regarding the actions of BSN on the modulation of EMT
biomarkers, therefore this project aimed to decipher the effect of this phytoalexin on constitutive and
inducible EMT processes in malignant cells.

2. Results

2.1. BSN Modulates EMT in Tumor Cells

First, we investigated the levels of EMT markers by Western blot analysis. BSN downregulated
the levels of fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail proteins (Figure 1B).
However, it was found that BSN upregulated occludin and E-cadherin expression (Figure 1B). Moreover,
we determined the levels of EMT markers by real-time quantitative PCR analysis. BSN reduced the
mRNA level of fibronectin and vimentin and enhanced that of E-cadherin (Figure 1C). Furthermore,
as observed by immunocytochemistry, drug treatment caused a decrease of vimentin and N-cadherin
levels, as well an increase of the E-cadherin level (Figure 1D).
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Figure 1. Effects of brassinin (BSN) on epithelial-mesenchymal transition (EMT) in tumor cells. (A) 
Chemical structure of brassinin (BSN). (B) Cells (5 × 105/well) were treated with BSN 50 μM (+) for 24 
h, and compared with non-treated cells (−). Western blotting for different proteins was thereafter 
performed. The results shown are representative data of experiments. Graphs represent band 
intensities of indicated proteins. (C) A549 and H1299 cells were treated with BSN (50 μM) for 24 h. 
The expression of various genes was studied by real-time quantitative polymerase chain reaction 
(PCR). Data represent means ± SD; *** p < 0.001 vs. non-treated (NT) cells, and ** p < 0.01 vs. 
non-treated (NT) cells. (D) Cells were treated as indicated before and levels of EMT markers were 
determined by immunocytochemistry. Quantitative analysis of the fluorescence intensities was 
performed.  

2.2. BSN Regulates TGF-β-Induced EMT in Malignant Cells 

The levels of EMT markers were also examined in TGF-β-treated cells. As shown in Figure 2A, 
TGF-β exposure augmented expression of fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, 
Twist, and Snail, while it downregulated occludin and N-cadherin compared with non-treated cells. 
BSN suppressed TGF-β-induced fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and 
Snail overexpression, whereas it substantially upregulated TGF-β-induced occludin and N-cadherin 
reduction. Also, Figure 2B revealed that identical changes in mRNA level were also observed as 
noted in EMT protein expression patterns. Moreover, immunocytochemistry data showed that 

Figure 1. Effects of brassinin (BSN) on epithelial-mesenchymal transition (EMT) in tumor cells.
(A) Chemical structure of brassinin (BSN). (B) Cells (5 × 105/well) were treated with BSN 50 µM (+) for
24 h, and compared with non-treated cells (−). Western blotting for different proteins was thereafter
performed. The results shown are representative data of experiments. Graphs represent band intensities
of indicated proteins. (C) A549 and H1299 cells were treated with BSN (50 µM) for 24 h. The expression
of various genes was studied by real-time quantitative polymerase chain reaction (PCR). Data represent
means ± SD; *** p < 0.001 vs. non-treated (NT) cells, and ** p < 0.01 vs. non-treated (NT) cells. (D) Cells
were treated as indicated before and levels of EMT markers were determined by immunocytochemistry.
Quantitative analysis of the fluorescence intensities was performed.

2.2. BSN Regulates TGF-β-Induced EMT in Malignant Cells

The levels of EMT markers were also examined in TGF-β-treated cells. As shown in Figure 2A,
TGF-β exposure augmented expression of fibronectin, vimentin, MMP-9, MMP-2, N-cadherin,
Twist, and Snail, while it downregulated occludin and N-cadherin compared with non-treated
cells. BSN suppressed TGF-β-induced fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and
Snail overexpression, whereas it substantially upregulated TGF-β-induced occludin and N-cadherin
reduction. Also, Figure 2B revealed that identical changes in mRNA level were also observed as noted
in EMT protein expression patterns. Moreover, immunocytochemistry data showed that vimentin and
N-cadherin level increased and that of E-cadherin decreased in TGF-β-treated cells. BSN treatment also
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decreased TGF-β-stimulated vimentin and N-cadherin levels, whereas it increased the TGF-β-induced
E-cadherin level (Figure 2C).
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Figure 2. Effects of BSN on transforming growth factor beta (TGF-β) induced EMT process. (A) Cells
were treated with TGF-β (10 ng/mL, −/+), BSN (50 µM, +/−), or the combination condition (+/+) for
24 h and western blotting was performed. The results shown are representative data of experiments.
Graphs represent band intensities of indicated proteins. (B) Cells were treated as described above and
real-time quantitative PCR was performed. Data represent means ± SD; ### p < 0.001 vs. non-treated
(NT) cells, ## p < 0.01 vs. non-treated (NT) cells, # p < 0.05 vs. non-treated (NT) cells, *** p < 0.001 vs.
TGF-β treated cells, ** p < 0.01 vs. TGF-β treated cells * p < 0.05 vs. TGF-β treated cells. (C) The cells
were treated as described above and immunocytochemistry was carried out. Quantitative analysis of
the fluorescence intensities was performed.
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2.3. BSN Suppresses the Proliferation of Tumor Cells

