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Abstract Precise biomarker development is a key step in disease management. However, most of

the published biomarkers were derived from a relatively small number of samples with supervised

approaches. Recent advances in unsupervised machine learning promise to leverage very large data-

sets for making better predictions of disease biomarkers. Denoising autoencoder (DA) is one of the

unsupervised deep learning algorithms, which is a stochastic version of autoencoder techniques. The

principle of DA is to force the hidden layer of autoencoder to capture more robust features by

reconstructing a clean input from a corrupted one. Here, a DA model was applied to analyze inte-

grated transcriptomic data from 13 published lung cancer studies, which consisted of 1916 human

lung tissue samples. Using DA, we discovered a molecular signature composed of multiple genes for

lung adenocarcinoma (ADC). In independent validation cohorts, the proposed molecular signature

is proved to be an effective classifier for lung cancer histological subtypes. Also, this signature suc-

cessfully predicts clinical outcome in lung ADC, which is independent of traditional prognostic fac-
.
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tors. More importantly, this signature exhibits a superior prognostic power compared with the

other published prognostic genes. Our study suggests that unsupervised learning is helpful for bio-

marker development in the era of precision medicine.
Introduction

Lung cancer is the most frequently diagnosed cancer and the
leading cause of cancer death all over the world [1,2]. Based

on the size and appearance of the malignant cells, lung cancers
are mainly classified into non-small-cell and small-cell lung
cancers [3]. Lung adenocarcinoma (ADC), the most common
subtype of non-small-cell lung cancers originating from

peripheral lung tissue, accounts for nearly 40% of all lung can-
cers [3]. To gain better lung ADC diagnosis, prognosis, and
treatment, high-throughput molecular profiling methods have

been used to characterize lung ADC in recent years [4]. Using
whole-genome sequencing and/or whole-exome sequencing
methods, several studies have reported several somatic muta-

tions, structural rearrangements, and copy number variations
related to key biological pathways in lung ADC [5–13]. In
addition, Liu et al. [10] identified 106 splice-site mutations

associated with cancer-specific aberrant splicing using both
whole-genome sequencing and transcriptome sequencing
methods. White et al. [14] also identified several differentially
expressed long intergenic non-coding RNAs in lung ADC.

Combinations of mRNA, microRNA, and DNA sequencing
with copy number, methylation, and proteome analyses
revealed a comprehensive molecular profiling of lung ADC

[12]. Based on these molecular profiling data and the clinical
phenotype data, many biomarker sets have been identified that
provide better diagnosis or prognosis of lung ADC [15–23].

Specifically, Okayama et al. [20] developed a prognostic classi-
fier, which consists of the expression levels of four genes to
identify stage I lung ADC, and has been validated in five inde-
pendent cohorts [20]. Our previous work also identified the

expression levels of 37 ion channel genes to predict survival
in lung ADC [17]. In the same study, we proposed another
set of 13 ion channel genes an overall diagnostic biomarker

set to differentiate lung cancer subtypes [17]. These studies
provide a foundation for classification, outcome prediction,
and treatment guidance of lung ADC.

Although substantial improvements have been made in the
past several years, the diagnosis, prognosis, and treatment of
lung ADC are far from precise [4]. In the era of precision med-

icine, efficient biomarker identification is a fundamental neces-
sity; a lack of such biomarkers is an obstacle to improving the
precision of disease management [23]. Traditional lung ADC
biomarkers were normally derived from a relatively small

cohort size, which may cause the population bias observed
with previously identified biomarkers [23]. To overcome the
drawback of these traditional biomarkers, an ideal precision

medicine research is to increase the magnitude of data col-
lected and to analyze them simultaneously [23]. Fortunately,
a large amount of molecular profiling data, such as gene

expression data of lung ADC, are available in public data-
bases. Some studies have identified novel regulators and poten-
tial targets of lung ADC by integrating these data from various

sources. For example, Chen et al. [24] analyzed 13 gene expres-
sion datasets using a meta-analysis approach and identified
PTK7 as a survival gene in lung ADC. More thorough analy-
sis, however, is needed to identify novel and useful biomarkers

from the huge amount of data to manage lung ADC.
Notably, recent advances in machine learning methods,

such as deep learning, have promised to leverage very large

datasets for making better inferences [25,26]. Using deep neu-
ral networks, several studies have exhibited good accuracy in
predicting splicing patterns [27], sequence specificities of
DNA- and RNA-binding proteins [28], and functional effects

of non-coding variants [29,30]. These studies hint that the deep
learning method possesses promising power in integrating
large biological datasets to make inferences, and that deep