To test the cytotoxic ability of BSN, we used MTT and the result showed that BSN exhibited less
than 5% cytotoxicity in the cells up to 50 µM concentration (Figure 3A). Interestingly, BSN was also
found to significantly attenuate cellular growth in the tested cell lines (Figure 3B).

2.4. BSN Inhibits Invasive and Migratory Capacity of Tumor Cells

To analyze the consequence of BSN treatment on the invasive ability of lung carcinoma cells, invasion
assay was carried out. As shown in Figure 3C, BSN attenuated invasive activity in both A549 and H1299
cells. Next, we investigated the role of BSN in reducing the migratory ability of tumor cells, and as shown
in Figure 3D,E, non-treated cells were noted to migrate significantly faster than BSN treated cells.
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Figure 3. BSN represses various hallmarks of tumor cells. (A) A549 and H1299 cells (1 × 104 cells/well)
were treated with various doses of BSN and viability was examined. (B) BSN reduces the growth of
tumor cells. (C) Invasive ability of cells was measured upon BSN treatment. (D,E) Anti-migratory
potential was analyzed after exposure to BSN (50 µM) for 24 h. Data represent means ± SD; ** p < 0.01,
*** p < 0.001.

2.5. BSN Represses TGF-β-Induced Metastatic Effects

We also analyzed how BSN and TGF-β can affect EMT process. We took a picture of the possible
morphological changes with TGFβ, BSN, or combination group of the two (Figure 4A). TGF-β-treated



Molecules 2019, 24, 1584 6 of 13

cells were found to be more elongated than non-treated cells and displayed a spindle like shape.
However, BSN treatment prevented TGF-β-induced morphological changes, including spindle shaped
morphology. In addition, we examined the role of BSN in reduction of TGF-β-activated cell invasion
and migration. As shown in Figure 4B, TGFβ enhanced cell invasion, however, BSN was found to
significantly down-regulate TGF-β-induced invasion. As shown in Figure 4C, wound healing assay
was also investigated with TGF-β, BSN, or combination group. TGF-β-treated cells showed more
wound closure and had less gap difference than non-treated cells. Moreover, BSN also inhibited
TGF-β-induced migration in both lung tumor cells.Molecules 2019, 24 FOR PEER REVIEW  7 
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ECLIPSE Ts2. (B) Invasion assay was performed as indicated in Figure 2. (C) Migration assay was 
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2.6. BSN Affects Activation of Multiple Oncogenic Molecules 

Figure 4. BSN treatment also modulates the oncogenic characteristics of TGF-β treated cells. (A) The
cells were treated as described in Figure 2A and morphological changes were observed by Nikon
ECLIPSE Ts2. (B) Invasion assay was performed as indicated in Figure 2. (C) Migration assay was
carried out. Cells were treated with TGF-β (10 ng/mL, −/+), BSN (50 µM, +/−), or the combination
condition (+/+) for 24 h. Data represent means ± SD; ## p < 0.01 vs. non-treated (NT) cells, # p < 0.05 vs.
non-treated (NT) cells, and *** p < 0.01 vs. TGF-β treated cells.



Molecules 2019, 24, 1584 7 of 13

2.6. BSN Affects Activation of Multiple Oncogenic Molecules

We next investigated whether BSN modulated PI3K/Akt/mTOR/p70S6K/4E-BP1 phosphorylation
in tumor cells. As shown in Figure 5A,B, BSN substantially downregulated both constitutive and
TGF-β-induced Pl3K, Akt, mTOR, p70S6K, and 4E-BP1 activation. We examined whether overexpression
of constitutive active Akt by pcDNA3-Akt plasmid can prevent the suppressive effect of BSN on
EMT-related protein expression. First, A549 and H1299 cells were transfected with pcDNA3-Akt or
pcDNA3 plasmid vectors. As shown in Figure 5C, BSN treatment in transfected cells slightly suppressed
the phosphorylation of Akt, vimentin, and snail expression. Additionally, our previous study has
demonstrated that treatment with BSN (200 µM) in A549 and H1299 cells suppressed the constitutive
and inducible STAT3 signaling pathway [24]. Here, we found that treatment of BSN 50 µM inhibited
the phosphorylation of Akt. However, BSN at 50 µM dose could not suppress both constitutive and
inducible STAT3 activation (Figure 5D).Molecules 2019, 24 FOR PEER REVIEW  9 
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tumor cells. (A) Cells (5 × 105 well) were exposed to BSN (30-50 µM) for 6 h and western blot was
performed. (B) Three hours after exposure to BSN (50 µM, +/−), TGF-β (10 ng/mL, −/+), or the
combination condition (+/+) was added for an additional three hours and western blotting was carried
out. (C) A549 and H1299 cells were transfected with pcDNA3-Akt and pcDNA3 plasmids for 24 h.
After that cells were treated with BSN 50µM and Western blotting was performed. (D) Cells (5 × 105 well)
were treated with BSN (50 µM, +) for 6 h and Western blotting was performed. All the results shown are
representative data of experiments. Graphs represent band intensities of indicated proteins.

3. Discussion

This study deciphers the possible actions of BSN on the EMT-related cell signaling cascade.
We found that BSN downregulated the levels of various mesenchymal markers and upregulated that
of epithelial markers, and it can also substantially suppress TGF-β-induced fibronectin, vimentin,
MMP-9, MMP-2, N-cadherin, Twist, and Snail expression, whereas it upregulated TGF-β-induced
occludin and N-cadherin levels. Moreover, the suppression of EMT by BSN was found to cause an
abrogation of proliferation and invasion. Interestingly, BSN inhibited not only constitutive but also
inducible PI3K/Akt/mTOR/p70S6K/4E-BP1 phosphorylation in tumor cells.

EMT can cause loss of polarity in epithelial cells and downregulate the levels of epithelial markers,
such as occluding, and then lead to the formation of mesenchymal cells via upregulation of the
levels of markers, such as fibronectin, vimentin, etc. [27,28]. We observed for the first time that BSN
downregulated fibronectin, vimentin, N-cadherin, Twist, and Snail levels at 50 µM concentration,
while no toxic effect was detected at these concentrations. In addition, BSN substantially reduced
the levels of the E-cadherin repressor proteins, Twist and Snail. Overall, findings suggest that the
modulation of mesenchymal markers and epithelial markers by BSN can lead to blockage of EMT in
lung carcinoma cells.

Matrix metalloproteinases (MMP)-9 and MMP-2 proteins can actively mediate the dissemination
of tumor cells to distant sites [29,30]. Overexpression of MMP-9 and MMP-2 can also act as markers
of metastasis and poor prognosis in patients [31,32]. We found that BSN substantially inhibited the
MMP-9 and MMP-2 levels, thereby suggesting that the anti-metastatic effects displayed by BSN could
be possibly mediated through the reduced activity of these two endopeptidases.

It was noted that this phytoalexin also suppressed the levels of upregulated mesenchymal markers
and downregulated E-cadherin and occludin levels upon TGF-β treatment. We observed that BSN
attenuated the conversion into a spindle-like morphology caused by TGF-β exposure Additionally,
cellular invasion and migration promoted by TGF-β was attenuated by exposure to BSN in tumor cells.

TGF-β has been found to cause induction of multiple oncogenic cascades, including PI3K, as well
as Ras and Rho GTPases cascades [33], and thus drive the EMT process by controlling levels of diverse
genes that can control metastasis. Our previous reports already suggest that PI3K/Akt/mTOR signaling
cascade may have a crucial role in TGF-β-driven EMT phenomena [4,6]. In this study, we also found
that BSN can substantially abrogate TGF-β-induced activation of these oncogenic kinases (Figure 6).
However, additional experiments are required to decipher the different mechanisms underlying the
beneficial actions of BSN against the metastatic spread of malignant cells.
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tumor cells.