learning could be a useful algorithm to identify biomarkers
from large-scale gene expression datasets. Some pioneer stud-
ies have also successfully applied deep learning algorithms in

analyzing whole transcriptome data. For example, a multi-
task, multi-layer, feed-forward neural network was developed
to infer the expression of target genes from the expression of

some landmark genes [31]. Some autoencoder models were
used to extract meaningful features from whole genome-scale
gene expression data [32–34]. The denoising autoencoder
(DA) model is a stochastic version of the autoencoder tech-

niques. The principle of DA is simple: in order to force the hid-
den layer of autoencoder to capture more robust features, we
train the autoencoder to reconstruct a clean (repaired) input

from a partially destroyed (corrupted) input, which is moti-
vated by the rationale that ‘‘a good representation is one that
can be obtained robustly from a corrupted input and that will

be useful for recovering the corresponding clean input” [35]. In
this study, we hypothesize that the DA model is useful in con-
structing meaningful features related to disease classification

and survival prediction from large-scale transcriptome data
in lung ADC. We integrated the genome-wide expression data
from 13 published lung cancer studies, which consisted of 1916
human lung tissue samples, and applied a DA model to ana-

lyze this large dataset. We next identified some important
DA hidden nodes that were related to clinical phenotypes
and constructed a molecular signature composed of multiple

genes from the hidden DA nodes. Using independent valida-
tion cohorts, we confirmed that the proposed molecular signa-
ture potentially serves as a classifier for lung cancer

histological subtypes. Also, this signature successfully predicts
clinical outcome in lung ADC, which is independent of tradi-
tional prognostic factors.
Results

Constructing the DA model

We obtained 13 lung cancer transcriptome datasets from the

Gene Expression Omnibus (GEO) database [36], which were
all based on the Affymetrix Human Genome U133 Plus 2.0
Array (Table S1). In total, 1916 human lung tissue samples
were collected, including 224 control (CTR) samples, 827 sam-

ples from ADC patients, 357 samples from patients with
squamous-cell carcinoma (SCC), 76 samples from patients
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with large-cell carcinoma (LCC), 21 samples from patients
with small-cell lung carcinoma, 2 samples from adenosqua-
mous carcinoma patients, 39 samples from basaloid carcinoma

patients, 24 samples from patients with carcinoid tumor, 56
samples from patients with large cell neuroendocrine carci-
noma, and 290 samples without clear classification informa-

tion. We used the ADAGE package [33] to construct the DA
model as illustrated in Figure 1 (see Materials and methods
for details). The microarray probeset expression data of all

these samples were used as training input of DA. By adding
random noise to the input expression values, corrupted expres-
sion data were constructed, which were next encoded into 200
nodes. All probesets were connected to each node by a weight

vector, which measures the contribution of each probeset to
the node. The node activity of each sample was further com-
Figure 1 Schematic of the strategy to identify the molecular signature

The expression information of N genes was the input of the denoisi

randomly adding noise to the original gene expression data. A hidden la

was connected to each gene. The values contained in each node were ter

data (e.g., tumor histological subtype and clinical outcome), signific

schematic. Within each node, each gene was assigned a weight reflect

weight within both tails of the weight distribution were defined as h

prioritized nodes were finally defined as signature genes.
puted as the inner product between the corrupted input of
the sample and the weight vector. The probesets with extreme
positive or negative weights were considered as high-weight

probesets, which provide the strongest impact to the node
activity.

The histological subtype-associated nodes

We next assessed the association of each node with patient
phenotypic information. To avoid the bias caused by batch

effect, one-way ANOVA was performed to test the difference
in node activity among different datasets. The nodes with the
top 100 largest F-statistic were excluded. We also removed

the nodes with activity variance smaller than 0.002 (node activ-
ng autoencoder (DA) model. Corrupted input was generated by

yer with K nodes was then constructed by autoencoder. Each node

med node activity. By linking node activity with sample phenotypic

ant nodes were prioritized, that is, Node 2 and Node 4 in this

ing the contribution of the gene to the node activity. Genes with

igh-weight genes. The overlapping high-weight genes among the
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ity followed a bimodal distribution and 0.002 was the pit
between the peaks in the probability density function). The
retained nodes were subject to comparison regarding histolog-

ical subtypes. Due to sample size limitation for some rare his-
tological subtypes, we only focused on the ADC, SCC, LCC,
and CTR samples in this study. The node activity of the

ADC samples was compared to that of the CTR, SCC, and
LCC samples, respectively. For each type of comparison
(i.e., ADC vs. CTR, ADC vs. SCC, or ADC vs. LCC), all

the nodes were ranked according to the P values computed
by t-test and only the nodes with the top five lowest P values
were retained. In total, we identified three nodes, Node 52,
Node 187, and Node 193, among the top five in all three com-

parisons (Figure 2A). The activities of these three nodes signif-
icantly differentiated the ADC samples from the CTR, SCC,
and LCC samples (t-test, P < 1 � 10�10 in all three compar-

isons), which potentially serves as a predictor of histological
subtypes (Figure 2A, Figure S1).

The prognosis-associated nodes

We also investigated the association between node activity and
clinical outcome of the ADC patients. Among the 827 ADC

samples in the training set, overall and recurrence-free survival
data were available for 615 and 519 subjects, respectively. Uni-
variate Cox proportional hazards regression was applied to
evaluate the relationship between ADC outcome and activity

of each node. All the nodes were then ranked based on the P
values computed by Cox regression. Consequently, we identi-
fied four nodes, Node 52, Node 187, Node 193, and Node
Figure 2 Identifying clinically relevant nodes

A. The top nodes distinguishing the adenocarcinoma (ADC) patients fr

cell carcinoma (LCC) subjects. Each panel indicates the distribution

associated with clinical outcome in the ADC patients. The overall surv

193 (negative nodes) were decreased in the ADC patients with poore

(positive nodes) were increased in the ADC patients with poorer overall

the high node activity and low node activity groups. The P values were c

two groups.
195, in which node activity was strongly associated (within
the top five) with both overall and recurrence-free survival.
The activities of Node 52 and Node 193 were significantly

downregulated [Cox regression: P = 1.7 � 10�7 (overall sur-
vival) and P < 1 � 10�10 (recurrence-free survival) for Node
52; P < 1 � 10�10 (overall survival) and P = 2.9 � 10�6

(recurrence-free survival) for Node 193] in the ADC patients
with poorer survival (Figure 2B, Figure S2). By contrast, the
activities of Node 187 and Node 195 were significantly upreg-

ulated [Cox regression: P < 1 � 10�10 (overall survival) and
3.8 � 10�5 (recurrence-free survival) for Node 187;
P < 1 � 10�10 (overall survival) and 7.9 � 10�6

(recurrence-free survival) for Node 195] in the ADC patients

with poorer survival (Figure 2B, Figure S2).

The construction of a 35-gene signature

DA nodes are derived from the expression values of the human
transcriptome (Figure 1), which can be used directly for diag-
nostic or prognostic purpose as suggested by Tan et al. [32,33].

In contrast, to build mRNA-based biomarkers, we selected a
small number of human genes that can predict the survival
of human lung ADC (Figure 1). Here, we designated Node

52 and Node 193 as ‘‘negative nodes” and Node 187 and Node
195 as ‘‘positive nodes”. The probeset weights in the four pri-
oritized nodes followed a bell-shape distribution (Figure 3A).
Because the node activity of each specific sample was the inner

product of the probeset weight vector of the node and the cor-
rupted probeset expression of the sample, the high-weight
probesets (within either left or right 1% tail; Figure 3A) in
om the control (CTR), squamous-cell carcinoma (SCC), and large-

of node activity in each category. B. The top nodes significantly

ival data were analyzed here. The activities of Node 52 and Node

r overall survival, while the activities of Node 187 and Node 195

survival. The median node activity was used as a cutoff to separate

omputed by log-rank test for the difference in survival between the



Figure 3 Prioritizing high-weight probesets

A. Distribution of probeset weight in the prioritized nodes. The orange areas represent the high-weight probesets (within 1% tail)

upregulated in the patients with poorer survival, whereas the blue areas denote the high-weight probesets (within 1% tail) downregulated

in the patients with poorer survival. B. Correlation in probeset weight between the prioritized nodes. The red and blue dots represent the

overlapping upregulated and downregulated probesets in the patients with poorer survival, respectively. C. The top Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways associated with the signature genes. The P values were calculated by Fisher’s exact test. The

vertical dash line denotes the significance level of a = 0.05.
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each prioritized node exhibited the most influence over the
node activity. The high-negative-weight probesets in the nega-

tive nodes and the high-positive-weight probesets in the posi-
tive nodes (the orange areas in Figure 3A) were potentially
upregulated in the patients with poorer survival, while the

high-positive-weight probesets in the negative nodes and the
high-negative-weight probesets in the positive nodes (the blue
areas in Figure 3A) were downregulated in the patients with

poorer survival. As expected, strong positive correlation in
probeset weight was observed between the two negative nodes
(Node 52 vs. Node 193) and between the two positive nodes
(Node 187 vs. Node 195) (Figure 3B). On the contrary, the