4. Materials and Methods

4.1. Reagents and Cell Lines

Brassinin (BSN, Figure 1A) was purchased from LKT laboratories (Minneapolis, MN). Roswell Park
Memorial Institute (RPMI) 1640, dulbecco’s modified eagle medium (DMEM) low glucose, fetal bovine
serum (FBS), and penicillin-streptomycin mixture were purchased from Thermo Fisher Scientific
Inc. (Waltham, MA, USA). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),
Tris base, glycine, NaCl, sodium dodecylsulfate (SDS), and bovine serum albumin (BSA) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Alexa Fluor® 488 donkey anti-goat IgG (H+L) antibody
and Alexa Fluor® 594 donkey anti-rabbit IgG (H+L) antibody were obtained from Life Technologies
(Grand Island, NY, USA). The iN-fect™ in vitro Transfection Reagent was obtained from iNtRON
Biotechnology (Seongnam, Korea). Anti-Fibronectin, anti-Vimentin, anti-E-cadherin, anti-N-cadherin,
anti-Occludin, anti-Twist, anti-MMP-2, anti-MMP-9, anti-Akt (all diluent, 1: 2000), and anti-β-actin
antibodies (diluent, 1: 5000) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Anti-Snail, anti-p-PI3K(Tyr458), anti-PI3K, anti-p-Akt(Ser473), anti-p-mTOR(Ser2448), anti-mTOR,
anti-p-p70S6K(Thr421/Ser424), anti-p70S6K, anti-p-4E-BP1(Ser65), and anti-4E-BP1 (all diluent, 1: 2000)
antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA). Human lung carcinoma
cells (A549 and H1299 cells) were obtained from the American Type Culture Collection (Manassas,
VA, USA). A549 cells were cultured in DMEM low glucose. H1299 cells were cultured in RPMI
1640 medium.

4.2. Western Blot Analysis

For detection of various antibodies, BSN-treated whole-cell extracts were lysed in a lysis buffer
(20 mM Tris (pH 7.4), 250 mM NaCl, 2 mM EDTA (pH 8.0), 0.1% Triton X-100, 0.01mg/mL aprotinin,
0.005 mg/mL leupeptin, 0.4 mM phenyl methane sulfonyl fluoride (PMSF), and 4 mM NaVO4).
Then, protein concentration in the whole cell lysates was measured by Bradford reagent (Bio-Rad,
Hercules, CA, USA). An equal amount of lysates was resolved in an 8–15% SDS-polyacrylamide
gel. After electrophoresis, the protein was transferred to the nitrocellulose membrane, blocked
with 5% skim milk in 1× TBST (1× TBST with 0.1% Tween 20), and proved with specific primary
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antibodies: anti-Fibronectin, anti-Vimentin, anti-MMP-9, anti-MMP-2, anti-N-cadherin, anti-Twist,
anti-Snail, anti-Occludin, anti-E-cadherin, anti-p-PI3K(Tyr458), anti-PI3K, anti-p-Akt(Ser473), anti-Akt,
anti-p-mTOR(Ser2448), anti-mTOR, anti-p-p70S6K(Thr421/Ser424), anti-p70S6K, anti-p-4E-BP1(Ser65),
and anti-4E-BP1. Antibodies were incubated at 4 ◦C overnight. Finally, membranes were washed
with 1× tris buffered saline with tween 20 (TBST) and incubated with horseradish peroxidase (HRP)
conjugated anti-rabbit IgG antibodies, anti-goat IgG antibodies, and anti-mouse IgG antibodies at room
temperature for 2 h. The membranes were detected using chemiluminescence (ECL) (EZ-Western Lumi
Femto, DOGEN) [4]. Densitometry values for Western blot experiments were estimated by Image J
software (file version 1.4.3.67, National Institutes of Health, Bethesda, MD, USA).

4.3. Immunocytochemistry

A549 and H1299 cells were seeded in an 8-well glass chamber slide, and were treated with BSN for
24 h. Both cells were fixed with 4% paraformaldehyde (PFA) at room temperature for 20 min, washed
three times with 1× phosphate-buffered saline (PBS), and permeabilized with 0.2% Triton-X-100. Then,
they were blocked with 5% bovine serum albumin (BSA) in PBS for 1 h and incubated overnight at
4 ◦C with anti-Vimentin, anti-N-cadherin, and anti-E-cadherin (1:100; Santa Cruz, CA, USA). The next
day, cells were washed three times by 1× PBS and incubated with Alexa Fluor® 488 donkey anti-goat
IgG (H+L) antibody and Alexa Fluor® 594 donkey anti-rabbit IgG (H+L) antibody for 1 h at room
temperature. The cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) (1 µg/mL) for 3 min at
room temperature and mounted on glass slides using Fluorescent Mounting Medium (Golden Bridge
International Labs, Mukilteo, WA, USA). Finally, the fluorescence signal was detected by using an
Olympus FluoView FV1000 confocal microscope (Tokyo, Japan) [4].