probeset weights between positive and negative nodes were
negatively correlated (Figure S3). We next focused on the
intersection of the high-weight probesets among the four prior-

itized nodes. In total, we identified 40 overlapping probesets
within the intersection, including 29 upregulated and 11 down-
regulated probesets in the patients with poorer survival (Fig-

ure 3B), which were mapped to 35 unique well-annotated
human genes. We designated these 35 genes as the 35-gene sig-
nature (Table S2). A weight was assigned to each gene within
the signature: 1 and –1 for the genes positively and negatively

associated with worse prognosis, respectively. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
analysis demonstrated that the 35-gene signature was signifi-

cantly associated with some cancer-related KEGG terms,
e.g., ‘‘p53 signaling pathway” (Figure 3C).

Actually, among the four prognosis-related nodes, three

nodes (i.e., Node 52, Node 187, and Node 195) were also the
nodes that best classified histological subtypes (Figure 2A).
Therefore, it is reasonable to hypothesize that the 35-gene sig-
nature can be used for both diagnostic (distinguishing ADC

patients from non-ADC subjects) and prognostic (predicting
clinical outcome for ADC patients) purposes.

The 35-gene signature distinguishes ADC patients from non-

ADC samples

To validate the diagnostic role of the 35-gene signature, we

investigated its classification performance in three independent
validation cohorts from Aichi Cancer Center (ACC), Japan
(GEO: GSE11969) [37], Duke University Medical Center
(Duke), USA (GEO: GSE3141) [38], and University of Tokyo

(Tokyo), Japan (GEO: GSE2088) [39], respectively. There are
5 CTR samples, 90 ADC patients, 35 SCC patients, and 18
LCC patients in the ACC cohort; the Duke cohort is com-

posed of 58 ADC patients and 53 SCC patients; the Tokyo
cohort includes 30 CTR samples, 9 ADC patients, and 48
SCC patients. Principal component analysis (PCA) indicates

that the 35-gene signature differentiates ADC patients from
non-ADC samples in all the validation cohorts (Figure 4A).
To statistically assess the classification power of the 35-gene

signature, a classification index (ADC-index) was assigned to
each human subject (see Materials and methods for details).
ADC-index is a linear combination of the gene expression val-
ues of the 35 genes in the 35-gene signature. Firstly, the ADC-

index was significantly higher in the ADC patients than in the
CTR samples in the ACC and Tokyo cohorts (t-test,
P = 0.003 for the ACC cohort and P = 3.6 � 10�4 for the

Tokyo cohort; Figure 4B). Secondly, the ADC-index of the
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ADC patients was significantly lower than that of the SCC
patients in all the validation cohorts (t-test, P < 1 � 10�10

for the ACC cohort, P = 8.5 � 10�7 for the Duke cohort,

and P= 6.6 � 10�5 for the Tokyo cohort; Figure 4B). Thirdly,
3

the ADC-index was also significantly decreased in the ADC
patients compared with the LCC patients in the ACC cohort
(t-test, P = 1.3 � 10�8; Figure 4B). All these results strongly

suggest that the 35-gene based ADC-index potentially serves
as a predictor of histological subtypes.

The 35-gene signature predicts clinical outcome for ADC

patients

We next tested whether the 35-gene based ADC-index can pre-

dict survival for ADC patients. Besides the ACC and Duke
cohorts, we analyzed one more validation cohort from Moffitt
Cancer Center (MCC), USA (GEO: GSE72094) [40], which

consists of 442 ADC patients (survival data are available for
398 patients). Univariate Cox proportional hazards regression
of survival indicates that ADC-index is positively associated
with worse survival for the ADC patients from the validation

cohorts, except for the Duke cohort (Table 1). Increase by one
in ADC-index enhances the risk of death by 4%, 1%, and 1%
for the ACC, Duke, and MCC cohorts, respectively (Table 1).

Using the median ADC-index as a cutoff, we further stratified
the ADC patients into two groups for each validation cohort.
Kaplan–Meier survival curves demonstrated a significant dif-

ference in survival between the two patient groups in all three
validation cohorts (log-rank test, P = 0.026 for the ACC
cohort, P = 0.048 for the Duke cohort, and P = 5.9 � 10�5

for the MCC cohort; Figure 5A).

We also investigated the prognostic patterns of the individ-
ual genes within the 35-gene signature. For each gene, the
ADC patients were stratified into two groups using the median

expression value of the gene as a cutoff. The hazard ratio of
death was then computed between the two patient groups
(high-expression group over low-expression group). We found

that, in all the validation cohorts, the hazard ratios of the pos-
itively weighted genes were significantly higher than those of
the negatively weighted genes (t-test, P = 2.2 � 10�5 for the

ACC cohort, P = 6.1 � 10�6 for the Duke cohort, and
P < 1 � 10�10 for the MCC cohort; Figure 5B). The expres-
sion of the genes with a positive weight tends to be positively
correlated with worse prognosis (i.e., hazard ratio > 1),

whereas the negatively weighted genes tend to have a hazard
ratio < 1 (Figure 5B). These results confirm the robustness
of the 35-gene signature.

Finally, we tested the prognostic power of the 35-gene
based ADC-index in SCC and LCC patients, respectively.
We failed to identify, however, any significant association
Figure 4 The 35-gene signature distinguishes ADC patients from

non-ADC subjects in the validation cohorts

A. Principal component analysis (PCA) on the 35-gene signature

in the Aichi Cancer Center (ACC), Duke University Medical

Center (Duke), and University of Tokyo (Tokyo) cohorts. PC1,

the first principal component; PC2, the second principal compo-

nent. ACC, the cohort from Aichi Cancer Center, Japan (GEO:

GSE11969) [37]; Duke, the cohort from Duke University Medical

Center, USA (GEO: GSE3141) [38]; Tokyo, the cohort

from University of Tokyo, Japan (GEO: GSE2088) [39]. B. The

35-gene based ADC-index differentiates the ADC patients from

the CTR, SCC, and LCC subjects in the validation cohorts.



Table 1 Univariate Cox proportional hazards regression of survival by ADC-index

Cohort atient number HR 95% CI of HR P valueP

Note: HR, hazard ratio; CI, confidence interval; ADC, adenocarcinoma; SCC, squamous-cell

carcinoma; LCC, large-cell carcinoma; ACC, the cohort from Aichi Cancer Center, Japan

(GEO: GSE11969) [37]; Duke, the cohort from Duke University Medical Center, USA (GEO:

GSE3141) [38]; MCC, the cohort from Moffitt Cancer enter, USA (GEO: GSE72094) [40].
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between ADC-index and clinical outcome in SCC and LCC
(Table 1; Figure S4). This suggests that the 35-gene signature

is an ADC-specific prognostic predictor.

The 35-gene based ADC-index is independent of standard

prognostic covariates

To confirm the role of the 35-gene signature as an independent
prognostic factor, multivariate Cox model was applied to

investigate the performance of ADC-index in comparison with
the traditional prognostic variables in lung cancer, including
age, gender, smoking history, grade, stage, and mutation sta-
tuses of EGFR, KRAS, STK11, and TP53. Because of the lim-

ited phenotypic information in the Duke cohort, only the ADC
patients from the ACC and MCC cohorts were considered
here. Multivariate Cox proportional hazards regression of sur-

vival indicates that the 35-gene based ADC-index remains a
significant covariate in relation to the traditional clinical fac-
tors in both ACC and MCC cohorts (P = 0.003 for the

ACC cohort and P = 6.5 � 10�5 for the MCC cohort;
Table 2), which suggests that the 35-gene based ADC-index
is an independent prognostic variable.

Superior prognostic power of the 35-gene signature

It was reported that the prognostic power of some published
gene signatures is not significantly better than that of random

gene sets with identical size [41]. Therefore, we followed the
resampling procedures suggested by Venet et al. [41] to test
whether the 35-gene signature performed better than random

signatures. We artificially constructed 1000 random gene sig-
natures with identical size as the 35-gene signature. Both
PCA and Cox regression were conducted for each artificially

resampled signature. The association between the first princi-
pal component and clinical outcome was recorded as the aver-
age absolute value of Cox Wald statistic (|Z|) in the three
validation cohorts. We found that the mean of |Z| of our real

signature was significantly larger than that of the artificial gene
signatures (right-tailed, P = 0.005; Figure 6), which suggests a
non-random prognostic power of the 35-gene signature.

We next compared the prognostic power of the 35-gene
signature against the published lung cancer prognostic genes.
In total, 425 prognostic genes were collected from previous
studies [42–52]. We performed a resampling test to check
whether the prognostic power of the 35-gene signature was

statistically better than the other prognostic genes. For each
round of randomization, 35 genes were randomly picked up
from the pool of the published prognostic genes. We found

that the mean of |Z| of the 35-gene signature was signifi-
cantly larger than that of the 1000 random gene signatures
consisting of published prognostic genes (right-tailed,

P = 0.007; Figure 6), which suggests the superior prognostic
power of the 35-gene signature.