4.4. Real-Time Quantitative PCR

Total RNA was extracted with Trizol reagent and RNA was purified with chloroform and
isopropanol. RNA was converted to cDNA and the expression levels of Fibronectin, Vimentin, N-cadherin,
and E-cadherin were determined and compared using a StepOne real-time PCR instrument (Applied
Biosystems, Foster City, CA, USA). Pairs of forward and reverse primer sets were used as follows:
Fibronectin, 5′-ATGATGAGGTGCACGTGTGT-3′and 5′-CTCTGAATCATGGCATTGGT-3′. Vimentin,
5′-AGATGGCCCTTGACATTGAG-3′ and 5′-TGGAAGAGGCAGAGAAATCC-3′. N-cadherin,
5′-ATTGTGGGTGCGGGGCTTGG-3′ and 5′-GGGTGTGGGGCTGCAGATCG-3′. E-cadherin,
5′-TGCCCAGAAAATGAAAAAGG-3 and 5′-GTGTATGTGGCAATGCGTTC-3′.

4.5. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay

Cell viability was measured using an MTT assay to detect nicotinamide adenine dinucleotide
(NADH)-dehydrogenase activity. A549 and H1299 cells were treated with BSN (0, 10, 30, 50, 100 µM)
for 24 h. After that, MTT solution (2 mg/mL) 30 µL was added into each well for 2 h and MTT lysis
buffer 100 µL was added for overnight incubation. The absorbance was measured at 570 nm using an
automated spectrophotometric plate reader. Cell viability was normalized as a relative percentage in
comparison with non-treated controls [3].

4.6. Real-Time Cell Proliferation Analysis

Cell growth behavior was performed using the Roche xCELLigence Real-Time Cell Analyzer
(RTCA) dual purpose (DP) instrument (Roche Diagnostics GmbH, Germany), as described previously.
The cell growth pattern was determined as elaborated previously [4].

4.7. Invasion Assay

Instrument real-time monitoring of cellular invasion was performed using the Roche xCELLigence
Real-Time Cell Analyzer (RTCA) DP instrument (Roche Diagnostics GmbH, Germany). The RTCA DP
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instrument used CIM (cellular invasion/migration)-plate 16 and measured electrical measurements.
The upper chamber of the CIM-plates was coated with matrigel (BD Biosciences, Becton-Dickinson,
Franklin Lakes, NJ, USA) and medium containing 10% FBS was placed in the lower chamber as a
chemoattractant. Then, upper and lower chamber plates were assembled. Serum-free medium was
placed in the upper chamber and incubated for 1 h at 37 ◦C and background impedance measurement
was performed. After background measurement, A549 and H1299 cells (1 × 105 cells/well) were seeded
onto the upper chamber and the electrical impedance of the membrane was recorded every 15 min [4].

4.8. Wound Healing Assay

Wound healing assay was performed in the monolayers of cells. The cells (2 × 105 cells/well) were
plated in a 12-well plate and incubated until 80% confluence was reached. Then, the cell monolayer
was scratched by a 200 µL micropipette tip and washed with serum-free medium. Next, cells were
treated with BSN and incubated with serum-free medium for 24 h. The width of the wound was
observed by using a microscope (Nikon ECLIPSE Ts2., Tokyo, Japan) at time 0 and 24 h. Gap distance
of the wound was measured at four different sites and non-treated samples were used as controls [4].

4.9. Transfection with pcDNA3-myr-Ha-Akt1 Plasmid.

The iN-fect™ in vitro Transfection Reagent (iNtRON Biotechnology, Seongnam, Korea) was used
for transfection with Akt expression vectors (Adgene plasmid 9008; pcDNA3-myr-Ha-Akt1). A549 and
H1299 cells were transfected with pcDNA3-Akt (300 ng) or pcDNA3 (300 ng) for 24 h in serum-free
media. After transfection, cells were treated with BSN for 6 h. The cell lysates were prepared for
Western blot analysis.

4.10. Statistical Analysis

All experiments are presented as the mean ± standard deviation (SD). Statistical significance was
analyzed by Mann-Whitney U test.
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