To test the robustness of DA, we further built 100 DA
models at size of 200 and 400 nodes, respectively, using differ-

ent seeds, which resulted in DA models with different local
minima. We applied the same procedures as above described
to prioritize gene signatures from different DA models. The

genes identified by individual DA models were pooled
together. In total, 272 and 371 unique genes were collected
from the 100 DA models of 200 nodes and the 100 DA models

of 400 nodes, respectively, which significantly overlapped with
the 35-gene signature (33 and 35 overlapping genes for 200-
node and 400-node models, respectively; hypergeometric test,
P < 1 � 10�10). We next performed a resampling test with

1000 rounds to check whether the prognostic power of the
DA genes was statistically better than the published lung can-
cer prognostic genes. For each round of randomization, 35

genes were randomly picked up from the pool of the DA genes
prioritized by the 200-node and 400-node models, respectively.
We found that the mean of |Z| of both the 200-node and 400-

node DA genes was significantly larger than that of the 1000
random gene signatures consisting of published prognostic
genes (t-test, P < 1 � 10�10; Figure S5). Interestingly, the

prognostic power of the genes collected from the 200-node
DA models was significantly better than that of the genes col-
lected from the 400-node models (t-test, P < 1 � 1 � 10�10;
Figure S5). To compare with linear approaches, we also

extracted 261 prognostic genes using PCA-based method (see
Materials and methods for details). Resampling test demon-
strated that the mean of |Z| of the PCA genes was significantly

lower than that of both the 200-node and 400-node DA genes
(t-test, P < 1 � 10�10; Figure S5). All these results suggest
that the DA-based framework can robustly generate molecular

signatures from transcriptomic data and larger node number
does not necessarily improve DA reconstruction [53].
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Discussion

In this study, we successfully applied an unsupervised DA-
based framework, a deep learning algorithm, to extract impor-
3

tant features from large scale of high-dimensional genome-
wide expression data. Unlike some unsupervised algorithms
used in feature extraction, such as PCA, independent compo-

nent analysis, and cluster algorithms, which consider linear
mappable information from input to features, DAs can cap-
ture higher-level structures from the observed input in the

non-linear space [32,33]. In other words, DA can be deemed
as a non-linear generalization of linear models and can grasp
the higher-level and complex correlations from low-level fea-

tures. For example, Hinton et al. [54] indicates that autoen-
coder, which is the core algorithm of DA, performs much
better than PCA as a tool to learn low-dimensional codes.
By introducing random noises into real expression inputs in

model training process, DA can robustly extract stable biolog-
ical principles among genes from genome-wide expression data
[32,33]. We trained a DA model with 200 output nodes from

1916 microarray gene expression datasets (Figure 1). From
these output nodes, we identified three top nodes that can dis-
criminate ADC samples from CTR, SCC, and LCC samples

without referring to any prior knowledge on the phenotypic
data (Figure 2A). Similarly, we also detected four nodes that
are significantly related to both overall and recurrence-free sur-

vival in ADC patients (Figure 2B). These results suggest that
DA model can successfully extract some low-dimensional
molecular features that are related to both disease diagnosis
and prognosis from large-scale genome-wide expression data-

sets. Notably, these identified nodes are independent from
how the datasets are generated. This is especially important
when the datasets are integrated from various sources, as batch

effects inherently exist in the dataset, which will skew the
derived conclusions [55]. The superior performance of the
DA model on human lung ADC confirms its potential applica-

tion in biomarker development, especially when the datasets
are larger and integrated from various sources.

Interestingly, all the three nodes that can separate ADC

from CTR, SCC, and LCC samples (Node 52, Node 187,
and Node193) are among the top five predictors of lung
ADC survival (Figure 2A and B). The overlap between the
ADC diagnostic and prognostic nodes is remarkable, which

suggests that a single set of marker genes may serve a dual pur-
pose. Also, the overlap suggests that these three nodes learned
a combined transcriptome pattern that captures both histolog-

ical and prognostic features of ADC, which may be missed by
existing methods used in biomarker development [23]. Further
Figure 5 The 35-gene based ADC-index predicts overall survival

in the validation cohorts

A.Kaplan–Meier curves for theADCpatients in the three validation

cohorts. Patients were stratified into two categories according to

ADC-index. The median ADC-index was used as a cutoff. P values

indicate significant differences in overall survival as measured by

log-rank test. B. Boxplot of hazard ratio of the genes within the 35-

gene signature. For each gene, the ADC patients were stratified into

twogroups using themedian expression value of the gene as a cutoff.

Hazard ratio was computed between the two groups (high-expres-

sion over low-expression). The hazard ratios of the positively

weighted genes are significantly higher than those of the negatively

weighted genes.MCC, the cohort fromMoffitt CancerCenter, USA

(GEO: GSE72094) [40].



Table 2 Multivariate Cox proportional hazards regression of survival in ADC patients

Covariate
ACC MCC

HR 95% CI of HR P value HR 95% CI of HR P value

ADC

EGFR

KRAS

STK11

TP53
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efforts are required to investigate the underlying causes and to
explore if it is general for other cancers.

By overlapping upregulated and downregulated genes with
high-weight connection to four nodes, we developed a 35-gene
signature as a diagnostic and prognostic biomarker for human

lung ADC (Table S2). These 35 genes are significantly involved
in some cancer-related pathways, such as ‘‘p53 signaling path-
way” (Figure 3C). Among them, some genes have been identi-

fied to be related to human lung ADC in previous studies. For
example, the expression value of SCN7A was identified to be
negatively associated with ADC survival in this study
(Table S2), which is consistent with our previous results that

SCN7A expression was increased in lung ADC [56]. Some
other genes, such as BIRC5 [57], BLM [58], and CCNB2
[59], are also differentially expressed in non-small-cell lung

cancer. However, most genes in the 35-gene signature are first
reported to classify the human lung cancer subtypes and to
predict the survival outcome of lung ADC patients. This find-

ing is not surprising, because the majority of previous studies
Figure 6 Superior prognostic power of the 35-gene signature

The orange area shows the distribution of the mean of |Z| for the 1000

randomly picked up from human whole transcriptome. The blue area

gene signatures (with 35 genes for each gene signature) randomly sele

triangle stands for the mean of |Z| of the 35-gene signature. Right-tai
either relied on the prior knowledge to choose some relevant
genes for goal-directed experiments or carried out some

small-scale data analyses limited to the methods
[16,17,60,61]. Unlike the traditional methods used before, the
DA framework used in our study can integrate a large number

of available datasets. The framework learns their intrinsic
stable structures without any predefined knowledge and is only
dependent on the source data. The algorithm of the DA model

and the integrated larger datasets assure that the identified 35-
gene signature is a novel diagnostic and prognostic biomarker
for human lung ADC.

We also evaluated the molecular classification and survival

outcome prediction performance of the 35-gene signature in
several independent cohorts. Our results show that the 35-
gene based ADC-index can significantly separate human lung

ADC patients from non-ADC samples in ACC, Duke, and
Tokyo cohorts (Figure 4). Furthermore, ADC-index is also sig-
nificantly associated with worse survival of ADC patients in

ACC and MCC cohorts (Table 1). These results suggest that
resampled gene signatures (with 35 genes for each gene signature)

shows the distribution of the mean of |Z| for the 1000 resampled

cted from the pool of the published prognostic genes. The black

led P value was computed for each resampling test.
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the 35-gene signature is a universal diagnostic and prognostic
biomarker for different population cohorts. This observation
is reasonable, because the 35-gene signature that we proposed

is learned from a larger dataset that integrates human lung
ADC samples from 13 published studies (Table S1). Given that
the samples of those 13 studies are collected from different

areas of the world, the 35-gene signature should be indepen-
dent from the population cohorts. Further analysis indicates
that ADC-index and cancer stage are the two independent indi-

cators of survival outcome for human lung ADC patients in
both ACC and MCC cohorts (Table 2). Some other potential
factors, however, such as age, smoking history, and mutational
statuses of some cancer genes, are not consistently related to

disease outcome in human lung ADC (Table 2). Cancer stage
is closely related to cancer survival in human lung ADC [62],
but our results suggest that gene expression values of those

35 signature genes can contribute another dimension of knowl-
edge on ADC survival outcome. The combination of cancer
stage and ADC-index should offer better prognostic informa-

tion of cancer outcome for human lung ADC.

Conclusion

The DA model, a deep learning algorithm, can be used to dis-
sect important features from genome wide-expression datasets
of human lung cancers. Some of the features are closely related

to sample phenotypic information, such as cancer subtypes
and disease outcome. By focusing on those phenotype-
related features, a 35-gene signature has been constructed. This

molecular signature is further validated to be a good diagnos-
tic and prognostic biomarker of human lung ADC in several
independent validation cohorts. This method we show here is

proved to be an effective way to analyze large integrated data-
sets from various studies, which should be useful in developing
precise biomarkers in the precision medicine era.

Materials and methods

The DA model

The DA model was constructed using the ADAGE package

developed by Tan et al. [33], which summarizes the genome-
wide gene expression profiles in human lung tissues into clini-
cally relevant features. Firstly, random noise was added to the
input expression data (Figure 1). Secondly, the neural net-

works with hidden nodes were trained by the corrupted input
to remove the added noise and recover the original undistorted
input, which potentially discovers more robust features. All

genes were connected to each hidden node through a weight
vector, which measures the contribution of all the individual
genes to the node. The constructed feature of each node can

be reflected by the node activity of each sample, which is the
sigmoid transformation of a bias vector plus the inner product
between the corrupted input of the sample and the weight vec-

tor. The sigmoid function is widely used in DA implementa-
tion (and many other machine learning algorithms as well),
which can capture the complex non-linear relationship in the
high-dimensional data. To reveal the nodes having clinical rel-

evance, we next linked the activity of each node with sample
phenotypic information (Figure 1). The gene weights in each
prioritized clinically relevant node were further investigated.
Only the genes with either high-positive or high-negative
weights were retained. The overlaps of high-weight genes

among the prioritized nodes were chosen to develop the molec-
ular signature (Figure 1). In this study, the hidden layer of DA
was designed to contain 200 nodes, with epoch size of 1000,

batch size of 200, corrupted level of 0.1, and learning rate of
0.01. We chose 200-node model in our study, since DA perfor-
mance starts to be stable from 200 to 300 nodes, and increasing

node size does not improve DA reconstruction when DA mod-
els are applied to genome-wide gene expression data [53]. To
confirm the robust performance of DA model, we also ran a
DA model with 400 hidden nodes and tested its predictive

power. Because microarray data were used to train the DA
model, genome-wide gene expression profiles were represented
at probeset level. For each hidden node, high-weight genes/

probesets were defined as those within either left or right 1%
tail of the distribution of the weight vector.

The training and validation data

To train the DA model, we collected 13 lung cancer related
genome-wide gene expression datasets from the GEO [36]

database (Table S1), which consisted of 1916 human lung tis-
sue samples. All these datasets were based on Affymetrix
Human Genome U133 Plus 2.0 Array. The GCRMA algo-
rithm in Bioconductor was applied to normalize the expression

level of each probeset for the microarray data. The function
‘‘mas5calls” in the Bioconductor ‘‘affy” package was used to
estimate the present/absent status for each probeset. Only

the probesets present in at least two third of the samples were
retained. In total, 22,829 probesets were included in our train-
ing set. We further ranked the resulting expression values

within each sample in ascending order. Finally, we linearly
transformed the expression range of each probeset to be
between 0 and 1 as suggested by Tan et al. [33].

Four validation datasets were included in this study, which
were also obtained from the GEO database [36] and based on
Agilent Homo sapiens 21.6K custom array, Affymetrix
Human Genome U133 Plus 2.0 Array, CHUGAI 41K Array,

and Rosetta/Merck Human RSTA Custom Affymetrix 2.0
microarray, respectively. The summarized gene expression
data were obtained from the GEO Series Matrix files. For a

gene with multiple probes/probesets, the geometric mean of
all the probes/probesets mapping to the gene was used to mea-
sure the gene expression level.

The ADC-index

We followed a scoring formula used in several previous studies

[17,56,60,63] to assign each human sample an ADC-score,
which is a linear combination of weighted gene expression:

IADC ¼
Xn

i¼1

wiðei � liÞ=si

Where IADC is the ADC-index; n is the number of genes; wi is
the weight of gene i (either 1 or �1 in this study); ei denotes the
expression level of gene i; and li and si are the mean and stan-

dard deviation of the gene expression values for gene i across
all samples, respectively.
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Statistical analyses

All the statistical analyses in this study were performed by the
R platform. PCA was conducted by the ‘‘dudi.pca” function in
the ‘‘ade4” library. Cox regression and log-rank test were per-

formed by the ‘‘coxph” and ‘‘survdiff” functions in the ‘‘sur-
vival” library, respectively.

PCA-based method to prioritize prognostic genes

PCAwas conducted on our training data.We focused on the first
200 principal components, of which the first 30 components
explained ~ 70% variation. In order to account for batch effect,

we computed the difference among the components using one-
way ANOVA. We only kept the components with P > 0.01
and finally got 148 components. Univariate Cox proportional

hazards regression was used to examine the relationship between
each component and ADC survival. The top five components
with the strongest correlation with either overall or recurrence-

free survivalwere retained.Wenext extracted the top10%probe-
sets that provided the strongest impact to these components,
which can be uniquely mapped to 261 human genes.
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